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Abstract

Junctions are significant features in images with an intensity variation that exhibits mul-
tiple orientations. This makes the detection and characterization of junctions a challeng-
ing problem. In this work, we deal with the characterization of junctions which would
ideally be the response of a filter at every orientation. This can be achieved by the
principle of steerability that enables the decomposition of a filter into a linear combina-
tion of basis functions. However, current steerability approaches suffer from the conse-
quences of the uncertainty principle: In order to achieve high resolution in orientation
they need a large number of basis filters increasing, thus, the computational complexity.
Furthermore, these functions have usually a wide support which only accentuates the
computational burden.

In this report we propose a novel alternative to current steerability approaches. It is
based on utilizing a set of polar separable filters with small support to sample orienta-
tion information. The orientation signature is then obtained by interpolating orientation
samples using Gaussian functions with small support. Compared with current steer-
ability techniques our approach achieves a higher orientation resolution with a lower
complexity. In addition, by observing that the orientation scale of a filter is inversely
proportional to its orientational bandwidth, we build a polar pyramid to characterize
junctions of arbitrary inherent orientation scales.
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1 Introduction

Junctions of gray-value lines or edges in images carry important information for many
image processing tasks like point matching in object recognition, point tracking in mo-
tion analysis, attentive coding, and line-drawing interpolation [17]. In order to use junc-
tions for such tasks we must be able to localize their corresponding keypoints which are
defined as intersection points of lines or edges. Then, we must characterize junctions
by means of signatures and classify them in junction categories. Regarding keypoint
detection and localization the reader is referred to Foerstner’s study [9] and the work of
Parida et al. [11] and to the comparison of different operators by Rohr [21, 22]. In this
report we address the problem of junction characterization. The resulting signature can
be used for further junction classification.

Junctions are local structures with multiple intrinsic orientations and spatial scales [2].
For the purpose of characterization we project them onto the orientation space and build
a 1D signature function of the orientation parameter. Such signatures are often obtained
by applying a set of filters at different orientations. This leads to an enormous compu-
tational load. For example, in order to extract orientation information of a junction,
with conventional filter methods we have to rotate the same filter around the keypoint
repeatedly. For an angular field of 360Æ and a sampling interval of 5Æ already 72 rotated
copies of the original filter should be applied. The concept of steerability has been intro-
duced in order to reduce this explosion of computational complexity. Steerable filters
obtain an analytic model of deformations for further analysis of the grey-value structure
[7, 13, 10, 1, 4, 24, 20].

Denoting with � (� 2 IR) the deformation parameter we define a filter F (~x) with ~x 2 IRn
as a steerable filter if its deformed versions F�(~x) can be expressed as [16]:F�(~x) = NXk=1 bk(�)Ak(~x); (1)

where Ak(~x) and bk(�) are referred to as basis filters and interpolation functions, respec-
tively. The signature S(�) of a junction can be obtained by applying such a steerable
filter on the image I(~x):S(�) def= hF�(~x)jI(~x)i = NXk=1 bk(�)hAk(~x)jI(~x)i: (2)
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Here h�j�i denotes the usual inner product for two real functions F (~x) and G(~x):hF (~x)jG(~x)i def= Z~x F (~x)G(~x) d~x:
We see the motivation of steerability clearly in equation (2): The responses of the filterF�(~x) with � 2 IR are expressed as a linear combination of N basis filter responses.
According to our opinion, steerability approaches may be classified in exact and ap-
proximate methods.

Although steerability was implicitly used by Danielsson and Knutsson [7, 13], Freeman
and Adelson [10] were the first who coined the concept and introduced an exact steer-
ability approach. The approach of Freeman and Adelson to orientation steerability of
a Gaussian derivative is an interpolation using harmonic functions in the orientation
space given the fact that a filter is periodic with respect to orientation. The basis func-
tions are rotated copies of the original filter. The derived kernels do not possess suffi-
cient orientational resolution due to their large spatial support in orientation. Moreover,
they are either symmetric or antisymmetric [23]. This results in a period of 180Æ in orien-
tation and leads to an ambiguity in responses between terminating and non-terminating
junctions.

