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KIEL



Institut für Informatik und Praktische Mathematik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

The Monogenic Signal

Michael Felsberg and Gerald Sommer

Bericht Nr. 2009

September 2000

e-mail: mfe@ks.informatik.uni-kiel.de

Dieser Bericht ist als persönliche Mitteilung aufzufassen.

This work has been supported by German National Merit Foundation and
by DFG Graduiertenkolleg No. 357 (M. Felsberg) and by DFG Grant

So-320-2-2 (G. Sommer).



Abstract

This paper introduces a new two-dimensional generalization of the ana-
lytic signal. This novel approach is based on the Riesz transform which is
used instead of the Hilbert transform. The combination of a 2D signal with
its Riesz transform yields a sophisticated 2D analytic signal, the monogenic
signal. The approach is analytically derived from irrotational and sourceless
vector fields. An appropriate representation with local amplitude and local
phase is presented which preserves the split of identity. This is one of the
central properties of the 1D analytic signal that decomposes a signal into
structural and energetic information. Furthermore, otherproperties of the
analytic signal concerning symmetry, energy, allpass transfer function, and
orthogonality are also preserved. As a central topic of thispaper, a theorem
about the relation between the 1D analytic signal and the 2D monogenic
signal is established using the Radon transform. A possibleapplication of
this theorem is sketched and references to other applications are given. A
geometric interpretation of the phase of the monogenic signal is discussed
and comparisons to other approaches for a 2D analytic signalare presented.
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1 Introduction

The analytic signal is one of the most capable approaches in one-dimensional
signal processing. The fundamental property of the analytic signal is thesplit
of identity. This means that in polar representation the modulus of the complex
signal is identified with a local quantitative measure of a signal, calledlocal am-
plitude, and the argument of the complex signal is identified with a local measure
for the qualitative information of a signal, calledlocal phase.

Local amplitude and local phase fulfill the properties ofinvarianceandequiv-
ariance[11]. That means that the local phase is invariant wrt. to thelocal energy
of the signal but changes if the local structure varies. The local amplitude is in-
variant wrt. the local structure but represents the local energy.

Energy and structure are independent informations contained in a signal. The
polar representation of the analytic signal is like anorthogonal decomposition
of this information. We will use the termsstructural informationandenergetic
information in the following. This terminology also gives hints for designing
methods for automatic signal analysis. The main information that characterizes
the signal is carried by the phase [22].

According to the enhanced representation, the analytic signal is used in plenty
of applications: for coding information (phase and frequency modulation), for
radar applications, for the processing of seismic data [20], speech recognition,
airfoil design [26] etc.

A sophisticated generalization of the analytic signal to two dimensions should
keep the idea of the orthogonal decomposition of the information. Hence, it should
have a representation which is invariant and equivariant wrt. structural informa-
tion and energetic information. The problem is now that a one-dimensional mea-
sure like the local phase cannot encode 2D structure becauseit has not enough
degrees of freedom.

So the question arises how to encode 2D local structural information. In his
thesis [4], Bülow chose an algebraic approach in order to increase the expres-
siveness of the local phase. In his approach, the local energy is in general not
constant if the orientation of the signal is changed, i.e. itis not isotropic. Hence,
the invariance/equivariance property is not perfectly fulfilled.

The idea which is applied in this paper is the following. We keep with a one-
dimensional phase but add anorientation information. This yields an approach
that takes the locally strongestintrinsically one-dimensional[18] structure and en-
codes it in the classical 1D phase. The orientation is encoded in a new component
which we call according to local phase and local amplitude the local orientation.
Since orientation is a geometric property, we will call thisinformationgeometric
information.

For intrinsically 2D signals, the properties of our new generalization which we
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will call monogenic signalwill be discussed in the context of theorem 3 in section
5. The monogenic signal is also somehow related to the structure tensor (e.g.
[11]) but it is linear. Actually, we invented it starting from the structure tensor.
Therefore, in the first published result [9] we used the term ’structure multivector’.

2 Preliminaries

In this section, we give the mathematical framework for the following sections.
Originally, we invented the monogenic signal using geometric algebra (see e.g.
[13]) and Clifford analysis (e.g. [3]). The formulation in geometric algebra is
preferable because some notational problems are avoided and the derivation is
straightforward (see [7]). Since geometric algebra does not belong to the usual
mathematical knowledge of a signal theorist, we tried to formulate our approach
in vector notation. The only exceptions are some formulae where we made use of
the algebra of quaternions.

