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Abstract

The 1-D Leap-Frog Algorithm of Noakes [1] is an iterative scheme for
solving particular nonlinear optimization problems. We aim to adapt 1-D
Leap-Frog to optimization problems in computer vision and the present pa-
per represents a step in that direction. In the context of photometric stereo
we use a 2-D version of Leap-Frog to compute optimal integrable approx-
imations of noisy nonintegrable vector fields. 2-D Leap-Frog is iterative
and converges linearly to the optimal field. As evident in [1], Leap-Frog
can sometimes deal with nonlinear problems, and this feature might in
future be important for computer vision. However, even the capacity to
handle large systems of equations is important in vision applications, and
the present paper demonstrates Leap-Frog's capacity to do that, at least
when the equations are linear. In this situation Leap-Frog can be viewed
as an extension of Gauss-Seidel. Properties of these kinds of extensions
are well-known but we offer a particularly simple geometrical proof for the
special case of photometric stereo. From the point of view of vision the
present paper marks a significant advance over known methods in photo-
metric stereo of Noakes, Kozera and Klette [2], Frankot and Chellappa [3],
and of Horn [4]. The performance of 2-D Leap-Frog was demonstrated in
Noakes and Kozera [5] without proof of convergence.
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1 Introduction

A monochrome picture of a smooth object typically exhibits brightness variation
or shading. Shape-from-shading is the problem of determining the visible part of
the object from the picture. Asshown by Horn [6] subsection 10.10 (see also Horn
and Brooks [7]) this corresponds to solving a nonlinear first-order partial differ-
ential equation. Specifically, one seeks a function u, representing surface depth in
the direction of the z—axis, satisfying a so-called image irradiance equation. In
the case of a Lambertian surface (a perfect light diffuser), illuminated from the
light-source direction (p1, p2, p3), the image irradiance equation is

Uz \ T, 7+ W Y) — Ds
Wz (z, y) + Pouy(, y) — P3 i 1)
Vo3 + 8+ p3\ (e, y) + w3z, y) + 1

over an image Q@ C R?. Here E is an image intensity formed by orthographic
projection onto the plane of the image €. The unknown surface S is the graph
of the function u, and is to be determined up to translations u — u +c. A single
image shape-from-shading problem (with no additional constraints) is, in general
ill-posed in the sense that not enough data is given for the problem (1) to be
uniquely solved. For background we refer to Brooks and Chojnacki [8], Brooks,
Chojnacki, and Kozera [9-11], Deift and Sylvester [12], Dupuis and Oliensis [13],
Kimmel and Bruckstein [14], Klette, Schliins, and Koschan [15], Kozera [16-19],
Oliensis [20], Onn and Bruckstein [21] and Rouy and Tourin [22].

In contrast with single image shape from shading, in two-source photometric
stereo the shape of a Lambertian surface is generically uniquely determined by a
pair of images obtained by consecutive illuminations of a given scene from two
distinct light-source directions (see Horn [6, subsection 10.16], Kozera [16,17] and
Onn and Bruckstein [21]). When 3 light-source directions are used we have three-
source photometric stereo and the additional information has many uses. For the
present paper it is enough to consider two-source photometric stereo.

Two-source photometric stereo for a Lambertian surface, is modelled by two
nonlinear PDEs of the form (1), where the right hand sides F,, E, are given
functions defined on Q = Q; Ny C R?. Shape reconstruction, as in mutiple-
source photometric stereo, can be decomposed into

e gradient computation (an algebraic step) and
e gradient integration (an analytic step).

[t turns out (see subsection 10.16 in Horn [6], Kozera [16,17] and Onn and
Bruckstein [21]) that the gradient ¥y = (us,u,) can be generically uniquely
computed from the data E,, E; and the image irradiance equations. What com-
plicates our problem, especially in the presence of noise, is that the tableaux of
computed values v', v? of u,,u, usually does not correspond to a function u. To
see why not we suppose that u is C?. Then

uzy(ws y) = Uyg [3' y)'
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It follows that a necessary condition for the v', v? to correspond to a C? function
is
vl =02, (2)

When €2 is simply-connected this integrability condition is also sufficient. From
now on take 2 to be the unit square [0, 1]x[0, 1]. There are integrability conditions
for C'' functions, and also for nonsimply-connected domains, but (2) is enough
for us. As noted, the integrability condition usually does not hold for computed
v!, v2 in the presence of noisy measurements Fy, Ey. If possible this defect should
be corrected before passing to the second step in surface reconstruction, namely
gradient integration. Then gradient integration becomes extremely simple, and u
is determined up to translation. Namely, once the gradient (u,, u,) is computed
we obtain u according to the formula

u(z,y) = u(zo, Yo) + / uzdr + uydy, (3)
i
where v C ) is an arbitrary piece-wise C'' curve joining a fixed point (zg, yo) €
with (z,y) € Q. The choice of (g, yy) determines the translation constant c.

The essential remaining problem then is how to replace the vector field (v', v?)
by an integrable field (¢',9%). Perhaps the most obvious way to do this is to
replace (v',v?) by the closest integrable vector field, and of course it is important
to say what is meant by close in this context. In the present paper we use the
standard definition, which is convenient from the mathematical point of view
. Techniques developed so far for handling this problem include Horn [4, 6]
subsections 11.7-11.8 which uses a method that relies on minimizing different
best fit functionals. For example, one of Horn’s variants minimizes the following
functional

./;1((?,:1(:}?, y) — v (z,9))* + (u,(z,y) — v*(x, y))*)dS

whose Euler-Lagrange equation is a Poisson equation Au = f. The problem with
this approach is the need for additional boundary conditions, which do not natu-
rally occur for the problem as stated. The choice of boundary conditions affects
the solution and so in practice there are some problems with this method. An-
other minimization scheme was introduced by Frankot and Chellappa [3], where
the projection to the closest function @ expanded by Fourier series is used. Such
methods work best when @ is periodic, and we wish to avoid this kind of con-
straint. Recently a new method for enforcing integrability of noisy vector fields,
namely the Lawn-Mowing Algorithm of Noakes, Kozera, and Klette [2] has been
introduced. Like the other methods considered so far, Lawn-Mowing is service-
able but suboptimal.