Simoncelli et al. [1] extended this concept to include dilation and translation. They
proposed some conditions upon which a filter is guaranteed to be exactly steerable,
i.e. a filter can be synthesized with finite Fourier bases. Recently, Simoncelli and Farid
[23] designed a steerable wedge filter in the opposite direction. Regarding the angular
direction, they do not first choose one filter with expected shape and then project it
onto the Fourier basis. Instead, they first choose finite components from the Fourier
basis and then synthesize the filter only using these components. Therefore, their filter
is guaranteed to be band limited and exactly steerable. Besides, the shape of the wedge
filter can be adjusted to be arbitrarily narrow if we adopt adequate Fourier components.
There is no more symmetric ambiguity applying a steerable wedge filter because the
wedge kernel is asymmetric in the angular direction.

Michaelis and Sommer [16] and Teo and Hel Or [24] provided the formal justification
of the exact steerability by applying Lie-group theory. The basic concept of exact steer-
ability is the shiftability [1]: Every periodic band-limited function can be approximated
at every position (“shift”) with a finite linear combination of harmonic functions. In
this sense, orientation and scaling become translations if we apply a logarithmic-polar
transformation to a function with two arguments. Lie group theory gives us the theo-
retical framework for this transformation and for the exact interpolation. The complex
harmonics ej!k are the generating operators of translation. On the other hand, all one-
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parameter Lie groups are locally isomorphic to the translation group if we change the
coordinates to so called canonical coordinates, for example, Cartesian to polar coor-
dinates for rotations. Thus, for every deformation we achieve exact steerability if we
transform the coordinates to canonical ones and then apply Fourier analysis. Teo and
Hel Or list a complete classification of functions steerable with respect to any Abelian
group.

Perona [19] introduced the concept of deformable kernels which is based on the mini-
mization of the discrepancy between the left-hand side and the right-hand side of equa-
tion (1) with respect to the basis functions Ak(~x). He showed that the basis functions
are the right singular functions of a continuous SVD. In case of rotations and periodic
translations it can be proved [14] that the basis functions are the same in both the de-
formability and the exact Lie-group based steerability. However, for other deformations
the functions must be sampled with respect to the deformation parameter and a nu-
merical SVD is applied [12]. The advantage of the deformability approach is that it steers
continuous and discrete filters and needs a minimal number of basis functions for a
given error. However, orientational resolution is not addressed in this approach so that
usually this approach suffers from the uncertainty constraint. Since we are interested
only in orientation, both approaches yield the same set of basis functions. Therefore,
from now on, we will use for both approaches to orientation steerability the term exact
steerability.

The steerability problem may be also considered as a problem of signal reconstruction
from samples Ak(k = 1; � � � ; N) (see equation (1)). This becomes evident if we consider
the parameter � in equation (1) to be the same as the spatial domain variable. For clarity
we change the notation to �: f(�) = NXk=1 Akbk(�): (3)

Here the interpolation functions bk(�) can be from many function classes, for example
Laguerre functions or Legendre polynomials ([18], pp. 29-30). In current orientation
steerability approaches bk(�) are usually the complex harmonics ej!k�, yieldingf(�) = NXk=1 Akej!k�: (4)

Note that !k are not necessarily the first N frequencies as in the standard Fourier decom-
positions.

In this report,
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� we point out that the exact approach to orientation steerability has insufficient ori-
entational resolution because it is based on the sampling of the angular frequency.
To achieve a high orientational resolution a huge number of filters must be used.
Due to the uncertainty principle this computational burden is amplified by the
large support of the basis functions.� We will introduce a new approximation approach based on Gaussian functions
which might be non-optimal with respect to the approximation error but substan-
tially alleviates the above problems as shown in theory and experiments.

We extend this approach to an efficient hierarchical scheme and provide a complete
analysis of computational complexity. Thus, by considering only the problem of orien-
tation steerability, we sacrifice a coherent algebraic theory (as in Lie group and SVD-
based deformability approaches) to achieve high orientational resolution as well as a
dramatical decreasing of the computational complexity.