Throughout this paper, we use the following conventions andnotations:� The considered (real)signalsare functionsf : IRn ! IR which are sup-
posed to be ’nice’, i.e. they are continuous derivable and inIL2(IRn), such
that all transforms mentioned below do exist.� Vectorsin IRn are represented by boldface lettersx = (x1; x2; : : : ; xn)>
(> indicates the transpose) and their inner product is denotedby h�; �i. In
2D, the orthogonal vector ofx = (x1; x2) is given byx? = (x2;�x1). In
3D,x� y indicates the cross product.� ThenD Fourier transformof a signalf(x) is denotedbf(u) = ZIRn f(x) exp(�i2�hx;ui) dx :� The algebra ofquaternionsIH is spanned byf1; i; j; kg and the product
is defined byi2 = j2 = �1 and ij = �ji = k. Linear combinationsx1i + x2j are identified with vectors inIR2 by the matrix product(i; j)x
(x = (x1; x2)>). In contrast to the common embedding, vectors inIR3 are
identified with quaternions in the span off1; i; jg by (i; j; 1)x = x3+x1i+x2j. The conjugate of a quaternionq = q1 + q2i + q3j + q4k is given by�q = q1 � q2i � q3j � q4k. Therefore, the norm ofq readskqk = pq�q =pq21 + q22 + q23 + q24.� TheHilbert transformis defined by the transfer functionbh(u) = i sign(u).
The transformed signal is denotedfH(x).
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� Theanalytic signalis defined byfA(x) = f(x)� ifH(x).
The definitions of the Hilbert transform and the analytic signal are taken from
[14, 1]. For a more detailed introduction of quaternions, see e.g. [15].

3 Motivation

As a motivation for the following sections, we will recall some properties of the
Hilbert transform and the analytic signal. Furthermore, wewill present a deriva-
tion of the Hilbert transform from two-dimensional vector fields.

The Hilbert transform has some important properties which are worth to be
preserved in its two-dimensional generalization:� It is anti-symmetric, which meansbh(�u) = �bh(u). This also includes that

its energyis symmetric.� It suppresses the DC component (bh(0) = 0).� Its energy is equal to one for all non-zero frequencies (jbh(u)j = 1 8u 6= 0).

Accordingly, the analytic signal has the following properties:� Its energy is two times the energy of the original signal (if the DC compo-
nent is neglected) becausef andfH are orthogonal.� It is complex and the analytic signal of a symmetric signal ishermitian.� Considered in polar coordinates, the analytic signal performs a split of iden-
tity. This means that thelocal amplitude(the modulus of the complex sig-
nal) is a quantitative measure of structure and thelocal phaseis a measure
for the qualitative information of structure. Therefore, the analytic signal
can be considered as an orthogonal decomposition into structural and ener-
getic information.

The Hilbert transform and the Fourier transform are part of harmonic analysis.
A harmonic functionf is a solution of the Laplace equation�f = hr;rif = 0
wherer = ( ��x1 ; : : : ; ��xn )>. On the other hand, the real part and the imaginary
part of an analytic function are harmonic functions (e.g. [17]). Furthermore,
analytic functions can be identified with gradient fields of harmonic potentials (see
below). These relations are well known for 2D vector fields. As we will show,
it is possible to derive the Hilbert transform from a gradient field of a harmonic
potential.
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Gradient fields of harmonic potentials can also be designed in higher dimen-
sions. Though there is no link between 3D vector field theory and the (complex)
analytic function, there is indeed a function theory that combines higher dimen-
sional field theory and analysis: the Clifford analysis (e.g. [3]). In section 4, we
will use 3D vector fields (and therefore, implicitly Clifford analysis) to derive a
generalized Hilbert transform, the Riesz transform. This way to derive the Riesz
transform is taken from [21].

At first, we will derive the Hilbert transform as a motivation. The starting
point is a two-dimensional vector fieldg(x) which is irrotational and sourceless
in the half-spacex2 < 0:rotg(x) = hr; g(x)?i = 0 and (1)div g(x) = hr; g(x)i = 0 (2)

with g(x) = (g1(x); g2(x))> andr = ( ��x1 ; ��x2 )>. If we identify IR2 with the
complex plane according toz = x2+ix1 and embedg according togC = g2�ig1,
these equations are just the Cauchy-Riemann (CR) equations. Complex functions
that fulfill the CR equations are calledanalytic1 functions.

