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Abstract

This paper introduces a new two-dimensional generalizasidhe ana-
lytic signal. This novel approach is based on the Riesz fisamswhich is
used instead of the Hilbert transform. The combination obas@ynal with
its Riesz transform yields a sophisticated 2D analyticaigime monogenic
signal. The approach is analytically derived from irraiatil and sourceless
vector fields. An appropriate representation with local ke and local
phase is presented which preserves the split of identitys iBhone of the
central properties of the 1D analytic signal that decompa@ssignal into
structural and energetic information. Furthermore, ofreperties of the
analytic signal concerning symmetry, energy, allpassstearfunction, and
orthogonality are also preserved. As a central topic offlaser, a theorem
about the relation between the 1D analytic signal and the 2Dagenic
signal is established using the Radon transform. A possipjgication of
this theorem is sketched and references to other applicatice given. A
geometric interpretation of the phase of the monogenicasigndiscussed
and comparisons to other approaches for a 2D analytic sagagiresented.
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1 Introduction

The analytic signal is one of the most capable approacheserdonensional
signal processing. The fundamental property of the ar@abitinal is thesplit

of identity This means that in polar representation the modulus of dheptex

signal is identified with a local quantitative measure ofgnal, calledocal am-

plitude, and the argument of the complex signal is identified withcaloneasure
for the qualitative information of a signal, calléstal phase

Local amplitude and local phase fulfill the propertiesrafarianceandequiv-
ariance[11]. That means that the local phase is invariant wrt. tdadlkal energy
of the signal but changes if the local structure varies. TDoallamplitude is in-
variant wrt. the local structure but represents the locatgn

Energy and structure are independent informations coeddaima signal. The
polar representation of the analytic signal is like @thogonal decomposition
of this information. We will use the term&ructural informationand energetic
informationin the following. This terminology also gives hints for dgsing
methods for automatic signal analysis. The main infornmatieat characterizes
the signal is carried by the phase [22].

According to the enhanced representation, the analytiasig used in plenty
of applications: for coding information (phase and freqeyemodulation), for
radar applications, for the processing of seismic data, [2P¢ech recognition,
airfoil design [26] etc.

A sophisticated generalization of the analytic signal to thmensions should
keep the idea of the orthogonal decomposition of the infeélonaHence, it should
have a representation which is invariant and equivariaht structural informa-
tion and energetic information. The problem is now that adineensional mea-
sure like the local phase cannot encode 2D structure bedahas not enough
degrees of freedom.

So the question arises how to encode 2D local structuratnmdton. In his
thesis [4], Bulow chose an algebraic approach in order toeise the expres-
siveness of the local phase. In his approach, the local gnengp general not
constant if the orientation of the signal is changed, i.&s itot isotropic. Hence,
the invariance/equivariance property is not perfectljilfad.

The idea which is applied in this paper is the following. Wekevith a one-
dimensional phase but add anentation information This yields an approach
that takes the locally strongastrinsically one-dimensiondlL8] structure and en-
codes it in the classical 1D phase. The orientation is ertcoda new component
which we call according to local phase and local amplitu@ddhbal orientation
Since orientation is a geometric property, we will call timfrmationgeometric
information

For intrinsically 2D signals, the properties of our new gatization which we
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will call monogenic signaill be discussed in the context of theorem 3 in section
5. The monogenic signal is also somehow related to the stei¢censor (e.g.
[11]) but it is linear. Actually, we invented it starting from the structure temso
Therefore, in the first published result [9] we used the testnutture multivector’.

2 Preliminaries

In this section, we give the mathematical framework for thkofving sections.

Originally, we invented the monogenic signal using geometigebra (see e.g.
[13]) and Clifford analysis (e.g. [3]). The formulation iregmetric algebra is
preferable because some notational problems are avoidkethanderivation is

straightforward (see [7]). Since geometric algebra doégatong to the usual
mathematical knowledge of a signal theorist, we tried tonfaliate our approach
in vector notation. The only exceptions are some formulaere/ive made use of
the algebra of quaternions.