This report is organized as follows: In section 2 we introduce the new approximate
steerability approach based on angular Gaussians and point out the theoretical differ-
ence between our approach and current steerability approaches. Besides, we analyze
their computational complexity in detail. In section 3 we further introduce a polar
pyramid scheme to treat orientation scale variations. Then we present experimental
results on both synthetic and real data which vividly show a better performance of our
approach. This report is concluded with a short discussion.

2 Approximate Orientation Steerability

2.1 Definition

A 1D continuous function f(�) (� 2 IR) can be approximated from samples as a linear
combination of appropriate interpolation functions (see equation (3)). The main goal of
our approach is high orientational resolution. Therefore, we are interested in filters with
narrow support. We choose shifted Gaussians because they achieve the lower bound in
the uncertainty principle:bk(�) = G0(� � �k) = 1p2��e� (���k)22�2 ; (5)
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with �k distributed evenly along the axis of the orientation variable �. We approximate
the orientation response with an orientation signature S(�) defined as follows:f(�) � S(�) def= NXk=1 Akbk(�) = NXk=1 AkG0(D(�; �k)); (6)

where � denotes the angular variable and �k(k = 1; � � � ; N) are evenly distributed angu-
lar values. Since � and �k are circular angles (�; �k 2 [0; 2�℄), we define aD(�) to represent
the minimal circular difference between � and �kD(�; �i) = min(j� � �ij; j� � �i � 2�j; j� � �i + 2�j): (7)

For example, D(2�; 0) = 0; D((2� � �180); �180) = �90 .

In the study of local orientation, we first conduct a local polar transformation from
Cartesian to the polar coordinate system and we denote the new intensity function withI(r; �), where r and � are the radius and angle, respectively. Since we are merely inter-
ested in orientation, we eliminate the radial variable r by applying averaging along the
radial direction. We denote inner and outer boundaries of the polar transformation withRmin and Rmax, respectively (see figure 1). We set Rmin > 0 to avoid the singularity close
to the keypoint [15]. In order to choose Rmax we must know the size of the significant
neighborhood around the keypoint, which can be provided by the preceding keypoint
detection step. In this report we set Rmin = 3 pixels and Rmax varies from 9 to 15 pixels.

To achieve the approximation properties with respect to the angle we choose sample
positions �k as described later and take the scalar product of the intensity with the Gaus-
sian: Ak = �k+W2X�=�k�W2 G0(D(�; �k)) RmaxXr=Rmin 1N (Rmin; Rmax; �k)I(r; �); (8)

where N (Rmin; Rmax; �k) is an averaging factor along the radial direction which is the
sum of discrete weights inside the sampling mask centered at �k. The inner sum av-
erages over the radius by normalizing with N (Rmin; Rmax; �k). The outer sum is the
projection of the shifted angular Gaussian on the angular signal. Theoretically, a Gaus-
sian function is not compactly supported. In practice we only consider the part ofG0(D(�; �k)) whose variable varies from �k � W2 to �k + W2 . Here W denotes the an-
gular width of the sampling mask. In figure 1 we show a sampling mask centered at �k.
We will explain the choice of this parameter in section 2.3. If we consider Ak in equa-
tion (6) as basis filter responses we have introduced an approximate steerability which
reconstructs continuous S(�) using Gaussian interpolation functions.
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Figure 1: A Gaussian averaging mask centered at angle �k. Darker pixels represent
larger gray values. Left: The mask in the Cartesian coordinate system. The keypoint is
at the center of the circle. Right: The mask with r and � as coordinates, Rmax and Rmin
are radial boundaries of the mask, W is the angle width of the mask. We set Rmin > 0 to
avoid the confusion close to the keypoint.