As a consequence of (1), there is a real function' such thatg is the gradient
of '. For the following considerations, we switch to the frequency domain wrt.x1, which means that we apply the 1D Fourier transform. From (2)it follows thati2�u1bg1(u1; x2) + ��x2bg2(u1; x2) = 0
and substitutingg = r' yields�4�2u21 b'(u1; x2) + �2�x22 b'(u1; x2) = 0 :
This differential equation is solved in the half-spacex2 < 0 by b'(u1; x2) =C(u1) exp(2�ju1jx2)whereC(u1) is a function which is independent ofx2. There-
fore, the components of the gradient field readbg1(u1; x2) = i2�u1b'(u1; x2) andbg2(u1; x2) = 2�ju1jb'(u1; x2) :
According to the fact thatg can be considered as an analytic functiongC , g1 is the
harmonic-conjugate ofg2 and vice versa [17]. Note thatg also fulfills (1) for this
choice ofg1 andg2.

1In mathematical terms, these functions are called holomorphic. Analytic means, that there is
a local power series expansion about each point, which is a complete characterization of holomor-
phic functions [17].
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Now, we consider the continuous extension ofg for x2 ! �0 and we obtain
that bg1(u1; x2 = 0) = bh(u1)bg2(u1; x2 = 0), such thatgC is consistent with the
definition of the analytic signal (f(x) = g2(x; 0) andfH(x) = g1(x; 0)).

In mathematical terms, eq. (2) with a givenf on the linex2 = 0 constitutes a
Dirichlet problem (the linex2 = 0 is the boundary of the open subspacex2 < 0).
The Hilbert transform then corresponds to a switching between the two different
partial derivatives on the linex2 = 0 (see fig. 1).

��x2
'(x)��x2��x2 ��x1��x1

line x2 = 0��x1 x1x2
Figure 1: Dirichlet problem of second kind:'(x) fulfills the Laplace equation in
the open domainx2 < 0 and a partial derivative on the linex2 = 0 is given. The
other partial derivative is obtained by the Hilbert transform.

As far as we know, the following approaches for generalizingthe Hilbert trans-
form to higher dimensions can be found in the literature (fora more extensive
discussion, see [4]).� Partial Hilbert transform: The Hilbert transform is performed wrt. a half-

space which is chosen by introducing apreference direction[11]: bh(u) =i sign(hu;ni). The main drawback is the missing isotropy of the transform.� Total Hilbert transform. The Hilbert transform is performed wrt. both axes:bh(u) = � sign(u1) sign(u2) (see [12]). This approach is not a valid gener-
alization of the Hilbert transform, since it does not perform a phase shift of�=2.
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� A combination of partial Hilbert transforms and the total Hilbert transform
[12]: bh(u) = i(sign(u1) + sign(u2) + sign(u1) sign(u2)). This approach is
neither complete nor isotropic.� Combined partial and total Hilbert transforms in the quaternionic Fourier
domain: Instead of using the complex Fourier transform, thequaternionic
Fourier transform [6] is used. The result is discussed in detail in [4]. As
already pointed out in the introduction, this approach is not isotropic, either.

Hence, we can summarize that the common drawback of all approaches is the
missing isotropy. This is also reflected by the wide-spread opinion in the signal
processing community that no odd 2D filter with constant energy (up to the origin)
exists (e.g. [16]). We will show that this conjecture is wrong if vector-valued
filters are considered.

4 The Monogenic Signal

Appropriate to the previous section, we start with a 3D vector field which is irro-
tational and sourceless in the half-spacex3 < 0, i.e. it is monogenicfor x3 < 0
[19]. We have rot g(x) = r� g(x) = 0 and (3)div g(x) = hr; g(x)i = 0 : (4)

Again, we conclude from (3) that there exists a potential' such thatg is its
gradient field. Furthermore, we switch to the frequency domain wrt. x1 andx2,
which means that we apply the 2D Fourier transform. Then we get from (4) the
differential equation�2�x23 b'(u1; u2; x3) = 4�2(u21 + u22)b'(u1; u2; x3)
which is solved in the half-spacex3 < 0 byb'(u1; u2; x3) = C(u1; u2) exp�2�qu21 + u22 x3� ;
whereC(u1; u2) is a function which is independent ofx3. Consequently, we ob-
tain for the components of the gradient (see also [21]):bg1(u1; u2; x3) = i2�u1b'(u1; u2; x3) (5)bg2(u1; u2; x3) = i2�u2b'(u1; u2; x3) (6)bg3(u1; u2; x3) = 2�qu21 + u22 b'(u1; u2; x3) : (7)
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Note that for this choice ofg1; g2 andg3 the equations (3) are fulfilled.
Finally, we get the formulaebg1(u1; u2; x3) = i u1pu21 + u22bg3(u1; u2; x3) (8)bg2(u1; u2; x3) = i u2pu21 + u22bg3(u1; u2; x3) (9)

which are also valid for the continuous extensionx3 ! �0. In that case, eqs.
(8) and (9) constitute a generalization of the Hilbert transform which is known as
theRiesz transform2 in mathematical literature [25] (up to a minus sign which is
dependent on whether taking the half-spacex3 > 0 or x3 < 0).