Throughout this paper, we use the following conventionsrastdtions:

e The considered (reaBignalsare functionsf : IR™ — IR which are sup-
posed to be ’nice’, i.e. they are continuous derivable andl4(/R"), such
that all transforms mentioned below do exist.

e Vectorsin IR" are represented by boldface lettars= (x1,z5,... ,2,)"
(T indicates the transpose) and their inner product is denwoggd -). In
2D, the orthogonal vector af = (7, z,) is given byzt = (75, —7;). In
3D, z x y indicates the cross product.

e ThenD Fourier transformof a signalf (x) is denoted
fuy= [ fla)exp(—i2n(z, u) de .
J IR™

e The algebra ofjuaternionsiH is spanned by{1,4, j, k} and the product
is defined byi*? = j> = —1 andij = —ji = k. Linear combinations
111 + 79 are identified with vectors idk? by the matrix products, j)z
(x = (z1,72)"). In contrast to the common embedding, vectorgihare
identified with quaternions in the span{of, i, j} by (¢, j, 1)@ = 23+ z1i+
x9j. The conjugate of a quaternign= ¢; + ¢2i + ¢35 + g4k IS given by
¢ = q1 — q2i — q3j — q4k. Therefore, the norm of reads||q|| = \/qq =

Vi +aéd+ @+

e TheHilbert transformis defined by the transfer functicﬁ(u) = isign(u).
The transformed signal is denotéd(z).
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e Theanalytic signalis defined byf(z) = f(x) — ify(x).

The definitions of the Hilbert transform and the analyticnsigare taken from
[14, 1]. For a more detailed introduction of quaterniong, egy. [15].

3 Motivation

As a motivation for the following sections, we will recallree properties of the
Hilbert transform and the analytic signal. Furthermore ,wiépresent a deriva-
tion of the Hilbert transform from two-dimensional vectaelds.

The Hilbert transform has some important properties whiehveorth to be
preserved in its two-dimensional generalization:

e Itis anti-symmetric, which mear?&(—u) = —ﬁ(u). This also includes that
its energyis symmetric.

e It suppresses the DC componeﬁ(t() =0).

e Its energy is equal to one for all non-zero frequenc\iéeu()\ =1VYu #0).
Accordingly, the analytic signal has the following propest

e Its energy is two times the energy of the original signalt{gg DC compo-
nent is neglected) becaugend f;; are orthogonal.

e Itis complex and the analytic signal of a symmetric signdlaamitian.

e Considered in polar coordinates, the analytic signal per$éa split of iden-
tity. This means that thivcal amplitude(the modulus of the complex sig-
nal) is a quantitative measure of structure anditioal phases a measure
for the qualitative information of structure. Thereforbe tanalytic signal
can be considered as an orthogonal decomposition intastal@nd ener-
getic information.

The Hilbert transform and the Fourier transform are partasfionic analysis.
A harmonic functionf is a solution of the Laplace equatidnf = (V,V)f =0
whereV = (6%, o ,%)T. On the other hand, the real part and the imaginary
part of an analytic function are harmonic functions (e.g7]J1 Furthermore,
analytic functions can be identified with gradient fields afrhonic potentials (see
below). These relations are well known for 2D vector fields we will show,
it is possible to derive the Hilbert transform from a gradigeld of a harmonic

potential.



Gradient fields of harmonic potentials can also be desigméxgher dimen-
sions. Though there is no link between 3D vector field theowy the (complex)
analytic function, there is indeed a function theory thanbmes higher dimen-
sional field theory and analysis: the Clifford analysis (43]). In section 4, we
will use 3D vector fields (and therefore, implicitly Cliffdranalysis) to derive a
generalized Hilbert transform, the Riesz transform. Thay W derive the Riesz
transform is taken from [21].

At first, we will derive the Hilbert transform as a motivatioThe starting
point is a two-dimensional vector fielgl ) which is irrotational and sourceless
in the half-space; < 0:

rotg(z) = (V,g(z)?) = 0 and (1)
divg(z) = (V.g(z)) = 0 (2)
with g(z) = (g1(®), g2(2)) " andV = (32, ;:2-) 7. If we identify [R* with the

complex plane according to= x, +ix; and embeg according tqjc = g, —ig1,
these equations are just the Cauchy-Riemann (CR) equa@amsplex functions
that fulfill the CR equations are calleshalytic functions.