The 2-D Leap-Frog used in the present paper suffers from none of the difficul-
ties mentioned above, and moreover we prove linear convergence to the optimal

'In subsequent papers we shall study alternative definitions of distance, more closely tied to
applications, and requiring the power of Leap-Frog to handle nonlinearities.




solution. Our geometrical proof seems more accessible than well-known algebraic
proofs of convergence for classical iterative schemes solving large systems. 2-D
Leap-Frog (at least in the present linear setting) can be viewed as a subclass of
such methods. As already noted, 2-D Leap-Frog is derived from 1-D Leap-Frog
which is an iterative scheme for solving nonlinear optimization problems in a
geometrical setting. This is why our proofs are geometrical in flavour (even in
the linear case) and why we hope this style of algorithm will be useful for more
realistic (nonlinear) optimization problems arising in computer vision. As well
as proof of convergence we give a number of illustrative examples, pictures and
pertinent experiments.

2 Pseudoinverses

We first recall some linear algebra. For n > m let L : R* — R™ be a linear
transformation of maximal rank m. Given L(v) # 4, for some v € R* and @ € R™,

consider the task of finding the closest 7 € R" to # € R" such that L(7) = @. It
is well-known that |77 — 7| is minimized by the orthogonal projection of 7 on the

affine subspace
A =0, + Ker(L) C R, (4)

where Ker(L) is the kernel of L and @, is a particular solution to the problem
L(Z) = 4.

In order to actually find 7 we need to compute its coordinates é; with respect
to some given basis {ﬁ, | f_;,} of Ker(L), where k = n— m. Then the &; are
solutions of the following k x k-linear system:

k
ijﬂi < ff‘]fj >S=< U — T_J's|fj >y
=1

in principle solvable by Gaussian elimination. When £ is large and the matrix of
L has special properties, Gauss-Seidel or, more generally, multiplicative Schwarz
(see Benzi, Nabben and Szyld [23]) may be more appropriate. An alternative
approach is to use the pseudoinverse. For this the following lemma is used (the
straightforward proof is omitted).

Lemma 1 The vector ¥ — @ is orthogonal to Ker(L) if and only if there exists
w € R™ such that v — ¢ = LT ().

Since rank(L) = m, the symmetric matrix LLT : R™ — R™ is positive-definite
and in particular is nonsingular. Consequently, since (LLY)~! is well-defined and
as L(#) = i, there is a unique vector w such that 7 — o= LT (). It can be easily
shown that vector o satisfies

@ = (LLT) " (L(?) — @).




So the corrected vector 7 can be expressed as
v =7 — LY(LLT) Y (L(@) — 7). (5)

The transformation L,s = LT (LLT)™! : R® — R" is the pseudoinverse of L. As
with ordinary inverses it is not always convenient to use the pseudoinverse. Direct
or iterative methods of solution may be more efficient. From this point of view, 2-
D Leap-Frog is an iterative scheme, particularly well suited to photometric stereo
and with links to other problems of interest.

3 The 2-D Leap-Frog Global Optimizer

In practice, our problem of approximating a noisy vector field by an integrable
field can be effectively reduced to the linear algebra task in section 2, by trans-
forming the integrability condition (2) into its discrete analogue. In more detail,
for fixed k < [ € N divide the unit square € into 2% atomic subsquares of the form
St = [ig—1)/2"ig/2] x [(d — 1) /2", 4¢/2'] (for 1 < g, jy < 2'). From values of
u on such a grid we could calculate central-difference derivative approximations
with Az = Ay = 1/2!

J J J+l j
Ui — Uj w; ' — U

i+1 1 B Pl i
—=——L and uyli,j] =

uz[i, J) = 5 S

for each side of a subsquare in the z and y directions, accordingly whether the side
is horizontal or vertical. Along each atomic subsquare, the analytic integrability
condition (2) (modulo truncation error assumed here to be dominated by noise)
translates into the discrete analogue

Ugi, j + 1) — ugfi, 7] = wy[t + 1, 3] — u,[4, 7] (6)

Assume that uniform Gaussian noise with mean zero is added to each [z, j] and
each u,[i, j] independently. The problem now is to estimate u, u, from 2'*1(2'+1)
noise contaminated differences in such a way as to be closest to the nonintegrable
field ¥ = (v',v?) evaluated at the gridpoints. Accordingly, 7= (g, 1t,) should
minimize the sum of squared residuals

Z ((?13,[i,j] — '3, 4])* + (Gy[i, J] — "Jz[?:rj])g) ' (7)

1<i,j <24(21+1)

Such a solution is said to be optimal. Finding it is a task in linear algebra,
as outlined in section 2 and, as noted, this leads to a large system of linear
equations in many unknowns, requiring about 70GB of RAM for typical problems
if implemented directly. The need for some sort of iterative scheme is quite
apparent.