From a field-theoretic point of view, the Riesz transform allows us to switch
directly between the partial derivatives of a sourceless 3Dpotential. In mathemat-
ical terms, this means that we can change the boundary conditions of a Dirichlet
problem of second kind from any partial derivative to another one.

If we embedIR3 into the subspace ofIH spanned byf1; i; jg (also called
paravectors[23]) according toq = x3 + x1i + x2j andgQ = g3 � g1i� g2j, the
equations (4) and (3) are equivalent to the generalized Cauchy-Riemann equations
from Clifford analysis [3]. Functions that fulfill these equations are called (left)
monogenicfunctions3. Therefore, we introduce the following terminology:

Definition 1 (monogenic signal)The quaternion valued 2D signalbfM(u) = bf(u)� (i; j)ukuk bf(u)i (10)

is called the monogenic signal.

Note that we have changed the notation slightly in order to get a compact
expression. Indeed, we used(i; j)u to embedIR2 in IH and we took theis from
(8) and (9) to the right side. This enables us to write the transfer functions of the
Riesz transform into one expressionbh(u) = (i; j)ukuk (11)

such that the monogenic signal is obtained byfM(x) = f(x)� fR(x)i = f(x)� h(x) � f(x)i : (12)

2At this place, we want to thank T. Bülow for alluding to the existence of the Riesz transform
and for giving us the references [25, 21] which enabled us to identify the transform (8) in [9] with
it.

3Originally, monogenic was another, somehow archaic term for holomorphic [17]. People from
Clifford analysis reused it for expressing the multidimensional character.
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This is the same formula as in the 1D case with the exception that thei has to
be on the right ofh(x) becauseIH is a skew field (non-commutative). The sig-
nal fR(x) denotes the Riesz transform off(x) embedded intoIH. The explicit
spatial representation ofh(x) is obtained in the following way: a well known 2D

Fourier correspondence is\kxk�1 = kuk�1 which can be obtained using the Han-
kel transform [2]. Applying the derivative theorem of the 2DFourier transform,
we obtain h(x) = � 12� (1; k)xkxk3 (13)

which is also given in [25]. If we think of the Riesz transformas a function inIR3
with x3 = 0 again, we have an interesting relation to the field theory: consider for
example the gravitation field. The potential of a point mass in the origin is propor-
tional tokxk�1 (Newton potential). The resulting field is therefore proportional
to xkxk3 . This analogy yields a new interpretation of 2D signals (images): instead
of interpreting an image as a surfaces in 3D space, better consider it as a mass
distribution in the planex3 = 0. This mass distribution yields a potential and the
gradient of this potential in the planex3 = 0 is the Riesz transform of the mass
distribution. In field theoretic terminology we replace theflow through the planex3 = 0 by a field of sources.

Now, since we have defined the monogenic signal as a generalized analytic
signal, we can start to check whether the properties of the later are fulfilled. First,
we take a look at some properties of the Riesz transform:� It is anti-symmetric sincebh(�u) = �bh(u) implies thath(�x) = �h(x).

Note in this context that symmetry in 2D can be wrt. to a point or wrt. a
line. Choosing the symmetry is the fundamental decision fordesigning the
generalization of the Hilbert transform (in 1D, there is only one symmetry).
Obviously, the Riesz transform corresponds to the point-symmetry, whereas
the approach in [4] corresponds to a line-symmetry wrt. the coordinate axes.� It suppresses the DC component. We have a singularity atu = 0. If we
remove it by continuously extending the two components of the Riesz trans-
form along the linesu1 = 0 (eq. (8)) andu2 = 0 (eq. (9)), we immediately
getbh(0) = 0.� The energy is of value one for all none-zero frequencies, i.e. kbh(u)k = 18u 6= 0. This follows directly from the definitions ofbh(u) and the norm.