As a consequence of (1), there is a real functiosuch thalg is the gradient
of ¢. For the following considerations, we switch to the frequedomain wrt.
x1, which means that we apply the 1D Fourier transform. Fronit {@)lows that

. ~ 0 .
12mu1 g1 (ur, 2) + =—9ga(ug, x9) = 0
8372

and substituting = V yields

2
f47r211,?(:5(u1,.’132) + F@(?L]’f]’,‘Q) fd 0 .
Ty

This differential equation is solved in the half-space < 0 by @(u,z,) =
C'(uq) exp(27|uq|z2) whereC'(uy) is a function which is independent of. There-
fore, the components of the gradient field read

Z]\l(ul,llfg) = 7;27TU1<,/5(U1,ZL'2) and
Go(ur, xo) = 2mluy|@(uy, z2) -

According to the fact thag can be considered as an analytic functipng, is the
harmonic-conjugate agf, and vice versa [17]. Note thgtalso fulfills (1) for this
choice ofg; andgs.

1In mathematical terms, these functions are called holohiorgAnalytic means, that there is
a local power series expansion about each point, which ismplede characterization of holomor-
phic functions [17].



Now, we consider the continuous extensiorgdbr z, — —0 and we obtain
thatg; (uy, 9 = 0) = h(u1)ga(ur, zo = 0), such thaty. is consistent with the
definition of the analytic signalf(z) = ¢2(z,0) and fx (z) = g1(x, 0)).

In mathematical terms, eq. (2) with a givéron the linex, = 0 constitutes a
Dirichlet problem (the liner, = 0 is the boundary of the open subspage< 0).
The Hilbert transform then corresponds to a switching betwte two different
partial derivatives on the line, = 0 (see fig. 1).

linezy, =0

‘ -
/mz

Figure 1: Dirichlet problem of second kingi(x) fulfills the Laplace equation in
the open domain, < 0 and a partial derivative on the ling = 0 is given. The
other partial derivative is obtained by the Hilbert tramefo

As far as we know, the following approaches for generalitiggHilbert trans-
form to higher dimensions can be found in the literature §anore extensive
discussion, see [4]).

e Partial Hilbert transform: The Hilbert transform is perfoed wrt. a half-
space which is chosen by introducing®eference directiofil1]: h(u) =
isign((u, n)). The main drawback is the missing isotropy of the transform.

e Total Hilbert transform. The Hilbert transform is perfordhert. both axes:

h(u) = —sign(u,) sign(us) (see [12]). This approach is not a valid gener-
alization of the Hilbert transform, since it does not penicax phase shift of
/2.



¢ A combination of partial Hilbert transforms and the totalliéit transform
[12]: h(w) = i(sign(uy) + sign(us) + sign(u;) sign(us)). This approach is
neither complete nor isotropic.

e Combined partial and total Hilbert transforms in the quaitaric Fourier
domain: Instead of using the complex Fourier transform,cih@ternionic
Fourier transform [6] is used. The result is discussed imitlgt [4]. As
already pointed out in the introduction, this approach Ssatropic, either.

Hence, we can summarize that the common drawback of all appes is the
missing isotropy. This is also reflected by the wide-spraaidion in the signal
processing community that no odd 2D filter with constantgyéup to the origin)
exists (e.g. [16]). We will show that this conjecture is wgoif vector-valued
filters are considered.

4 The Monogenic Signal

Appropriate to the previous section, we start with a 3D vefiedd which is irro-

tational and sourceless in the half-spage< 0, i.e. it ismonogenidor z;3 < 0
[19]. We have

rotg(x) = Vxg(xz) = 0 and (3)

divg(z) = (V,g(z)) = 0. (4)

Again, we conclude from (3) that there exists a potentialuch thatg is its

gradient field. Furthermore, we switch to the frequency domat. z; andz,,

which means that we apply the 2D Fourier transform. Then wdrgm (4) the
differential equation

62

5 Plun, s, w5) = A (uf + )P, o, 5)
3

which is solved in the half-spacg < 0 by

P(uy, ug, x3) = C(u1,us) exp (27T\/u% + u} x3> ,

whereC'(uy, us) is a function which is independent of. Consequently, we ob-
tain for the components of the gradient (see also [21]):

ﬁl(Ul,UQ,l’{;) — 7:27[-”1(;/5(“17”271‘3) (5)

ﬁQ(Ul,UQ,LL’{;) — 7:27[-”2(;/5(“17”271‘3) (6)

G3(ur,ug, x3) = 2my/ud +u3 P(uy, ug, x3) . (7)
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Note that for this choice of;, ¢g» andg; the equations (3) are fulfilled.
Finally, we get the formulae

U

g1(ur,ug, x3) = iﬁﬁf&(“l:“%ﬁ%)
Vuy + uj

—~ . Uy —~
.612(“1;“2;353) = ZT%(M;U%%)
\V U] + U2

which are also valid for the continuous extensign— —0. In that case, egs.
(8) and (9) constitute a generalization of the Hilbert tfama which is known as
the Riesz transformin mathematical literature [25] (up to a minus sign which is
dependent on whether taking the half-spage- 0 or z3 < 0).