There is a well-known relationship between minimization of L?-norm and max-
imum likelihood estimates of parameters from measurements contaminated by




Gaussian noise (see Zubrzycki [24]§51). So the (standard) assumption about the
Gaussian noise tends to simplify the analysis.

In the next subsection we confine attention to a given Sg (denoted also by S;)
having 2% atomic squares, and review various optimization problems considered
over S; subject to nine different boundary conditions, namely: top-right, left-
top-right, left-top, top-right-bottom, top-right-bottom-left, bottom-left-top, right-
bottom, right-bottom-left, and bottom-left. These are referred to in the description
of 2-D Leap-Frog in section 3.3.

3.1 Subsquare Grids with Various Boundary Constraints

We briefly discuss one of nine cases of S;—boundary constraints. In doing so,
we assign to the nonintegrable vector field @, = (v'[i, j], v?[7,j]) (over each S;)
2K+1(2%4+-1) free variables @, corresponding to the unknown corrected values of the
closest integrable vector field Un. More specifically, over each Sy, define 2¥(2% +1)
free variables (corresponding to v'[i, j]), namely: z; = v'[0,0],..., 2% = v'[2¥ —
l,ﬂ],:??gk_,_l = 'UI[U, 1], covy Dokl = 'Ul[Qk—l, 1], and zo2k . = 'UI[U, Qk], cooy Dok(gkp) =
v'[2F —1,2F]. Analogously, we have 2¥(2¥+1) variables (corresponding to v*[z, j),
namely: y; = v2[0,0], ...,y = v2[0,25—1], yor 4, = v?[1,0], ..., yse+s = v*[1,2F
1,y g1 = 02[25,0],. .., Yor(orq1y = 022,28 — 1]. Assuming temporarily, that
k = [ the integrability condition (6) applied to each atomic subsquare yields a
homogeneous optimization system of 2% linear equations in 2/7(2!+1) unknowns

L;‘(ﬁ;) =0,

where 0 € R and 7, € R*"' @+ with L(%,) # 0 (note that for [ = k we have
i = 0 as defined in (4)). Direct methods for solving such a global optimization
problem (for which Lf‘({";',,) = 0) constitute, for / > 7, an unwieldly computational
task for currently available computers (I = 7 or 8 or 9 corresponds to a typical
camera resolution). So further discussion focuses on local optimizations over
each S; (with k < [) and on melding local optima into a global optimum (the 2-D
Leap-Frog).

As the analysis of nine cases of different boundary constraints imposed on
S, for the 2-D Leap-Frog is similar we discuss here only the case of top-right
boundary conditions. Assume that 28*! boundary values are given, .e. Ty =
Tk, 1> Ta2k g = Tk gy Tok(2kpy) = ng(zun (representing top boundary con-
ditions for S;) and you,, = ygng, Yg2k o = y33k+2, ooy Yok(2kyl) = yg"(2"+l)
(representing right boundary conditions for S;). Applying 2% integrability con-
straints (6) (along each atomic square) we arrive at an inhomogeneous system
of 2?% linear equations in 25+1(2% 4+ 1) — 25+1 = 22+ ynknowns. Using notation
from section 2 this system can be treated as LY (Zy,) = @ (for LY (G4) # ),
with @, 7, € RZ" | @, € R?" and Ly . R 5 R being a linear operator.
Note that for n = 2%%*! and m = 2?* condition n > m holds. It is straightforward
to show that Rank(L{) = m. Consequently, as L{ () # iy, the closest vector
Tir satisfying L (&) = U, can be found as in section 2. Note that as k increases




the dimensions of both linear spaces R™ and R" grow exponentially. The origi-
nal problem (7) is reduced to a collection of computationally tractable problems,
where [ is replaced by 1 < k < [. In the case of k = 1 we have LY () = i,
where LY : R® — R? is defined as

10 -1 0 -1 0 1 0

rir 01 0 -1 0 0 -1 0

'“loo 1 0 0 -1 0 1 |
00 0 1 0 0 0 -1

Ty = (21,02, T3, T4, Y1, Y2, U3, Ya), and @y = (0, —yd, 22,22 — yg) € R, Analo-
gously, for any 1 < k < [ one can find an explicit formula for L}". For example,
for k = 2, an explicit formula determining LY : R** — R can still be quickly
established by hand. It is evident, however, that finding the matrix L (for
k > 2) consitutes a more laborious task. In a similar manner the operators
Litr L Lird Lird L L7¥ and LY can be determined.

3.2 The 1-D Leap-Frog

The 1-D Leap-Frog Algorithm (see Noakes [1]) applies to a class of nonlinear
problems and 2-D Leap-Frog is a 2-dimensional construction of the same sort.
The 1-D Leap-Frog shows how these kinds of constructions are sometimes able
to handle nonlinearities. It is enough to focus on the following special case.

Let R? be equipped with some Riemannian metric and let g, 2; € R*. The
length A(7) of a C' curve v : [0,1] — R? is defined with respect to the Rie-
mannian metric. Suppose from now on that y(0) = z¢,v(1) = x, and that v
is parameterized proportionally to arc-length. The functional A acts on the infi-
nite dimensional space of all such curves =, and critical points of A are geodesics,
namely they satisfy a particular form of the Euler-Lagrange equation in the cal-
culus of variations (see Klingenberg [25, Chapter 5]).

In order to calculate Riemannian distances we usually need to find a geodesic
joining zy and x,, which is a boundary value problem for the geodesic equations.
Such problems can be solved by shooting methods (see Keller [26]) which work
well when a good initial guess is available, especially when points zy and z; are
nearby. The 1-D Leap-Frog works with no need for a good initial guess I'y of I,
(though the better T'; is the quicker convergence is achieved).