In the orientation signature S(�) local extremes represent orientations of lines and the
positions of steepest descent/ascent indicate orientations of edges. Correspondingly,
the 2D orientation analysis reduces into 1D line/edge detection. In order to extract
edge information we estimate the derivative of S(�):DS(�) def= j dd�S(�) j= j NXk=1 Ak dd�G0(D(�; �k)) j= j NXk=1 AkG1(D(�; �k)) j; (9)

where G1(D(�; �k)) denotes the first derivative of Gaussian filter G0 and j � j denotes
the absolute value. Here, we are only interested in the amplitude of the derivative.
We point out here that though S(�) and DS(�) seem similar to the even and the odd
responses of a quadratic filter, it is not suitable to combine them together as a single
energy response since they are not Hilbert transformations of each other. To accom-
plish junction classification, both information on lines and edges is necessary. In case
of a quadrature filter, the magnitude signature would not suffice, and we would need
odd/even or magnitude/phase signatures to characterize a junction.

So far, we have defined the approximate steerability. In the following we will compare
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this approach with current steerability approaches regarding the mathematical back-
ground and the implementation performance.

2.2 Difference to Exact Steerability

The main difference between our approach and the exact steerability is that we decom-
pose one signal locally in the spatial domain, whereas exact approaches decompose the
signal globally. This difference lies in both the basis filters and the interpolation func-
tions: In order to calculate the response of a basis filter (i.e. Ak in equation (4) and in
equation (6)) we need a Gaussian mask with local spatial support in the approximate
steerability (as shown in figure 1), while in the exact steerability every basis filter has
the same wide spatial support as the steered filter.

This difference can be described in the spectral domain as well. In the approximate
steerability (equation (6)) the spectrum of one signal is decomposed into a set of spectral
Gabor functions (Gaussian functions with different locations) weighted by the averag-
ing outputs: F [S(�)℄ def= NXk=1 AkF [G0(� � �k)℄= NXk=1 AkF [G0(�)℄e�j!�k ; (10)

where F denotes the Fourier transform. In contrast, in the exact steerability (equa-
tion (4)) the spectrum of one signal is decomposed into a series of Dirac sampling func-
tions weighted by the corresponding basis filter responses:F [f(t)℄ = NXk=1 AkÆ(! � !k): (11)

Thus, in the case of approximate steerability we sample the signal in the spatial domain
with Gaussian masks whereas in the exact steerability the signal is sampled in the spec-
tral domain by Dirac sampling functions. This difference makes our approach perform
better with respect to orientational resolution. According to the well known uncertainty
principle, we cannot localize one signal both in the spatial domain and in the spectral
domain exactly. If we use one Dirac sampling function to localize one spectral compo-
nent of the signal exactly, as in the case of the exact orientation steerability, we will no
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more be able to localize this component in the spatial domain. Therefore, we need many
Dirac impulses to increase the localization capability in space. This trade-off can be op-
timized by applying functions with Gaussian shape [8]. Therefore, the approximate
steerability has better properties with respect to the uncertainty principle.

To summarize, our main concern is orientational resolution with low complexity. To
achieve this goal, we directly built our filter in the spatial domain. The price we pay
is that we do not achieve exact steerability but an approximation of the orientation
response.

2.3 Complexity Analysis

Approximate steerability tries to achieve a higher orientation resolution with a lower
complexity due to the narrow support of the basis filters. Our approach starts with a
local polar mapping which can be done “off-line” since it is a transform between co-
ordinates and is therefore valid for all different images. Online applying the resulting
look-up-table (LUT) is of negligible complexity compared with calculating the filter re-
sponses.

In order to compare the implementation complexity of the approximate steerability and
that of the exact approach we set the radial extensions of masks in both schemes to be
the same. If we denote the 1D tap size of an exactly steerable filter with P , the following
relation is satisfied: P = 2Rmax + 1:
Here, we choose the steerable wedge filter [23] for comparison since it has the similar
shape to our filter mask. The steerable wedge filter is a separable polar filter. Its ra-
dial component looks like a wedge and its angular component is synthesized by the
Fourier series. Its computational complexity is proportional to the number and the spa-
tial support of basis filters. In order to make a fair comparison we apply it after the local
polar mapping, too. It should be noticed that polar separability is not an advantage for
calculating the inner product, since the complexity of the scalar product remains P 2
multiplications and P 2 � 1 additions. Polar separability could be exploited only if we
could perform a convolution.

