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Abstract

The structure multivector is a new approach for analyzing the local properties
of a two-dimensional signal (e.g. images). It combines the classical concepts of the
structure tensor and the analytic signal in a new way. This has been made possible
by using a representation in the algebra of quaternions. The resulting method is lin-
ear and of low complexity. The filter-response includes local phase, local amplitude
and local orientation of intrinsically one-dimensional neighborhoods in the signal.
As for the structure tensor, the structure multivector field can be used to apply spe-
cial filters to it for detecting two-dimensional features like corners. Experiments
and comparisons with other approaches have been made.
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1 Introduction

In image and image sequence processing, different paradigms of interpreting the sig-
nals exist. Regardless of they are following a constructive or an appearance based strat-
egy, they all need a capable low-level preprocessing scheme. One of the surely most
discussed topics is the detection of key points, or points of higher intrinsic dimension
(in the context of appearance based approaches one should better talk of representation
than of detection). Key points are needed for solving the correspondence problem oc-
curing in 3D reconstruction, for applying steerable filters (see e.g. [16, 20]), for all kinds
of model based representations, etc..

Since the preprocessing is only the first link in a long chain of operations, it is useful
to have a linear approach, because otherwise it would be nearly impossible to design
the higher-level processing steps. On the other hand, we need a rich representation
if we want to treat as much as possible in the preprocessing. Furthermore, the repre-
sentation of the signal during the different operations should be complete, in order to
prevent a loss of information. These constraints enforce us to use the framework of geo-
metric algebra which is also advantageous if we combine image processing with neural
computing and robotics (see [18]).

The representation of points with special intrinsic dimensionality needs a mathe-
matical treatment of the relevant data, which means that structural information has to
be separated from textures and noise. In the one-dimensional case, quadrature filters
are a frequently used approach for processing data. But the standard extension to two
dimensions is not very efficient because it closely depends on the preference direction
of the filter.

The structure tensor (see e.g. [13]) is a capable approach for detecting the existence
and orientation of local, intrinsic one-dimensional neighborhoods. From the tensor field
the orientation vector field can be constructed and by a normalized or differential con-
volution special symmetries can be detected (see e.g. [14]). The structure tensor itself
can be computed with quadrature filters (see [10]) but the tensor itself does not possess
the typical properties of a quadrature filter. Especially the linearity and the split of the
identity is lost, because the phase is neglected.

In this report, we introduce a new approach for the 2D analytic signal which enables
us to substitute the structure tensor by an entity which is linear, preserves the split of the
identity and has a geometrically meaningful representation: the structure multivector.
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2 A new approach for the 2D analytic signal

In the first section, we repeat some fundamentals, in order to make the new concepts
easier to understand. In the following sections, we introduce the new approach for the
analytic signal in two steps. Firstly, we define the coordinate system, in which we work
in the sequel and which also follows directly from geometric constraints. Secondly, the
spherical analytic signal is defined using the introduced coordinate system.

2.1 Fundamentals

Since we work on images, which can be treated as sampled intervals of R2 , we use the
geometric algebra R 0;2 which is isomorphic to the algebra of quaternions H . The whole
complex signal theory naturally embeds in the algebra of quaternions, e.g. complex
numbers are considered as a subspace of quaternions here. The basis of the quaternions
reads f1; i; j;kg while the basis of the complex numbers reads f1; ig. Normally, the
basis vector 1 is omitted.

Throughout this document, we use the following notations:� in contrast to multivectors, vectors (1D and 2D) are bold face x = x1i + x2j, u =u1i + u2j, t = ti, etc. and 2D vectors have the directions 'x, 'u, etc.� the Fourier transform of the nD signal f(x) is denotedf(x) Æ��F (u) = ZRn f(x) exp(�i2�u � x) dx� the real part, the i-part, the j-part, and the k-part of a quaternion q is obtained byRfqg, Ifqg, J fqg, and Kfqg, respectively� the automorphisms of the quaternions are denoted by �(q) = �iqi, �(q) = �jqj,
and 
(q) = �kqk, where the conjugation of the complex numbers can be expressed
either by �(z) or by 
(z) (z = Rfzg + Ifzgi)

The 1D analytic signal can be defined as follows (see e.g. [13]). The signal which is
obtained from f(x) by a phase shift of �=2 is called the Hilbert transform fH(x) of f(x).
Since fH(x) shall be real-valued, the spectrum must have an odd symmetry. Therefore,
the transfer function has the form1H(u) = i sign(u) : (1)

1Since we use vector notation for 1D functions, we have to redefine some real-valued functions ac-
cording to sign(u) = sign(u), where u = ui.
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If we combine a signal and its Hilbert transform corresponding tofA(x) = f(x)� fH(x)i ; (2)

we get a complex-valued signal, which is called the analytic signal of f(x).
According to (1), the Fourier transform of the analytic signal fA(x) is located in the

right half-space of the frequency domain:fA(x) Æ��F (u)� i sign(u)F (u)i = 8><>:2F (u) if ui < 0F (0) if u = 00 if ui > 0 (3)

Hence, we have recalled all facts of the one-dimensional analytic signal which are rele-
vant for this report. More information can be found in any good textbook about signal-
theory.