The algorithm follows the pattern:

e select an initial curve T’y of [y joining zo and z; (see Figure 1 (a)). An
estimate might be a straight line passing through both points. Divide I’
into, say, four subpaths each joining the pairs of points: (zg,z}), (z],x3),

(z3,2}), and (a3}, 2,):

e using a shooting method (applied now to a more local problem) find the
geodesic path between points 2y and z}. Select the middle point 2% on this
path and then by using shooting method find the geodesic path between




Figure 1: 1-D Leap-Frog Algorithm yielding approximations I', to a critical path
['.pit with: (a) an initial estimate I'; (b) the second estimate I'y (c¢) the third
estimate I'y.

#? and z}. Similarly, choose the middle point z3 on that path and using
shooting method find the geodesic path joining 23 with ;. Finally, localize

and mark the middle point z3 on that last subpath. The sum of subpaths
2

joining pairs of points (zg, z2) (22, 23), (23, 23) and (23, 1) constitutes now

an updated estimate I'y of T'riy (see Figure 1 (b)).

continue the next iterations yielding I',, (n > 2) as specified in the previous
step (I's is shown in Figure 1 (c¢)).

[t can be shown that, subject to certain conditions, the sequence of curves I,
converges to I' ;. The idea is to exploit the power of shooting methods in finding
a local optimum, and then somehow merge together subotptimal solutions. This
also forms the conceptual back-bone of the 2-D Leap-Frog. Further background
information can found in Noakes [1,27] and Kaya and Noakes [28].

The 1-D Leap-Frog:

1.
2
3.

(a3 ]

solves a global problem,

is iterative,

converges regardless of the initial guess,
works within the space of feasibile objects,

has each step relatively small-scale, allowing for rapid computation,
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Figure 2: Covering an image €2 by the family F* = {S};_”"}%,-JQ of subsquares
(here k =1 —1). Each S,;(;-_”i consists of 220~ atomic squares.

6. is amenable to the parallelism, and
7. deals with nonlinearities.

These features are observable for 2-D Leap-Frog also, except that in the
present paper the method is not required to deal with nonlinearities.

3.3 2-D Leap-Frog

To describe 2-D Leap-Frog, suppose given a nonintegrable vector field ¥ defined
over a rectangular grid in = [0,1] x [0,1] with 2! sides. The optimization
problem (7) is solvable in principle by the methods of section 2, but in practice
this is unworkable by direct methods unless [ is small. Certainly [ > 7 makes
diffficulties. So the following algorithm uses a sequence of optimizations where [
is replaced by a smaller integer k.

Cover by a familiy of overlapping subsquares F* = {S}, o, j<o-x+1_; each
comprising 2% atomic subsquares S ; . Each Sf is defined as follows S =
[(F o 1)2k_£_l, (I - 1)2.&—!—1 gz 2k-—f] % [(J . 1)21:4—1’ (_,-' - 1)2k—!—1 4 2}.‘—!], where
1 <14,j <2=F+1 _ 1. The case when k =1 — 1 (and [ > 2 is arbitrary) is shown
in Figure 2. Let 7 be any integrable vector field. Many choices are possible. For
example we might use the methods of Noakes, Kozera and Klette [2] or Frankot
and Chellappa [3] or Horn [4] to approximate #. The easiest (and perhaps best)




choice is 7 P 0. We present here the 2-D Leap-Frog version with half S:;-I overlaps.
The size of the overlaps can vary (between 1 and 2% — 1 pixels) as well as the
size of the snapshot Sf/, where 1 < k < [ —1. Theorem 1 can be proved for
these cases also, by the same argument. For n = 1,2,... repeat the following
sequence of steps until some halting condition is flagged (bounds for the number

of iterations, estimated error, or deficiency angle as in section 5).

e start with the left bottom subsquare S¥ and apply a least-square optimiza-
tion with respect to? #, with fixed top-right boundary constraints inherited
from the values computed in the n— 1th iteration (for £ = [ —1 see Figure 2

(a)).

e pass now to the second subsquare of the first row S5 and apply a least-
square optimization with fixed left-top-right boundary constraints. The left
and left-half top boundary conditions are inherited from computed values
over S¥ obtained in the nth iteration. The right and right-half top bound-
ary conditions are inherited from the computed values in obtained n — 1th
iteration (for k = [ — 1 see Figure 2 (b)).

e this process continues until the last subsquare S(";i_kﬂ_” . in the first row.
Over this subsquare apply a least-square optimization with left-top bound-
ary constraints fixed. The left and left-half top boundary conditions are
given by the previously computed values over Sf 41 ), in nth iteration.
The right-half top boundary conditions are given by the values obtained in
the n — 1th iteration (for k£ = [ — 1 see Figure 2 (c)). Thus the first row of
nth iteration is completed.

e next pass to the second row. Start with the S} subsquare and apply a least-
square optimization with fixed top-right-bottom boundary constraints. The
bottom and bottom-half right boundary constraints are inherited from nth
iteration values computed over subsquares S, S and S¥. The top and
top-half right boundary conditions are inherited from values computed in
the n — 1th iteration (for k = — 1 see Figure 2 (d)).

e pass to the second subsquare S% over which we apply a least-square op-
timization with top-right-bottom-left boundary constraints. The left-half
top, the left, the bottom and the bottom-half right boundary conditions
are inherited from the values of the nth iteration computed over St SA!
and Sf!. The remaining boundary conditions are inherited from computed
values obtained in the n — 1th iteration (for £ = [ — 1 see Figure 2 (e); note
that in case when k& = [ — 1 there is no dependence on S§-boundary).