From a field-theoretic point of view, the Riesz transfornoak us to switch
directly between the partial derivatives of a sourcelesp8ential. In mathemat-
ical terms, this means that we can change the boundary camgltf a Dirichlet
problem of second kind from any partial derivative to anothree.

If we embed/R? into the subspace ol spanned by{1,i,j} (also called
paravectord23]) according to; = =3 + x1i + x9j andgg = g3 — g17 — g7, the
equations (4) and (3) are equivalent to the generalizedlaReemann equations
from Clifford analysis [3]. Functions that fulfill these eafions are called (left)
monogenidunctions. Therefore, we introduce the following terminology:

(8)
(9)

Definition 1 (monogenic signal) The quaternion valued 2D signal
~ ~ iu o~
Fuw) = Flw) — B2 fui (10)

is called the monogenic signal.

Note that we have changed the notation slightly in order tioageompact
expression. Indeed, we usédj)u to embed?? in IH and we took thes from
(8) and (9) to the right side. This enables us to write thesfiemfunctions of the
Riesz transform into one expression

T o (7,])U
"=l 4y

such that the monogenic signal is obtained by

(@) = f(@) — fa(@)i = f(@) — h(x) « f(@)i . (12)

2At this place, we want to thank T. Biillow for alluding to thest&nce of the Riesz transform
and for giving us the references [25, 21] which enabled uddatify the transform (8) in [9] with
it.

30riginally, monogenic was another, somehow archaic terhdtomorphic [17]. People from
Clifford analysis reused it for expressing the multidimiensal character.
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This is the same formula as in the 1D case with the exceptianttie: has to
be on the right ofi(x) becausdH is a skew field (non-commutative). The sig-
nal fr(x) denotes the Riesz transform pfx) embedded intdH. The explicit
spatial representation éf x) is obtained in the following way: a well known 2D

Fourier correspondencefig| ' = ||u/|~! which can be obtained using the Han-
kel transform [2]. Applying the derivative theorem of the Bourier transform,
we obtain

1 (1,k)x

2 el

h(zx) = (13)
which is also given in [25]. If we think of the Riesz transfoam a function ink?
with x3 = 0 again, we have an interesting relation to the field theorpsater for
example the gravitation field. The potential of a point madke origin is propor-
tional to ||z|| ! (Newton potential). The resulting field is therefore prdjmonal
to # This analogy yields a new interpretation of 2D signals @es: instead
of interpreting an image as a surfaces in 3D space, bettesidemit as a mass
distribution in the plane; = 0. This mass distribution yields a potential and the
gradient of this potential in the plang = 0 is the Riesz transform of the mass
distribution. In field theoretic terminology we replace ftav through the plane
x3 = 0 by a field of sources.

Now, since we have defined the monogenic signal as a gerextadizalytic
signal, we can start to check whether the properties of tee dae fulfilled. First,
we take a look at some properties of the Riesz transform:

e It is anti-symmetric sincé(—u) = —ﬁ(u) implies thath(—x) = —h(x).
Note in this context that symmetry in 2D can be wrt. to a poinivat. a
line. Choosing the symmetry is the fundamental decisiomésigning the
generalization of the Hilbert transform (in 1D, there isyoohe symmetry).
Obviously, the Riesz transform corresponds to the poinragtry, whereas
the approach in [4] corresponds to a line-symmetry wrt. toedinate axes.

e It suppresses the DC component. We have a singularity at 0. If we
remove it by continuously extending the two components®Rlesz trans-
form along the lines;; = 0 (eq. (8)) andu, = 0 (eg. (9)), we immediately
geth(0) = 0.

e The energy is of value one for all none-zero frequencies,||E¢u)|| =1
Vu # 0. This follows directly from the definitions df(u) and the norm.