Since we use the algebra of quaternions as a geometric algebra, we have to introduce
some terms of geometric algebra (for a complete introduction, see e.g. [12]). If the
algebra of quaternions is identified with the geometric algebra R 0;2 , the real part is also
called the scalar, the entity consisting of i- and j-parts is called the vector and the k-part
is called the bivector (k = ij).

We have already used two products: the inner product, e.g. x �u, and the geometric
product, e.g. ui. The geometric product is evaluated by applying the associative law
and the multiplication table of the algebra. The inner product is well known for vectors,
but it can be extended to elements of all grades (geometric algebras are graded algebras)
by A �B = hABijr�sj (4)

where <> is the grade operator and A = hAir and B = hBis. The inner product with a
scalar is always zero.

The outer product is defined byA ^B = hABir+s (5)

which yields the identity x^u = xu�x�u for vectors. If at least one factor is a scalar, the
outer product is identical to the geometric product respective the field multiplication.

A rotation in 2D vector space can be expressed by a spinor, in the case of quaternions
for example, we have a scalar s, a vector x = x1i+ x2j and a bivector bk. Together, they
form the quaternion q = s+x+ bk. If we want to rotate the vector (and only the vector)
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by ', this can be done by the spinor exp(k'=2):exp(k'=2)q exp(�k'=2) = s+ exp(k'=2)x exp(�k'=2) + bk= s+ ((
os('=2)x1 � sin('=2)x2)i+(
os('=2)x2 + sin('=2)x1)j) exp(�k'=2) + bk= s+ (
os2('=2)x1 � 2 
os('=2) sin('=2)x2 � sin2('=2)x1)i +(2 
os('=2) sin('=2)x1 � sin2('=2)x2 + 
os2('=2)x2)j + bk= s+ (x1 
os(')� x2 sin('))i+ (x1 sin(') + x2 
os('))j + bk
2.2 The 2D phase concept

We want to develop a new 2D analytic signal for intrinsically 1D signals (in contrast to
the 2D analytic signal in [4] which is designed for intrinsically 2D signals), which shall
include three properties: local amplitude, local phase and local orientation. Compared
to the 1D analytic signal we need one additional phase. We cannot choose this phase
without constraints: if the signal is rotated by �, we obtain the same analytic signal, but
conjugated. Therefore, we have the following relationship: negation of the local phase
is identical to a rotation of �.

One straightforward consequence is that points where the analytic signal has zero
phase (i.e. it is real-valued) have orientation 'u and 'u + � at the same time - therefore,
these points have no orientation at all. Note the difference between direction and orien-
tation in this context; the direction is a value in [0; 2�) and the orientation is a value in[0; �) (see [9]).

A second consequence is the following. Any value of the 2D analytic signal can
be understood as a 3D vector. The amplitude fixes the sphere on which the value is
located. The local phase corresponds to rotations on a great circle on this sphere. To be
consistent, a rotation of the signal must then correspond to a rotation on a small circle.

An obvious parameterization is the following: assuming that we have a complex-
valued function over a two-dimensional domain, we map the imaginary unit onto the
normalized position vector (the direction vector). The resulting function is quaternion-
valued and has the following properties:
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� If we choose one fixed orientation 'u in the right half-space, the imaginary unit is
changed into (
os('u)i+ sin('u)j) sign(u1).� For every orientation, the function lies on a different complex plane (note that
every algebra over f1; q0g, q0 a pure unit quaternion, is isomorphic to the algebra
of complex numbers). The phase in this plane is denoted 'i.� The values of the function include information about the orientation of the func-
tion.

The coordinate system defined in this way is displayed in figure 1. It is the same

real part

'u
'i i-part

j-part

Figure 1: Coordinate system of the 2D phase approach

as in [10], but Granlund and Knutsson use the 2D phase in the context of orientation
adaptive filtering (see also [11]).

Consider a given quaternion q, how can we extract the two phases, described just
above? In fact, the answer of this question defines the introduced coordinate system.