e continue until the last subsquare Sg;_;._ﬂ_m in the second row is reached.
Over this subsquare apply a least-square optimization with bottom-left-top

2More precisely, adjust the variables in the snapshot to minimize the distance to the given
nonintegrable field ©#. All optimizations in 2-D Leap-Frog are to be understood in this sense.
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boundary constraints fixed. The left-half top, the left, and the bottom
boundary conditions are inherited from the values computed in the nth
iteration over Sgi_kﬂ_m and ng—*ﬂ—i}l' The right-half top boundary
conditions are inherited from values computed in the n — 1th iteration.
Thus the second row of the nth iteration is completed (for &k =1 — 1 see
Figure 2 (f)).

e continue row by row (as specified in the previous step), until the last row
is reached. Apply now a least-square optimization over Sy ., , with
fixed right and bottom boundary constraints. The bottom and the bottom-
half right boundary conditions are inherited from values computed in the
nth iteration over Sg;_k+._2, ng—kﬂ_g, and S;:{:f—f-'ﬂ_z' The top-half right
boundary conditions are inherited from values computed in the n — 1th
iteration (for £ = [ — 1 see Figure 2 (g)).

e pass to the second subsquare of the last row S.g,_H] _, over which we ap-
ply a least-square optimization with right-bottom-left boundary constraints
fixed. The bottom-half right, the bottom and the left boundary conditions
are inherited from values of the nth iteration computed over Sg,_ﬂ,_l,
Sk sy and S, ,. The top-half right boundary conditions are inher-
ited from computed values obtained in the n — 1th iteration (for k =1 —1
see Figure 2 (h); note that when & = [ — 1 there is no dependence on

SH,_i+1_,-boundary).

e this process continues, up until the last subsquare S("fzﬂ_k“_l}(z,_,‘.ﬂ_]}, in
the last row is reached. Over this subsquare apply a least-square optimiza-
tion with the bottom-left boundary constraints fixed and inherited from
computed values over ng_kﬂ_z)(z;_k“ _1) and S(k:fi—ﬂl—u(;a“*-“—z) in the nth

iteration (for £ =1 — 1 see Figure 2 (i)). This completes the nth iteration,
=+l
and the resulting integrable vector field is labelled i

Evidently, a generic snapshot optimization performed during the execution of
2-D Leap-Frog deals with the case when all boundary constraints are fixed, as it
happens with S for example.

4 Convergence of 2-D Leap-Frog

This section is devoted to the proof of linear convergence of the 2-D Leap-Frog,
namely the following.

Theorem 1 Let @ be the optimal integrable vector field for the problem (7) de-
scribed in section 3. Then for some constant C € [0,1) and for each n € N

~n+1

= 2, o T
|lo° -] <C|lv — 7. (8)
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Note that as usual formula (8) implies (linear) convergence of 2-D Leap-Frog

to the optimum i (which coincides with the orthogonal projection of ¢ onto the
subspace of integrable vector fields).
Preliminaries: To prove Theorem 1 (but not to implement 2-D Leap-Frog) it is
necessary to change the way we look at the " For purposes of proof it is rather
unhelpful to represent these as vectors in R (24D It is better to view them as
abstract vectors or tableauz as we shall call them. A fableau is an array of real
numbers of the form

( T2t gy Lozl 4o Lol (9t 4.1) \
Yai o Ygoat o Hgal caee Yoz =] Yot 2l gy
:1:22;_1+1 .’!322.!—1_'_2 Tyt
vp =
Toal 41 Lozl 42 e it Tagl
Yz a Yal 42 B Yaal 42 i Ya2u-149 = Yp2i 40
:52}_“ 2:2¢+2 o . Tgal
n o Yl 4y o Yool 4 wies Yg2i-14y o Yoz 4
\ I T2 . ‘s Lol .)

Even without the O symbols, a tableau is not a matrix (neither rows nor columns
have the same number of entries). A O symbol in a tableau is called a nucleus
and its adjacent real entries are its neighbours. Given [, the set of all tableaux is
denoted by Vi.

For vyp,vap € Vi define vy 41 vap 4 ur by 2V = g7 4+ T and YT =
Y7 + y¥27, For vpr € Vp and pu € R, define wy dof i vp by z¥7 = pz" and
yvr = py!". With respect to these operations of vector addition and scalar mul-
tiplication, (Vr,+r,-7) is a vector space, equipped with a natural isomorphism
T to R2' '+ Define an inner product < - | - >, on Vi by multiplying corre-
sponding real entries in two tableaux and then summing. Denote the associated
norm by || - [|7. Then T is an isometry to Euclidean space R (2'+1),

A tableaun (9) is said to be integrable when, for all nuclei, the sum of its four
neighbours is 0. More specifically, for an integrable tableau,

Toat4n + Yn2l g (mt1) — Tim41)2t4n — Ym-1)20+(m+1) = 0.
The integrable tableaux comprise a vector subspace V3 of the vector space Vi
of all tableaux. The following lemma holds in the context of 2-D Leap-Frog as

described in section 3.