These properties can be vividly verified in fig. 2.
According to the properties of the Riesz transform and in ganson to the
analytic signal, the monogenic signal fulfills the followitwo statements:
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Figure 2: Transfer function of the Riesz transform dispthge a vector field.

e Its energy is two times the energy of the original signal& IC component
is neglected (proof see below).

e Itis quaternion valued and the monogenic signal of a poimiregtric signal
(f(—=x) = f(x)) is quaternionic-hermitian (i.efy;(—x) = fu(x)). This
follows directly from the symmetry relations of the Fourieansform.

The third property of the analytic signal (split of identitypolar coordinates) is
also fulfilled but this will be discussed in detail in secti®n

The energy property can be proved easily: Supposejtha} is a DC-free
real signal. The transfer functid?(u) is anti-symmetric and in the span ff j}.
Using the symmetry relations of the Fourier transform, weambthath(x) is
also anti-symmetric but in the span ff, k}. Consequently, we obtain by using
Parseval's theorem and the orthogonality of the tripge m”, ﬁ):4

[lsu@)ide = [ 1Al 1w du
[+ i)l 7w de
[ 11@)ldz + [ )] 17w du

[ 1@z + [ 17w du

2 [Vf@)de

“Note that|| o, (z)|| indicates the pointwise norm gfy; (x) in contrast to|| fi|| which is the
integral of|| fas (x)]].

11



Since the energy of an arbitrary signal is only modified by astant real factor,
we can conclude that the amplitude of the monogenic signiabisopic which
means that there is no dependence on the orientation of al ¢gge also fig. 3).
The only restriction we have is th@{x) must be DC-free (same as in the case of
the 1D analytic signal).

Figure 3: Left image: test-image containing all orientasipright image: the
energy of the corresponding monogenic signal is isotropic.

5 The Phase of the Monogenic Signal

The phase of a complex signal a is measure for the rotatiomredlasignal in the
complex plane. In 2D space, the rotation axis is unique, gxoe thedirection
of rotation. Therefore, the polar representation of a cexpumber: = = + iy
is uniquely defined byr, o) = (v/22, atan2(y, )), whereatan2 can be defined
as follows:

atan2(y, x) = sign(y) atan <|l7"|> (14)
with atan(-) € [0, 7). The factorsign(y) indicates the direction of rotation. If
we use this definition, the negative real numbers are sindgpgleause they have
an angle ofr wrt. positiveand negative rotations. This is comparable to the
complex logarithm which is defined on the complex plane withhe negative
real axis (recall the definition of the complex logarithin]z = rexp(ip)) =
In(r) 4+ ip). The imaginary part of the complex logarithm also repréeséne
argument of a complex number. Both definitions, the onet aifi2 and the one of
the complex logarithm, can be extended to the whole compémeby taking the
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angle modul@z. In that caselim, ;o Im(In(—z + ie)) = lim. o Im(In(—z —
ie)) = 7 (with z € IR, also obtained by the Cauchy principal valuéidf:)).

In 3D space, the rotation axis is represented by a unit vecta straightfor-
ward generalization of a 2D angle is then a vector with thgtlenorresponding to
the rotation angle and the direction corresponding to theion axis. This vector
is calledrotation vector Consequently, we define a new arctangent function as
follows:

Definition 2 (3D arctangent) Letx € I?* be a non-zero 3D vector. The rotation
vector that corresponds to the rotation @f, 0, ||z||) " into = is obtained by the
3D arctangent:

atan3(x) =

—_— o O
X
8
o
V]
—+
IV
=
7N

T %
0,01 o )

wherex; = -Z-.

[

Again, there is a singularity it = (0,0, —||z||)". But now it becomes obvious
why this is really a singularity: the magnitude of the ratatis again well defined
by 7, but the rotation axis is arbitrary in the 2D subspace ordnadgitox. There-
fore,anyrotation vector in that subspace is a correct solution! Trig possibility
to extend the definition of (15) is to define a 'modulo’ on the &lib-space such
that all vectors of length are identical.

If we have a smooth vector field and we want to use (15) as a tlefiraf the
phaseof the vector field (as we will do in the next paragraph), theranother
possibility to extend the definition: if we consider the \@swf (15) in an open
ball with radius=s around the singular point and by lettimgtend to zero, we
get a well defined rotation vector because of the smoothrfetbe wector field.
This continuous extension of the orientation is used in ¢§8Jd stable orientation
estimation.