These properties can be vividly verified in fig. 2.
According to the properties of the Riesz transform and in comparison to the

analytic signal, the monogenic signal fulfills the following two statements:
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Figure 2: Transfer function of the Riesz transform displayed as a vector field.� Its energy is two times the energy of the original signal if the DC component
is neglected (proof see below).� It is quaternion valued and the monogenic signal of a point symmetric signal
(f(�x) = f(x)) is quaternionic-hermitian (i.e.fM(�x) = �fM(x)). This
follows directly from the symmetry relations of the Fouriertransform.

The third property of the analytic signal (split of identityin polar coordinates) is
also fulfilled but this will be discussed in detail in section5.

The energy property can be proved easily: Suppose thatf(x) is a DC-free
real signal. The transfer functionbh(u) is anti-symmetric and in the span offi; jg.
Using the symmetry relations of the Fourier transform, we obtain thath(x) is
also anti-symmetric but in the span off1; kg. Consequently, we obtain by using
Parseval’s theorem and the orthogonality of the tripel(1; u1kuk ; u2kuk):4Z kfM(x)k dx = Z k1� bh(u)ik k bf(u)k du= Z (1 + kbh(u)k)k k bf(u)k dx= Z jf(x)j dx+ Z kbh(u)k k bf(u)k du= Z jf(x)j dx+ Z k bf(u)k du= 2 Z jf(x)j dx :

4Note thatkfM (x)k indicates the pointwise norm offM (x) in contrast tokfMk which is the
integral ofkfM (x)k.
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Since the energy of an arbitrary signal is only modified by a constant real factor,
we can conclude that the amplitude of the monogenic signal isisotropic which
means that there is no dependence on the orientation of a signal (see also fig. 3).
The only restriction we have is thatf(x) must be DC-free (same as in the case of
the 1D analytic signal).

Figure 3: Left image: test-image containing all orientations; right image: the
energy of the corresponding monogenic signal is isotropic.

5 The Phase of the Monogenic Signal

The phase of a complex signal a is measure for the rotation of areal signal in the
complex plane. In 2D space, the rotation axis is unique, except for thedirection
of rotation. Therefore, the polar representation of a complex numberz = x + iy
is uniquely defined by(r; ') = (pz�z; atan2(y; x)), whereatan2 can be defined
as follows: atan2(y; x) = sign(y) atan� jyjx � (14)

with atan(�) 2 [0; �). The factorsign(y) indicates the direction of rotation. If
we use this definition, the negative real numbers are singular because they have
an angle of� wrt. positiveand negative rotations. This is comparable to the
complex logarithm which is defined on the complex plane without the negative
real axis (recall the definition of the complex logarithm:ln(z = r exp(i')) =ln(r) + i'). The imaginary part of the complex logarithm also represents the
argument of a complex number. Both definitions, the one ofatan2 and the one of
the complex logarithm, can be extended to the whole complex plane by taking the
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angle modulo2�. In that case,lim"!0 Im(ln(�x + i")) = lim"!0 Im(ln(�x �i")) = � (with x 2 IR+, also obtained by the Cauchy principal value ofln(z)).
In 3D space, the rotation axis is represented by a unit vector. The straightfor-

ward generalization of a 2D angle is then a vector with the length corresponding to
the rotation angle and the direction corresponding to the rotation axis. This vector
is calledrotation vector. Consequently, we define a new arctangent function as
follows:

Definition 2 (3D arctangent) Letx 2 IR3 be a non-zero 3D vector. The rotation
vector that corresponds to the rotation of(0; 0; kxk)> into x is obtained by the
3D arctangent:atan3(x) = 0�0011A� x0 atan�k(0; 0; 1)> � x0kh(0; 0; 1)>;x0i � (15)

wherex0 = xkxk .
Again, there is a singularity ifx = (0; 0;�kxk)>. But now it becomes obvious
why this is really a singularity: the magnitude of the rotation is again well defined
by �, but the rotation axis is arbitrary in the 2D subspace orthogonal tox. There-
fore,anyrotation vector in that subspace is a correct solution! The only possibility
to extend the definition of (15) is to define a ’modulo’ on the 2Dsub-space such
that all vectors of length� are identical.

If we have a smooth vector field and we want to use (15) as a definition of the
phaseof the vector field (as we will do in the next paragraph), thereis another
possibility to extend the definition: if we consider the values of (15) in an open
ball with radius" around the singular point and by letting" tend to zero, we
get a well defined rotation vector because of the smoothness of the vector field.
This continuous extension of the orientation is used in [8] for a stable orientation
estimation.