Suppose we apply a steerable wedge filter composed of 2N basis filters (N odd basis
filters and N even basis filters). As mentioned before, all basis filters have the same spa-
tial support as the steered filter, the 1D size of all basis filters is therefore P , too. In order
to apply one basis filter we need P 2 multiplications and P 2�1 additions to calculate the
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corresponding inner product. Straightforwardly, 2NP 2 multiplications and 2N(P 2 � 1)
additions are required to obtain 2N coefficients (see equation (2)). Assuming that we
use signatures of length 360 we need 720N multiplications and 720(N � 1) additions to
obtain outputs of odd and even filters. Thus, totally 2N(P 2 + 360) multiplications and2N(P 2 + 359) additions are computed to implement a steerable wedge filter composed
of N odd basis filters and N even basis filters.

The main factors in our approach are the number and the width of Gaussians. To sat-
isfy the Nyquist rate in the sampling theory we require following relation between the
sampling interval Æ� and the Nyquist frequency fm:Æ� � 12fm : (12)

For example, we should set the sampling interval Æ� � 1Æ if we want to keep orienta-
tional frequencies below fm = 90� � 28(H z). Totally we need N = 360Æ� basis filters to
sample the whole orientation space.

The angular width of the sampling mask W is related to the scale of the Gaussian func-
tion �. Here, instead of applying Dirac sampling functions along the angular direction
we use Gaussian masks. This is equivalent to Dirac series (the shah function III(�) [5])
convolved with a Gaussian function. Correspondingly, the spectrum of the ideal sam-
pling will be further multiplied by a low pass filter with Gaussian shape. The stop
frequency of this low pass filter is determined by the term 12� (here we define the turn-
ing frequency of the Gaussian function 12� as the stop frequency). This stop frequency is
preferred to be not below the Nyquist frequency fm:12� � fm; hence � � 12fm : (13)

On the other hand, the filter mask should contain adequate pixels to calculate averaging
values robustly. Therefore, we set � = Æ�. Since we want to use the Gaussian function
as an FIR-filter we must cut off its support. It is easy to show that in order to keep the
energy of the cut-off area below 1% of the total energy the width of the mask must be at
least 5�. In this report, we set W = 6�.

We use N = 360Æ� sampling masks to obtain angular samples Ak(k = 1; � � � ; N). On
an average we have at most W360�(R2max � R2min) < W360P 2 pixels in one sampling mask.
For simplicity we assume that in one sampling mask there are W360P 2 pixels. Corre-
spondingly, we need W360P 2 multiplications and W360P 2 � 1 additions to calculate one
angular sampling. Taking into account that W = 6Æ� we need 6P 2 multiplications and6P 2 � 360Æ� additions to obtain N samples. In constructing S(�) or DS(�) we apply a
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Gaussian function and its first derivative, respectively, with the angular width W as in-
terpolation functions. In order to produce the signatures S(�) and DS(�) with the same
length of 360 as in the wedge filter approach above, we require 360W multiplications
and 360(W � 1) additions for interpolation. Thus, totally we need 6P 2 + 4320Æ� multi-
plications and 6P 2 + 4320Æ� � 360Æ� � 720 additions to obtain S(�) and DS(�) in case of
approximate steerability.

The complexity of both approaches is plotted in figure 2. In the approximate steerabil-
ity the sampling interval Æ� plays a very interesting role. We observe that by settingÆ� smaller, which means we have higher orientation resolution, computation load de-
creases. We can draw the conclusion that the approximate steerability is more efficient
than the exact steerability, especially in the case of high orientation resolution and large
filter size.

3 Junction Characterization Using a Polar Pyramid

The orientation scale problem is like every scale problem a trade-off between the intrin-
sic structure of a junction and the orientation scale of a filter. As shown in figure 9, if the
orientation scale of a filter is too small, a blurred edge is not visible and a wide line will
be recognized as two edges [15]. If the orientation scale of a filter is too large, two very
close lines will be characterized as one line. In this section we introduce a polar pyra-
mid to obtain signatures of different scales efficiently. Here we do not treat the problem
of steering spatial scale. Regarding the steerability of spatial scale the reader is referred
to [20, 14].