Using (15), we are able to define the phase of the monogemalsigbbrevi-
ation: monogenic phase):

Definition 3 (local phase of the monogenic signall'he local phase of the mono-
genic signalf,/(x) is defined by

o(@) = atan3 (£, (z)) . (16)

wheref ,, is the vector field such that, = (i,5,1)f ;-

The rotation vector fieldp(x) represents the rotation of the real valued signal
| fa ()] into the quaternionic valued signgl; (). Note that the real component
is the third component of the 3D vector (see also (15)).

13
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Figure 4: Monogenic phase of a simple image. The phase issepted by the
vector field and the image (arc) is represented by the grieypadtern. Note also
the phase-wrapping.

The rotation vectotp lies always in the plane spanned bgnd; (see fig. 4).
Considering the vectors in a local neighborhood, therenseskind ofwrapping
of the vectors: if a vector in a certain direction would extéee amplituder, it
is replaced by the vector min@s times the unit vector in that direction. In other
words, it is replaced by a vector in the opposite directiotmamplitude2r minus
the 'correct’ amplitude. This is the same effect as the phasgping in 1D.

In section 4, we already used the norm of the quaternionsdioutating the
energy of a monogenic signal. Indeed, the norm is used fonidgfithelocal
amplitudeof f),(x) by

| fu@)l| = /(@) — fi() | (17)

The nice thing about these definitions of local phase (16)acal amplitude
(17) is that the monogenic signal can be calculated frometh&s functions:

Theorem 1 (polar representation of the monogenic signal)
Lety(x) be the local phase and 181,/ (x)|| be the local amplitude of the mono-
genic signalfy/(x). Then the latter can be reconstructed by

fu(x) = [|fa ()] exp(e™ (2)) (18)

whereexp(q) = >, ‘,’7—3, q€ H.
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Proof:
Straightforward calculation yieldso(= ||¢||, A = ||fu(x)] andg, = ﬁ =

—sin(#)i + cos(f)j):

Aexp(p(z ))
= A(cos(¢) + g sin())
= A(cos(p) + cos(f) sin(p)i + sin(f) sin(p)j)

cosflcosp —sinf cosfsinp 0
= (i,7,1) |sinfcosyp cosf sinfsing 0
—sing 0 cos A

= (i, j, 1)R3(9)R2(¢)(07 07 A>T

where R3(f) indicates the rotation matrix for a rotation Byabout the third co-
ordinate axis and?,(y) for a rotation by, about the second coordinate axis, see
also fig. 5. [ |

A

real axis

% i-axis

Figure 5: Rotation vector and rotations about the seconsl @axis) by and
about the third axis (real axis) sy

Note thatin(|| f(2)]]) + ¢(x) can be considered as the logarithm of the mono-
genic signal.

In the previous section, we omitted the property 'split antity’. Now, hav-
ing a definition of the monogenic phase, we recognize thatiardp and phase
are again orthogonal. The local amplitude includes enierggbrmation and the

15



phase includes structural information. In contrast to tBecase, the phase also
includesgeometric informatiofy now. This problem is discussed at the end of the
next section.

6 The Radon Transform and the Monogenic Signal

Up to now, we considered the 1D analytic signal and the 2D meni signal as
two approaches which are only related by the fact that therlat the generaliza-
tion of the first one wrt. the dimension of the domain. In sighaory, there is a
well known relation between 1D and 2D signals: the Radorsttam [24]. The

Radon transform maps a 2D signal onto a family of 1D signatils am orientation
parameter. It is defined as follows:

Definition 4 (Radon transform) The Radon transform of the 2D signglz) is
obtained by

F(t,0) = ) f(x)oo({x, mg) — t) d | (19)

whered(-) is the Dirac-delta andny, = (cosf,sinf)" with § € [0,7), i.e. an
orientatior?.

Geometrically, the Radon transform projects (orthoggnahe 2D signal onto
a line with orientatiord. Doing this for all orientations yields a family of 1D
functions with the parameté: The Radon transform is invertible and there are
some important theorems about signals in the Radon domfin [2

One of the most important theorems which we also need in gusa is the
Fourier slice theorem (e.g. [14]). We give the proof heredbse it is quite short
and gives more insight which will help to understand the oéshis section.

Theorem 2 (slice theorem)The 1D Fourier transform of the Radon transform
with angled is identical to the slice of the 2D Fourier transform in ortation 6:

~ ~

F(u,0) = f(uny) . (20)

whereF (u, ) is the 1D Fourier transform of (¢, 6) ande(u) is the 2D Fourier
transform off (x).