Using (15), we are able to define the phase of the monogenic signal (abbrevi-
ation: monogenic phase):

Definition 3 (local phase of the monogenic signal)The local phase of the mono-
genic signalfM(x) is defined by'(x) = atan3(fM(x)) ; (16)

wherefM is the vector field such thatfM = (i; j; 1)fM .

The rotation vector field'(x) represents the rotation of the real valued signalkfM(x)k into the quaternionic valued signalfM(x). Note that the real component
is the third component of the 3D vector (see also (15)).
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Figure 4: Monogenic phase of a simple image. The phase is represented by the
vector field and the image (arc) is represented by the grayscale pattern. Note also
the phase-wrapping.

The rotation vector' lies always in the plane spanned byi andj (see fig. 4).
Considering the vectors in a local neighborhood, there is some kind ofwrapping
of the vectors: if a vector in a certain direction would exceed the amplitude�, it
is replaced by the vector minus2� times the unit vector in that direction. In other
words, it is replaced by a vector in the opposite direction with amplitude2� minus
the ’correct’ amplitude. This is the same effect as the phase-wrapping in 1D.

In section 4, we already used the norm of the quaternions for calculating the
energy of a monogenic signal. Indeed, the norm is used for defining the local
amplitudeof fM(x) by kfM(x)k =qf 2(x)� f 2R(x) : (17)

The nice thing about these definitions of local phase (16) andlocal amplitude
(17) is that the monogenic signal can be calculated from these two functions:

Theorem 1 (polar representation of the monogenic signal)
Let'(x) be the local phase and letkfM(x)k be the local amplitude of the mono-
genic signalfM(x). Then the latter can be reconstructed byfM(x) = kfM(x)k exp('?(x)) ; (18)

whereexp(q) =P1n=0 qnn! ; q 2 IH.
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Proof:
Straightforward calculation yields (' = k'k, A = kfM(x)k and'0 = 'k'k =� sin(�)i + 
os(�)j):A exp('?(x))= A(
os(') +'?0 sin('))= A(
os(') + 
os(�) sin(')i+ sin(�) sin(')j)= (i; j; 1)24
os � 
os' � sin � 
os � sin'sin � 
os' 
os � sin � sin'� sin' 0 
os' 350�00A1A= (i; j; 1)R3(�)R2(')(0; 0; A)> ;
whereR3(�) indicates the rotation matrix for a rotation by� about the third co-
ordinate axis andR2(') for a rotation by' about the second coordinate axis, see
also fig. 5.

�2 ' i-axis

j-axis

real axis�
'

Figure 5: Rotation vector and rotations about the second axis (j-axis) by' and
about the third axis (real axis) by�.

Note thatln(kfM(x)k) + '(x) can be considered as the logarithm of the mono-
genic signal.

In the previous section, we omitted the property ’split of identity’. Now, hav-
ing a definition of the monogenic phase, we recognize that amplitude and phase
are again orthogonal. The local amplitude includes energetic information and the
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phase includes structural information. In contrast to the 1D case, the phase also
includesgeometric information5, now. This problem is discussed at the end of the
next section.

6 The Radon Transform and the Monogenic Signal

Up to now, we considered the 1D analytic signal and the 2D monogenic signal as
two approaches which are only related by the fact that the latter is the generaliza-
tion of the first one wrt. the dimension of the domain. In signal theory, there is a
well known relation between 1D and 2D signals: the Radon transform [24]. The
Radon transform maps a 2D signal onto a family of 1D signals with an orientation
parameter. It is defined as follows:

Definition 4 (Radon transform) The Radon transform of the 2D signalf(x) is
obtained by F (t; �) = ZIR2 f(x)Æ0(hx;n�i � t) dx ; (19)

whereÆ0(�) is the Dirac-delta andn� = (
os �; sin �)> with � 2 [0; �), i.e. an
orientation6.

Geometrically, the Radon transform projects (orthogonally) the 2D signal onto
a line with orientation�. Doing this for all orientations yields a family of 1D
functions with the parameter�. The Radon transform is invertible and there are
some important theorems about signals in the Radon domain [2].

One of the most important theorems which we also need in this section is the
Fourier slice theorem (e.g. [14]). We give the proof here because it is quite short
and gives more insight which will help to understand the restof this section.

Theorem 2 (slice theorem)The 1D Fourier transform of the Radon transform
with angle� is identical to the slice of the 2D Fourier transform in orientation�:bF (u; �) = bf(un�) : (20)

where bF (u; �) is the 1D Fourier transform ofF (t; �) and bf(u) is the 2D Fourier
transform off(x).