It is known that one of the most appealing kernels for hierarchical approaches is the
Gaussian function [3]. We know from spatial scale theory that the choice of scale neces-
sitates a hierarchical treatment. Burt and Adelson [6] prove that a generating kernel of
subsampling can be used as the interpolation function for reconstruction from coarser
scales. Moreover, they argue that the interpolation functions can be (discrete approx-
imations of) Gaussian functions with different scales (figure 3). Thus, the continuous
orientation information can be reconstructed from all levels of the polar pyramid by

interpolating the pyramid elements Ŝj(�) with Gaussian functions Gj(�) of different
scales �j : Sj(�) =Xn Æ(� � n4�)Ŝj(�) �Gj0(�) j 2 [1; 2; � � � ℄ (14)
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with Gj0(�) = 1p2��j e� �22�2j j 2 [1; 2; � � � ℄; (15)

where Ŝj(�) denote the elements on the j-th level of the polar pyramid and Sj(�) repre-

sents the signature reconstructed from Ŝj(�). We can obtain edge signatures similarly:DSj(�) =jXn Æ(� � n4�)Ŝj(�) �Gj1(�) j j 2 [1; 2; � � � ℄; (16)

whereGj1(�) is the first derivative ofGj0(�). The local maxima in Sj(�) andDSj(�) denote
orientations of lines and edges at different scales, respectively.

If we want to build a pure 1D one-octave Gaussian pyramid of angles, according to [6]
we should have M2L + 1 samples where L is the number of levels and M + 1 is the
number of samples at the highest level. Taking the periodicity into account we should
have M2L samples as the sampling outputs. However, since initially the orientation
signal is defined as 360 discrete values we cannot build a pure octave Gaussian pyramid.
Alternatively, we apply a factor 2 subsampling of the first three levels, a factor 3 at the
next two, and have 5 samples at the coarsest level (360 = 23 � 32 � 5). Let us denote
with Ki(j) the j-th coefficient of the FIR filter in the i-th pyramid layer. According to [6]
the generating kernels with subsampling factor i should be normalized2i+1Xj=1 Ki(j) = 1 i 2 [2; � � � ℄ (17)

and symmetric Ki(j) = Ki(2i+ 1� (j � 1)) j 2 [1; � � � ; i+ 1℄: (18)

Moreover, every sample at a given level should make equal contributions to construct
the next higher level. The contributions of one sample are weighted by the correspond-
ing coefficients of the generating kernels. Equal contributions imply that the sum of all
its connected elements in the generating kernels should be a constant.

As mentioned in [6], the generating kernels satisfying the above constraints should have
Gaussian shape. We use the following discrete approximations of Gaussian functions
to serve as generating kernels with subsampling factor 2, 3 and 5:K2 = 116 � 1 4 6 4 1 � ; (19)
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K3 = 1264 � 3 22 66 82 66 22 3 � ; (20)K5 = 15120 � 1 74 299 725 950 1022 950 725 299 74 1 � : (21)

4 Experiments

4.1 Synthetic Junction Examples

In this section we illustrate some examples of junction characterization using the ap-
proximate steerability and its hierarchical version. In figures 4 and 5 synthetic line junc-
tions and edge junctions are shown, respectively. The corresponding signatures S(�)
and DS(�) characterize them correctly. The small deviations in figure 5 come from the
fact that an edge can only be represented by two pixels in the grid, while we cannot set
the center of a wedge between two pixels.

The robustness of our method against noise is shown in figure 6. The edge junction
is disturbed with increasing random noise. Even in the very noisy case the junction is
well characterized. The keypoints in figure 7 are deviated from the central positions of
the masks. Though the signatures have some variations, we can still characterize the
junctions.