SActually, also the 1D phase includes geometric informatipou cannot distinguish if the
direction of the 1D signal has changed or if the phase itsaifeitting negative. This problem is
solved for frequency modulation by adding a pilot tone.

5Note the difference betweetirectionandorientationin this context: a direction corresponds
to a vector, an orientation to a 1D subspace.

16



Proof:

The Radon transform is a convolution of the signal with a bréhogonal ton,.
Applying the convolution theorem of the 2D Fourier transfiomwe get the point-
wise product off with the line oriented ak through the origin. |

Having the Radon transform as a relation between 1D and 2malsigone
can pose the following interesting question: what is the éBaspondence of the
monogenic signal? In order to answer this question, we maitate it as: what is
the Radon transform of the Riesz transform?

As it turns out, the Radon transform relates the Riesz toanrsto the Hilbert
transform. Accordingly, we get a direct interpretation mifinsically 1D signals
in 2D space. But also for intrinsically 2D signals we obtamiaterpretation by
decomposing the signal into intrinsically 1D parts. Indethé Radon transform
is the connecting link between the 1D and 2D approaches. Weulate this
amazing fact in the subsequent theorem:

Theorem 3 (correspondence of Hilbert and Riesz transform)
The Radon transform of the Riesz transform of a 2D sidfital) is identical to
(i, 7)my times the Hilbert transform of the Radon transform-aff (x):

Fr(t,0) = (1, k)ngh(t) « F(t,0) (21)

where Fx(t,0) is the Radon transform ofx(x) and h(t) is the kernel of the
Hilbert transform.

Proof:
In the Fourier domain, due to the linearity of the Radon, Riddilbert, and
Fourier transforms we have

~ ~

Fr(u,0) = (i,j)ngsigil(u)f(u,ﬁ)
= —(i,j)ngih(u)F(u,0) .

Note thatsign(u) must be introduced singe € [0, ) is an orientation (see also
footnote 6). The frequencies wheteis negative correspond to the angles in
(7, 2m) which inverts the vecton,. [
As we just showed, the Radon transform allows us to calcthat®iesz transform
(and therefore also the monogenic signal) using the Hiltsartsform (see also
fig. 7). This amazing fact can be used to circumvent the agipdic of the Riesz
transform in the Fourier domain (actually, the applicatiorihe spatial domain
is not very sensible due to the infinite extend of the imputsponse, see (13)).
Especially in applications where the data is given in thedRadiomain (e.g. X-
ray), it is advantageous to have this theorem. By the folhgyalgorithm, we get
directly the monogenic signal from data given in the Radomaio (denoted by
F):
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1. calculate the Hilbert transforii;,
2. multiply Fz by cos 6 andsin 6,
3. calculate the inverse Radon transfornfgfcos 6 Fiy andsin 6 F}y.

Having the monogenic signal, we can apply further algorghHar estimation of
local properties, feature detection etc. (see [8]).

A second consequence of this theorem is that it enablesderitfy the mono-
genic phase with the phase of the analytic sigbviously, we get from theorem
3 the identity

Fu(t,0) = F(t,0) — Fr(t,0)i
— F(,0) — (i,j)neh(t) * F(t,0)
= (6,7, 1) Rs(0)(=h(t) * F(1,6),0, F(t,0))"

where R3(6) is again the rotation about the real axisbhyHaving a closer look
at(i,j,1)(—h(t) x F(t,0),0,F(t,0))", one observes that this is just the analytic
signal of the Radon transform (for eve#y. Hence, the Radon transform of the
monogenic signal is just the analytic signal of the Radonsi@m but with the
imaginary unit; rotated byf (the orientation orthogonal to the projection direc-
tion).

What does this mean for the interpretation of the monogdmise? For linear
structures with a large support (lines, edges in images)Riédon transform is
dominated by this structure (see fig. 7). Hence, the monogamase is mainly
given by the 1D phase in orthogonal projection to the stmecéund by the orien-
tation of the structure.

Therefore, we get the following interpretation of the phesetor (16): the ori-
entation of o (x) represents thdocal orientation of the 2D signal and
sign((p(x), (0,1)7))|l¢(x)| represents thivcal 1D phaseof the 2D signal (see
also fig. 5). These interpretations are consistent withahmér definition of local
phase and local orientation in [10, 9].