5Actually, also the 1D phase includes geometric information: you cannot distinguish if the
direction of the 1D signal has changed or if the phase itself is getting negative. This problem is
solved for frequency modulation by adding a pilot tone.

6Note the difference betweendirectionandorientationin this context: a direction corresponds
to a vector, an orientation to a 1D subspace.
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Proof:
The Radon transform is a convolution of the signal with a lineorthogonal ton�.
Applying the convolution theorem of the 2D Fourier transform, we get the point-
wise product ofbf with the line oriented atn� through the origin.

Having the Radon transform as a relation between 1D and 2D signals, one
can pose the following interesting question: what is the 1D correspondence of the
monogenic signal? In order to answer this question, we reformulate it as: what is
the Radon transform of the Riesz transform?

As it turns out, the Radon transform relates the Riesz transform to the Hilbert
transform. Accordingly, we get a direct interpretation of intrinsically 1D signals
in 2D space. But also for intrinsically 2D signals we obtain an interpretation by
decomposing the signal into intrinsically 1D parts. Indeed, the Radon transform
is the connecting link between the 1D and 2D approaches. We formulate this
amazing fact in the subsequent theorem:

Theorem 3 (correspondence of Hilbert and Riesz transform)
The Radon transform of the Riesz transform of a 2D signalf(x) is identical to(i; j)n� times the Hilbert transform of the Radon transform of�if(x):FR(t; �) = (1; k)n�h(t) � F (t; �) ; (21)

whereFR(t; �) is the Radon transform offR(x) and h(t) is the kernel of the
Hilbert transform.

Proof:
In the Fourier domain, due to the linearity of the Radon, Riesz, Hilbert, and
Fourier transforms we havebFR(u; �) = (i; j)n� sign(u) bF (u; �)= �(i; j)n�ibh(u) bF (u; �) :
Note thatsign(u) must be introduced since� 2 [0; �) is an orientation (see also
footnote 6). The frequencies whereu is negative correspond to the angles in[�; 2�) which inverts the vectorn�.
As we just showed, the Radon transform allows us to calculatethe Riesz transform
(and therefore also the monogenic signal) using the Hilberttransform (see also
fig. 7). This amazing fact can be used to circumvent the application of the Riesz
transform in the Fourier domain (actually, the applicationin the spatial domain
is not very sensible due to the infinite extend of the impulse response, see (13)).
Especially in applications where the data is given in the Radon domain (e.g. X-
ray), it is advantageous to have this theorem. By the following algorithm, we get
directly the monogenic signal from data given in the Radon domain (denoted byF ):
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1. calculate the Hilbert transformFH ,

2. multiplyFH by 
os � andsin �,

3. calculate the inverse Radon transform ofF , 
os � FH andsin � FH .

Having the monogenic signal, we can apply further algorithms for estimation of
local properties, feature detection etc. (see [8]).

A second consequence of this theorem is that it enables us toidentify the mono-
genic phase with the phase of the analytic signal. Obviously, we get from theorem
3 the identityFM(t; �) = F (t; �)� FR(t; �)i= F (t; �)� (i; j)n�h(t) � F (t; �)= (i; j; 1)R3(�)(�h(t) � F (t; �); 0; F (t; �))> ;
whereR3(�) is again the rotation about the real axis by�. Having a closer look
at (i; j; 1)(�h(t) � F (t; �); 0; F (t; �))>, one observes that this is just the analytic
signal of the Radon transform (for every�). Hence, the Radon transform of the
monogenic signal is just the analytic signal of the Radon transform but with the
imaginary uniti rotated by� (the orientation orthogonal to the projection direc-
tion).

What does this mean for the interpretation of the monogenic phase? For linear
structures with a large support (lines, edges in images), the Radon transform is
dominated by this structure (see fig. 7). Hence, the monogenic phase is mainly
given by the 1D phase in orthogonal projection to the structure and by the orien-
tation of the structure.

Therefore, we get the following interpretation of the phasevector (16): the ori-
entation of '?(x) represents thelocal orientation of the 2D signal andsign(h'(x); (0; 1)>i)k'(x)k represents thelocal 1D phaseof the 2D signal (see
also fig. 5). These interpretations are consistent with the former definition of local
phase and local orientation in [10, 9].