In figure 8 we compare the performance of both steerability approaches. A complex
junction called “Siemens star” with 16 edges spans the orientation space uniformly.
Applying the steerable wedge filter we even have to use 90 basis filters to achieve the
same orientation resolution as applying the Gaussian averaging steerable filter. Hence,
we need about eleven times as many multiplications and thirteen times as many addi-
tions using the steerable wedge filter as using the Gaussian averaging steerable filter.
This demonstrates the advantages of the local decomposition scheme in the approxi-
mate steerability.

Figure 9 is an example to solve the orientation scale problem applying a polar pyramid.
The junction is composed of two blurred edges, a wide line and two close lines. We use
a polar pyramid with four levels to characterize it. With the increase of the pyramid
level the orientation of the wide line and blurred edges are characterized more and
more distinctly. However, in the mean time the responses of two close lines seem more
and more like one line. This is exactly the demonstration of orientation scale problem.
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4.2 Real Experiments

We have observed the successful behavior of the approximate steerability on synthetic
junction characterizations. Here we show some real experimental results. One example
is the parkbench picture used in [23] (figure 10). In comparison to the steerable wedge
filter [23] with 30 basis filters our method characterizes the directions of junctions more
distinctively. This is explicitly presented by the ‘T’ junction in D where the blurred
edge near 180Æ is better characterized with the approximately steerable filter. We see
also that our approach is relatively more sensitive to high frequency components due
to the differentiation.

Another real example is presented in figure 11. The kernel centers are displaced from
the keypoints of the junctions. The results show that both steerable wedge filter and
approximately steerable filter are stable with respect to the offsets of keypoints while
the Gaussian approach achieves higher orientation resolution with lower cost.

In figure 12 we show the high orientation resolution of the approximate steerability.
While the steerable wedge filter [23] with 90 basis filters only detects the dominant dark
line between the lips of Lena, the approximately steerable filter characterizes edges of
two lips distinctly. This may be very useful in facial feature analysis.

A real example with varying scales is further presented in figure 13. A child’s left eye
corner can be regarded as a combination of irregular wide lines and blurred edges dis-
turbed by noise. The characterizing results from different pyramid levels form a com-
plete set of signatures providing information at different orientation scales.

5 Conclusion

Current orientation steerability approaches are based on the Fourier decomposition of
the steered filter with respect to orientation. Although they are optimal with respect to
approximation error, they suffer from the uncertainty principle: Due to the sampling of
the spectral domain with Dirac functions the filters have wide spatial supports. In order
to achieve high orientational resolution a huge number of basis filters must be applied.

We proposed a new approach to obtain the orientation signature for junction charac-
terization. We called it approximate steerability because it enables the approximation
of a continuous response with respect to orientation based on a number of basis filter
responses. These filters are directly designed in the spatial domain to have narrow sup-
port. We use Gaussian functions of 0-th and 1st order to characterize lines and edges,
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respectively. Because we are interested in the discrimination of lines from edges we did
not use a quadrature pair. The narrow support of the basis functions enables a high
orientational resolution with a moderate computational load. We showed this differ-
ence to earlier approaches both in theory as well as in real images of junctions. In the
next report we will extend this approximate steerability to 3D filtering and display their
applications in 3D image processing.
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Figure 2: Complexity comparison between the exact steerability and the approximate
steerability. The dotted curves represent the complexity of exactly steerable filters com-
posed of N odd basis filters and N even basis filters with P as 1D tap size. The solid
lines show the relation between complexity and the sampling interval Æ� and P in com-
putation of S and DS in our approach. We see that the approximate steerability is more
efficient than the exact steerability, especially in the case of high orientation resolution
and large filter size.
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namely the averaging outputs of sampling masks. Ŝj(�)(j = 1; 2; 3) are higher levels af-
ter subsampling with the generating kernel K2 of equation (19). Right: Corresponding
interpolation functions at different levels. They are Gaussian functions with different
scales.