Note that these definitions do not yield a unique phase reptason, since a
rotation of the signal byt yields the same orientation and a negated phase. This
ambiguity can be visualized by two different decomposgioha rotation with its
rotation axis in a fixed plane (see fig. 6). The same problem @surs in the
context of oriented quadrature filters (see [11]), wherenGired and Knutsson
claim that there is no local way to get the direction from thiemtation. Bulow
[5] applies a global algorithm that removes all orientatjomps which are greater
than=/2 (modulo27). He argues that this approach yields a consistent phase
representation and that it is unique up to negation of thel@vhloase.
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Figure 6: Two ways to decompose a 3D rotation by rotationsiabeo fixed
axes. First way: from the top dot to the right and 'directlgvweh to the bottom
dot. Second way: to the left (to the backside), down, to tbhetgide again and to
the bottom dot.

If the monogenic phase is decomposed into local orientatiwhlocal phase,
the split of identity (the third property of the analytic saj) is also preserved
wrt. geometric and structural information. Though the Iqasase and the local
orientation are only 'nearly’ orthogonal (see ambiguitped), the local direction
is orthogonal to the phase. If we can recover the 'correct’ ll@i@ection, we
have really a split of identity wrt. energetic, geometridatructural information.
The problem with the 'correct’ local direction is that thésano absolute solution,
only a relative one. This relative solution can be obtaingadnstraints on the
smoothness of the phase and orientation.

A further consequence of theorem 3 is that 2D signals whiehrdrinsically
1D signals, i.e. they are constant in one direction [18]ehaprefect match be-
tween the monogenic phase and the 1D phase of the underliirgighal: the
frequency domain representation of an intrinsically 1Dnaig is a line. There-
fore, the Radon transform is zero everywhere except for tiemiation in which
the signal changes (orthogonal to the constant lines inghgad domain). Con-
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sequently, the factdn, k)ny in (21) can be replaced by a constant and the inverse
Radon transform of (21) yield&: (z) = (1, k)ny (6o ({(x, ny ) ) h({z, 1p))) * f ().
Therefore, the monogenic phase regds) = ¢({x, ny))n,, wherep indicates

the complex local phase (see also [10]). Hence, theoremh@ igdneralization of
theorem 1 in [10] which is only related to intrinsically 1ysals. Consequently,
we have shown that the monogenic signal is not only well dufibe intrinsically

1D signal but also gives sensible (and interpretable) tedat intrinsically 2D
signals.

7 Conclusions

In the present paper, we have analytically derived the meniogsignal, a ca-
pable approach for the analytic signal in two dimensionss Tiew 2D analytic
signal is based on the Riesz transform and preserves thentiespof the 1D an-
alytic signal. In contrast to the known approaches it isrguit and therefore
performs a split of identity. The information included iretiignal is orthogonally
decomposed into energetic, structural, and geometricnimdtion by means of lo-
cal amplitude, local phase, and local orientation. We hatabdished a theorem
which directly relates the 1D analytic signal and the 2D ngeroc signal. The
Radon transform emerged to be the appropriate tool forisgithe 1D Hilbert
transform to 2D.

A wide field of possible applications of the monogenic sigsamaginable.
Up to now, only few applications have been realized. For godamestimation of
the local orientation, contrast independent edge detesiee both in [7]), Moire
interferograms [5], texture analysis [10]. Currently, we working on curvature
estimation, corner detection, 3D correspondence, ane isoigpression. Further
applications will follow.

Both, the monogenic signal and its applications are easifrimulate in ge-
ometric algebra. It is even possible to generalize the ambreo arbitrary dimen-
sions [7]. Nevertheless, we chose once more the vectoriowotahich is easier to
understand for most of the readers. Only some details had tormulated using
quaternions which can be identified within geometric algeButure publications
will be completely formulated in geometric algebra.
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Figure 7: The top left image shows an object with dominargrded structures.
The top right image shows one component of the corresporiRiegg transform.
The second row shows the following signals in the Radon dor{feom left to
right): original signal (note the sharp edges at those anglach correspond to
the orientations of the edges of the rectangle), Hilbengiarm, cosine- and sine-
weighted Hilbert transform. The abscissa indicates thentation angle and the
ordinate indicates the 1D coordinates. The images in theimoshow the Riesz
transform obtained from the weighted Hilbert transformnfpare the left image
to that one in the upper right).
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