Note that these definitions do not yield a unique phase representation, since a
rotation of the signal by� yields the same orientation and a negated phase. This
ambiguity can be visualized by two different decompositions of a rotation with its
rotation axis in a fixed plane (see fig. 6). The same problem also occurs in the
context of oriented quadrature filters (see [11]), where Granlund and Knutsson
claim that there is no local way to get the direction from the orientation. Bülow
[5] applies a global algorithm that removes all orientation-jumps which are greater
than�=2 (modulo2�). He argues that this approach yields a consistent phase
representation and that it is unique up to negation of the whole phase.
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Figure 6: Two ways to decompose a 3D rotation by rotations about two fixed
axes. First way: from the top dot to the right and ’directly’ down to the bottom
dot. Second way: to the left (to the backside), down, to the frontside again and to
the bottom dot.

If the monogenic phase is decomposed into local orientationand local phase,
the split of identity (the third property of the analytic signal) is also preserved
wrt. geometric and structural information. Though the local phase and the local
orientation are only ’nearly’ orthogonal (see ambiguity above), the local direction
is orthogonal to the phase. If we can recover the ’correct’ local direction, we
have really a split of identity wrt. energetic, geometric and structural information.
The problem with the ’correct’ local direction is that thereis no absolute solution,
only a relative one. This relative solution can be obtained by constraints on the
smoothness of the phase and orientation.

A further consequence of theorem 3 is that 2D signals which are intrinsically
1D signals, i.e. they are constant in one direction [18], have a prefect match be-
tween the monogenic phase and the 1D phase of the underlying 1D signal: the
frequency domain representation of an intrinsically 1D signals is a line. There-
fore, the Radon transform is zero everywhere except for the orientation in which
the signal changes (orthogonal to the constant lines in the spatial domain). Con-
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sequently, the factor(1; k)n� in (21) can be replaced by a constant and the inverse
Radon transform of (21) yieldsfR(x) = (1; k)n�(Æ0(hx;n?� i)h(hx;n�i))�f(x).
Therefore, the monogenic phase reads'(x) = '(hx;n�i)n?� , where' indicates
the complex local phase (see also [10]). Hence, theorem 3 is the generalization of
theorem 1 in [10] which is only related to intrinsically 1D signals. Consequently,
we have shown that the monogenic signal is not only well suited for intrinsically
1D signal but also gives sensible (and interpretable) results for intrinsically 2D
signals.

7 Conclusions

In the present paper, we have analytically derived the monogenic signal, a ca-
pable approach for the analytic signal in two dimensions. This new 2D analytic
signal is based on the Riesz transform and preserves the properties of the 1D an-
alytic signal. In contrast to the known approaches it is isotropic and therefore
performs a split of identity. The information included in the signal is orthogonally
decomposed into energetic, structural, and geometric information by means of lo-
cal amplitude, local phase, and local orientation. We have established a theorem
which directly relates the 1D analytic signal and the 2D monogenic signal. The
Radon transform emerged to be the appropriate tool for shifting the 1D Hilbert
transform to 2D.

A wide field of possible applications of the monogenic signalis imaginable.
Up to now, only few applications have been realized. For example: estimation of
the local orientation, contrast independent edge detection (see both in [7]), Moire
interferograms [5], texture analysis [10]. Currently, we are working on curvature
estimation, corner detection, 3D correspondence, and noise suppression. Further
applications will follow.

Both, the monogenic signal and its applications are easier to formulate in ge-
ometric algebra. It is even possible to generalize the approach to arbitrary dimen-
sions [7]. Nevertheless, we chose once more the vector notation which is easier to
understand for most of the readers. Only some details had to be formulated using
quaternions which can be identified within geometric algebra. Future publications
will be completely formulated in geometric algebra.
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Figure 7: The top left image shows an object with dominant oriented structures.
The top right image shows one component of the correspondingRiesz transform.
The second row shows the following signals in the Radon domain (from left to
right): original signal (note the sharp edges at those angles which correspond to
the orientations of the edges of the rectangle), Hilbert transform, cosine- and sine-
weighted Hilbert transform. The abscissa indicates the orientation angle and the
ordinate indicates the 1D coordinates. The images in the bottom show the Riesz
transform obtained from the weighted Hilbert transform (compare the left image
to that one in the upper right).

21



References

[1] BRACEWELL, R. N. The Fourier transform and its applications. McGraw
Hill, 1986.

[2] BRACEWELL, R. N. Two-Dimensional Imaging. Prentice Hall Signal Pro-
cessing Series. Prentice Hall, Englewood Cliffs, 1995.

[3] BRACKX , F., DELANGHE, R., AND SOMMEN, F. Clifford Analysis. Pitman,
Boston, 1982.
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