90

270

180 0

90

270

180 0

90

270

180 0

90

270

180 0

90

270

180 0

Figure 4: Top: Synthetic line junctions. Bottom: S(�). Rmin = 3; Rmax = 15.
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Figure 5: Top: Synthetic edge junctions. Bottom: DS(�). The local maxima show the
orientation of edges. Rmin = 3, Rmax = 15.
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Figure 6: Top: A synthetic edge junction disturbed by four increasing levels of random
noise. Bottom: Corresponding DS(�). Even in the very noisy case (SNR = 0dB) the
signature can characterize the junction. Rmin = 3, Rmax = 15.
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Figure 7: Top: Deviation of the keypoint from the central position of the mask. Bottom:DS(�). Rmin = 3; Rmax = 15.
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Figure 8: A: A “Siemens star” with 16 edges spanning uniformly the orientation space.
B: Polar plot of the result using the steerable wedge filter [23] composed of 46 basis
filters with 31-tap size. Totally 61486 multiplications and 60360 additions are needed.
The edges are hardly discernible. C: The same as in B but using 90 basis filters with119610 multiplications and 118440 additions. The orientations of the edges are clearly
presented. D: DS(�) using the Gaussian averaging steerable filter. We compute only10086 multiplications and 9006 additions to achieve the same resolution.
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Figure 9: Characterizing a junction using the polar pyramid. Top: A junction composed
of two close lines with distance of 1 pixel, two edges blurred by a Gaussian function
with � = 4 and a wide line with a width of 6 pixels. Middle: The characterizing sig-
natures reconstructed from the first four levels of the polar pyramid: S(�), S1(�), S2(�),
and S3(�). The wide line is distinctly characterized in S3(�). But two close lines are also
recognized as one line. Bottom: Corresponding DS(�), DS1(�), DS2(�), and DS3(�).
The blurred edges are presented more and more clearly with the increase of pyramid
level. The neighboring boundaries of two close lines near 180Æ can be seen only at the
first two levels. After increasing the scale only outer boundaries of these two lines are
recognized.
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Figure 10: Top: The parkbench with marked edge junctions. A: horizontal edge; B:
vertical edge; C: corner; D: ‘T’-junction. Middle: Steerable wedge filter results using 30
basis filters. P = 19. Bottom: DS(�) of the Gaussian averaging steerable filter. The edge
near 180Æ in D is very blurred. But DS(�) still can characterize it. Rmin = 3; Rmax = 9.
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Figure 11: Comparison between the steerable wedge filter [23] and Gaussian averaging
steerable filter. Row 1: An image of the NASA sequence with four kinds of marked
junctions. A: ‘Y’ junction; B: ‘V’ junction; C: ‘T’ junction; D: ‘K’ junction. Row 2: Junc-
tions in detail. The keypoints are not always at centers of the masks. Row 3: Polar plots
using the steerable wedge filter [23] using 46 basis filters with 31 tap size. Row 4: DS(�)
using the Gaussian averaging steerable filter (Rmin = 3; Rmax = 15). Both methods are
stable with respect to the offsets of keypoints. Our method presents higher orientation
resolution with lower cost.
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Figure 12: Resolution comparison between the steerable wedge filter [23] and the Gaus-
sian averaging steerable filter. Top Left: The image “Lena” with her lips corner as a
keypoint. Top Right: Lips corner in detail. Bottom Left: Polar plots using the steerable
wedge filter [23] with 46 basis filters. Only the dominant dark line between the lips can
be recognized. Bottom Middle: Even with 90 basis filters we cannot recognize two lips.
Bottom Right: DS(�) of the Gaussian averaging steerable filter. The edges of two lips
are characterized distinctly.
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Figure 13: Top Left: Face of a child. Top Right: Its left eye corner in detail. It can
be regarded as a combination of irregular wide lines and blurred edges disturbed by
noise. Middle: Orientation signatures reconstructed from the first, third and fifth level
of the polar pyramid. The eyelids are clear to see in S2(�) as two maxima at 135Æ and225Æ. The local maximum near 180Æ is due the white of the eye. Bottom: CorrespondingDS(�), DS2(�) and DS4(�). At small scales the signatures present more detail, but are
also sensitive to noise. At large scales we obtain dominant structures but lose details. A
valid characterization should combine all these signatures.
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