Lemma 2 There is an affine transformation Ay : V¥ — Vi@

such that
“n+1 7
T = Ariy, (10)

5 -k ok
where 17; = Z(v) (for k € N) denotes the representation (via Z) of FJ'L in the
space V.
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Proof: Note that, in case of a half snapshot overlap, one iteration of 2-D
Leap-Frog consists of (2/*17%)2 snapshot optimizers. Formula (5) shows that
each snapshot optimizer forms an affine mapping V;7 — V7. Indeed, looking
at formula (5) yields that for a snapshot on a given location the vector 7 is a
projection (in fact orthogonal) of @, (see section 3.1). The term # in (5) is linear
on any vector representing the integrable vector field. So the right-hand side
of (5) is an affine on integrable vector fields (depending on the position of the
snapshot). Thus 2-D Leap-Frog is an affine mapping A('LATH) = _~1L('f?n) + @ from
the subspace of integrable vector fields to itself; A* forms its linear component.
Hence the transformation

Ar(vy) = Z(A(Z™\(U7))) = Ak(¥y) + b, (11)

where AL =T o AY o Z-! and Z() = 1y, yields (10). O

Note that in Lemma 2 the mapping A, and thus Ap are the same over each
iteration of 2-D Leap-Frog.

Let Wy be the vector space of real (2! + 1) x (2! + 1) matrices. Think of
the entries {a;;} of such a matrix as values of the function u calculated at grid
points labelled (7,7), where 1 < i,5 < 2! + 1. Define a linear transformation
® : Wyr — Vi by mapping from function values to the corresponding discretised
vector field, namely ®(X) =Y, where for n = 2! + 1 we have

( an (t12 a3 14 Ai(n-1) A\
D3] ag: (25,51 24 e (2(n—1) (op
31 (132 33 134 bt d ag(n—1) (an
X = . ;
Un—1)1 An-1)2 Qn-1)3 Qn-1)4 --- Qp-1)(n-1) Qn-1)n )
\ iny n2 Qpg (ng s An(n—1) Qpp
and
(’ a1e — 4y Qin — Qy(n—1)
ajy — a2 a a2 — a2 o Gin — azn
azz — az) Q3n — Qo(n—1)
Y=
Aip—1)2 — Ap-1)1 vee Bip—1in — Bn—1)(n—1)
Q(p—1)1 — @n1 o Qip—1)2 — @n2 ... o U(n—1)n — Gnn
\ Gn2 — dnl Unn — Gp(n—1) )

Notice that ® maps into the space of integrable tableaux, namely
(I)(I"I"FM) C ‘/:IE‘B C VT.

It is easily verified that the kernel of @ is spanned by the constant tableau whose
real entries are everywhere 1. Consequently ® has rank (2! +1)? — 1 = 2/(2' + 2).
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This is the dimension of V7. So the image under ® of any (2! + 1)? — 1 linearly
independent matrices W), constitutes a basis of V2. In particular, define

D _ (B @ ® & @ ) & 1o @
Br = {hi1, hias - S RS by o RS B8, Boaye oo R }s

where
( 0 0O ... 0 \ ( 0 0 .wx O \
0 0 it 0 0 0 o 0
hii=lo o ... ol M=o o ... 0
0 0 .0 0 0 0
T 0 0 0 L s 0
\ T 0 ... 0 ) \ Y RN \ /
( 0 0 ...0 0 0 ... 0
0 0 . 0 0 0 s 0
h-{lij}:. =10 - 0 | o 0 |» hg, = T 0 - 0
0 0 .0 T 0 0
0 0 T J Y 0 0
\ 0 0 , \ 0 0 0
0 0 ... 0 [0 0 ... 0
0 0 e 0 0 0 . 0
hp=0 =z ... o, ., k=0 o . .
y r ... 0 0 0 ...y
0 y ... 0 0 0 ... oy
0 0 .. 0 \ 0 0 ..0 )
and so on until
[ T 0 ... 0 \ / Y 2 ... 0
Y 0 e 0 0 Y - 0
hm=lo o ... of, ®=[0 o ... ol
0 0 a2 0 0 0 0
0 0 0 0 0 0
\ 0 0 0 ) \ 0 o0 0o )
( 0 . y T )
0 i 0

Ben=lo .. © o

0 0 0
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Figure 3: Graphs of the functions forming test surfaces for the shape reconstruc-
tion: (a) a quadratic polynomial u,(z,y) = 2% + 3zy + 2y* (b) a cosine wavy
function wus(z,y) = cos(20((z — 0.5)? + 2(y — 0.3)%)).

Then Bf is a basis of the space V47 of integrable tableaux.

Note that the order of snapshots Sf; taken in 2-D Leap-Frog corresponds
geographically to the basis element of Bf with the transposed indices i.e. to A,

Let 7 € Vr be a nonintegrable tableau corresponding to the noisy data for
problem (7), and define for 7 € V¥ the function f : R® — R (here s = 2'(2'4-2)),
called performance index such that, for n = 2! + 1, we have

f(z) = f(z11, 212, . 3-3‘-‘--”.(:;—1}) = || Z -'?fijh-;‘ﬁ — Ut

1<i,j<n
(i,7)#(n,n)

7= f@r),  (12)

where || - ||z is computed from the inner product < - | - >7 on Vp and z;; € R
Then z, € R @+2 is a (for k € N) denotes the representation (via I) critical
point of f (i.e. Vf(x,) = 0) when, for ¥ = Z~'(Zr) and 7 = I~ (7r)

f(@r) = l#r — vl = |7} (@) — 7" (or)|* = |7 - o1 (13)

attains its (global) minimum at #7,. Note that I, is an orthogonal projection
vy of Tp on ViE.
The importance of Bf for 2-D Leap-Frog is due to the following lemma.

Lemma 3 The vector Tp € V2 is not optimal if and only if 2-D Leap-Frog
improves the performance indez (12).

Proof. Each step of 2-D Leap-Frog improves (or at least does not decrease)
the performance index f by adjusting some variables. To see it, note that once a
given snapshot Sfj"' is reached, 2-D Leap-Frog improves generically internal values
of S,{‘_'f while keeping the others fixed. In a rare situation if the boundary values
coincide with those corresponding to ;%:',, (and thus :f:'Tn) no change is made. Hence
(7) cannot be globally increased. This combined with (13) and (12) yields the
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performance index f as a non-increasing function with respect to each snapshot
otimization step. Evidently 2-D Leap-Frog cannot improve the global optimum
I, at any stage by changing a few of those variables. So 2-D Leap-Frog fixes the
0pt1mum Z,. On the other hand, if ¥ (and thus ifr) is not already optimal, the
gradient of f at the corresponding point in v € R?(2'+2) js nonzero. Let (a,b)
(here 1 < a,b < n and (a,b) # (n,n), n = 2" + 1) be the first indices when
(Of /0zap)(v) # 0 and when reached by step (b,a) in 2-D Leap-Frog, where the
corresponding basis element A, is in the interior of the snapshot (recall here the
geographical dependence between the order of 2-D Leap-Frog snapshots and the
labelling of hfj’) Since performance index f can be improved by changing only
one variable v, the optimum when free to change any variable in the snapshot
will have a smaller semi-local performance index. The improvement feeds through
to the global tableau.O
We are ready now to complete the proof of Theorem 1. X )
In doing so note that combining Lemma 2 and (11) with Ap(Ty) = Up (see
Lemma 3) we arrive at

n+1

o

+1 = on =,
1F =8 =15 - drlle = |Ar(Er) - T»‘T[h
= || Ak(Fy — F7)llr < ||A%|||Zy — Frllr =

where C = ||AL||. Tt suffices to show that constant C' < 1.

By Lemma 3 if ¥ # @ then ||Ar(&r) — r|lr < ||#r — @/, and furthermore
by Pythagoras’ theorem

Ji

—

| Ar(Zr) — 97

|1 < ||1?1 = UI ||1 (14)

Let now ST(‘t:J'T, 1) be the unit sphere in the space V;7 of integrable tableaux
centered on the optimum 7.
Defining ¢ : Sr(vp,1) = R

9(Zrs) = |Af(Zrs — r)|lr

and taking into account (14) we get for Frs € S’T(TATT, 1)

H(i’TS) = “AT(%TS) - 'ETT”T < ”-%TS —dr|lr = 1. (15)

Note that g is defined on a compact set S»p('a:.r'q», 1) and thus attains its supre-
mum for some Z*pg € Sp(vr, 1) which coupled with (15) yields

o = sup{g(irs) : Trs € Sr(vr,1)} = g(@*rs) < 1.

The latter combined with the fact that o = ||A%|| guarantees that C' < 1. O

5 Experimentation and Conclusions

We now first briefly outline the performance of 2-D Leap-Frog. The tests were
run in Mathematica on a PC 233MHz Pentium 2 with 64Mb RAM. We took
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Figure 4: The integrated surfaces (z,y, u) (for i = 1, 2) from the perturbed vector
fields @;: (a) for the quadratic polynomial (b) for the cosine wavy function.

k =4 and [ = 7, i.e. each subsquare Sf?-i consists of 16 x 16 pixel resolution and
an image €2 consists of 128 x 128 pixels.

In generating ¢ synthetically Gaussian noise was added, with mean zero and
standard deviation 0.04, to the integrable gradient vector field Uj0q = (g, uy)
obtained from the function u; : [0,1]x[0,1] — R (fori = 1, 2) defined as u, (z,y) =
z? 4+ 3zy+2y? and uy(z, y) = cos(20((z —0.5)?+2(y — 0.3)*)). The corresponding
graphs of quadratic polynomial u, and cosine wavy function uy are illustrated
in Figure 3. The standard trapezoidal integration scheme applied to (3), follows
first the horizontal and then vertical path 43, joining (zg, 1) = (0,0) with an
arbitrary image point (z,y) € €. Upon integration of the contaminated vector
fields #; (for i = 1,2) the corresponding reconstructed surfaces (z,y, u§(z,y)) and
(z,y,u5(x,y)) are plotted in Figure 4.

The 2-D Leap-Frog has been subsequently applied with an a priori iteration

bound set to ng = 21. Lawn-Mowing was applied in the first iteration, i.e.
-a:r'l = '::?L,\.g_. followed by ng — 1 = 20 pure 2-D Leap-Frog iterationsﬁ.nf‘or evaluation
we introduce now a few auxialiary notations. Given the estimate ¢ of v obtained
3 c=|7-7"I3 d=|1Tpraa—7" I3
=10

Pythagoras’ theorem applied to the triangle A(7, 7 , U4,qq) yields the cosine of

— |

after 21 iterations define now e = ||/ — U404

; ~ =70 = o0
the angle between sides 77 and Ug,.qU expressed as:

d+c—e

2Vde

o Ly . . .
Clearly, convergence of ¢ to ¢ translates into lim, ,o cos(a,) = 0. Denoting
B, = §—arccos(ay,) as the angle deficiency, expressed in radians, upon completion
of nth iteration of the 2-D Leap-Frog (/3, should be close to zero) the following
experimental results (each five-multiple iteration onwards) have been obtained:

cos(a) =
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Figure 5: The integrated surfaces (z,y, u;
g i

function.

) (for i = 1,2) by using 2-D Leap-Frog
with k = 4 and | = 7: (a) for the quadratic polynomial (b) for the cosine wavy

[teration No. | n =1 Lawn-M. | n=2 n=6 |n=11 | n=16 | nyg =21 ‘
Al for u, 0.04256 0.00298 | 0.00050 | 0.00028 | 0.00018 | 0.00013
32 for ug 0.03786 0.00286 | 0.00081 | 0.00033 | 0.00018 | 0.00011 |

The reconstructed surfaces (

z,y,uy’(z,y)) and (z,

i, Uy

g

(z,y)) are illustrated in

Figure 5. The corresponding errors u§ — u;° (for i = 1,2) are plotted in Figure 6
(a) and (b), accordingly.
We close the paper with some observations.

e the 2-D Leap-Frog substantially improves the Lawn-Mowing and visibly

converges to the global optimum. The above tests confirm that the angle
deficiency improvement ratio f3y/f,, is formidable. For example, for u; and
ty, Upon ng iterations, it is 327 and 344, respectively. Note also that the
first pure 2-D Leap-Frog (the second iteration) as opposed to the initial
Lawn-Mowing iteration offers a substantial improvement £y/5, which in
case of u; is 14 and for uy is 13.

note also that the angle deficiency 3, upon applying Lawn-Mowing (used as
the first iteration of the 2-D Leap-Frog) is close to zero. Thus the subopti-
mal solution provided by the Lawn-Mowing might be sufficient should the
need for finding the global optimum not be a driving criterion. The latter
is important, as ng iterations of the 2-D Leap-Frog take approximately (due
to different boundary constraints) ng(2*'F — 1)2/2!-% ~ 4n, times longer
than Lawn-Mowing. Note that in the case of family F* defined in section 3,
Lawn Mowing optimizes over a subfamily of 4 nonoverlapping subsquares.
Though computational time is an issue, 2-D Leap-Frog is a useful algorithm
convergent to the global optimum.
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e splitting a global minimization problem into a collection of overlapping local
minimization problems, in case of the 2-D and 1-D Leap-Frog Algorithm, is
driven by essentially different reasons. Namely, in the latter case, shooting
methods perform satisfactory, only if a local approach is used. Contrary
to this, the least-square optimization method applied locally or globally
solves perfectly (within the theoretical framework) integrability problem
(7). However, once the issue of computational complexity is raised the ad-
vantage of resorting to the local approach (considered over each Sf with
k < 1) becomes more apparent. Indeed, the analysis contained in subsection
3.1 reveals, that for the pixel resolution 2 x 2% = 256 x 256 a corresponding
inhomogeneous system L} (%) = 0 with k = | = 8, comprises 2'® = 65, 536
equations in 2°(2% + 1) = 131, 584 unknowns. The latter defines the matrix
of 8,623.620,000 coefficients which for 8 byte precision numbers, requires
about 70 GByte RAM. So direct global optimization constitutes an infea-
sible task. There exist many methods exploiting sparseness of the matrix
LL" and/or external memory but our method is essentially geometrical
and well adapted to the nature of global and local integrability problem
encapsulated in formula (7).

e the satisfaction of the discrete integrability condition (6) assumes the linear
interpolation of a given function u, consistent with the trapezoidal method
used later for refined vector field integration. Both illustrations in Fig-
ure 6 indicate the direction of the error propagation consistent with the
horizontal-vertical path integration scheme.

e angle deficiency is used here merely as an algorithm evaluation indicator
not as an a posteriori halting condition. The latter can also be used in
setting the implicit upper bound for the number of iterations to halt once
B, < £ (where € represents the requested angle deficiency accuracy).

e any algorithm based on least-square optimization (including Lawn-Mowing
and the 2-D Leap-Frog) cannot remove the entire noise from o and thus
is unable to retrieve the genuine @,4. The omission of the truncation er-
ror (treated as negligible) is only a minor contributor to the mentioned
above property. Indeed, as Gaussian noise is added in all directions, any
perturbation within the affine subspace A, (comprising integrable vector
fields, modulo truncation error) remains undetectable since then v = 7.
The only detectable and removable noise component belongs to the or-
thogonal complement A7. In the case of homogeneous system, assum-
ing that rank(L}) = m, the ratio of (dim(ker(L})))/(2*(2* + 1))) =
(25(2F 4 2))/(2F1(2F + 1)) ~ 0.5 indicates the proportion of the unremov-
able noise from the total noise incorporated in perturbed vector field 7.
Similar ratios can be calculated for subsquares S; with various boundary
constraints discussed in subsection 3.1.

e like the nonlinear 1-D Leap-Frog, 2-D Leap-Frog is geometrical, and has
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Figure 6: The errors between u¢ and u™ (where i = 1,2): (a) for the quadratic
polynomial (b) for the cosine wavy function.

many other features in common (see 3.2). Inspection shows that the order
in which snapshots are taken can be varied. Also there are opportunities
for parallel processing.

e 2-D Leap-Frog is also related to classical algebraic methods in numerical
analysis. In the special case k = 1 2-D Leap-Frog is Gauss-Seidel for a
system with respect to our canonical basis. Alternatively Gauss-Seidel could
be applied directly to the larger system (5) with respect to the standard
Euclidean basis. For & > 1 is multiplicative Schwarz (see Benzi, Nabben,
Szyld [23]). See Hackbush [29] for other methods for sparse linear systems.

e in the geometrical proof of Theorem 1 single coefficient variation z;; asso-
ciated with h{; changes only 4 points (or 3 or 2 if .5";“!-‘ coincides with the
boundary snapshot) positioned inside a given snapshot. This is the reason
for the use of our canonical basis BY. Examining this argument, we see that
the size of the half snapshot overlap can be varied between 1 and 2% — 1.
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