7



Definition 1 Let arg(z) be the function which evaluates the complex phase of z in the interval[0; 2�) and let qs be a quaternion with zero k part. Then, we get the orientation phase 'u by'u = arg((Ifqsg+ J fqsgi)2)=2 ; (6)

and the phase in the complex subspace spanned by 1 and 
os('u)i+ sin('u)j is obtained by'i = arg(Rfqsg+ (Ifqsg+ J fqsgi) exp(�i'u)i)= arg(Rfqsg � (J fqsg � Ifqsgi) exp(�i'u)) : (7)

Note that these definitions of quaternionic phases are totally different from those of
the quaternionic Fourier transform (see e.g. [4]). The reason why we use a different
phase will be explained at the end of section 2.3.

2.3 The spherical analytic signal

Now, having a phase concept which is rich enough to code all local properties of intrin-
sically one-dimensional signals, we construct a generalized Hilbert transform and an
analytic signal for the 2D case, which make use of the new embedding.

The following definition of the spherical Hilbert transform is motivated by theorem
1, which establishes a correspondence between the Hilbert transform and the spherical
Hilbert transform.

Definition 2 Let F (u) be the Fourier transform of f(x). Then the spherical Hilbert trans-
form of f(x) is defined in the Fourier domain byFH(u) = ~H(u)F (u) = ujujF (u) ; (8)

and FH(u) ��Æ fH(x).
Note that the operator ~H(u) has to be applied from the left. In section 3.1, it will be

shown that the components of the spherical Hilbert transform are identical to the Riesz
transform.
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Example 1:f(x) = 
os(2�u0 � x) FH(u) = ~H(u)Æ0(u� u0) + Æ0(u+ u0)2= uÆ0(u� u0) + uÆ0(u+ u0)2juj= u0Æ0(u� u0)� u0Æ0(u+ u0)2ju0j= u0ju0ji Æ0(u� u0)� Æ0(u+ u0)2i ;
so that FH(u) ��Æ � exp(k'0) sin(2�u0 � x), where '0 = arg(u0).
Example 2:f(x) = sin(2�u0 � x) FH(u) = � u0ju0ji Æ0(u� u0) + Æ0(u+ u0)2 ;
so that FH(u) ��Æ exp(k'0) 
os(2�u0 � x).

Obviously, the spherical Hilbert transform yields functions which are identical to
the 1D Hilbert transforms of the cosine and sine function, respectively, except for an
additional exponential function.

Up to now, we have only considered two special examples, but what about general
signals? What kind of signals can be treated with this approach? The answer can be
found easily: the orientation phase must be independent of the frequency coordinate.
This sounds impossible, but in fact, the orientation phase is constant, if the spectrum is
located on a line through the origin.

Signals which have a spectrum of this form are intrinsically one-dimensional (i.e.
they are constant in one direction). This is exactly the class of functions for which the
structure tensor has been designed. For these functions we have the following theorem:

Theorem 1 Let f(t) be a one-dimensional function with the Hilbert transform fH(t). Then,
the spherical Hilbert transform of the two-dimensional function f 0(x) = f((x � n)i) readsf 0H(x) = �ni fH((x � n)i), where n = 
os(�)i+ sin(�)j is an arbitrary unit vector.
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Proof:

The Fourier transform of f 0(x) reads F ((u�n)i)Æ0(u^n) if f(t) Æ��F (s). Corresponding
to (8) we obtainujujF ((u �n)i)Æ0(u ^ n) = n sign(u � n)F ((u � n)i)Æ0(u ^ n)
and we can take the term n in the inverse Fourier transform outside the integral:ZR2 n sign(u � n)F ((u � n)i)Æ0(u ^ n) exp(i2�u � x) du= �ni ZR2 sign(u � n)F ((u � n)i)Æ0(u ^ n) exp(i2�u � x) du= �ni ZR sign(�)F (�i) exp(i2��n � x) d�= �ni fH((n � x)i) ;
and therefore, f 0H(x) = �ni fH((x � n)i) = exp(k�)fH((x � n)i) : �

Now we simply adapt (2) for the 2D case and obtain:

Definition 3 The spherical analytic signal of a 2D signal f(x) is obtained byfA(x) = f(x)� fH(x)i ; (9)

where fH(x) is the spherical Hilbert transform of f(x).
Using this definition, we obtain for our two examples:
os(2�u0 � x) + exp(k'0) sin(2�u0 � x)i = 
os(2�u0 � x) + u0ju0j sin(2�u0 � x)= exp( u0ju0j2�u0 � x) andsin(2�u0 � x)� exp(k'0) 
os(2�u0 � x)i = sin(2�u0 � x)� u0ju0j 
os(2�u0 � x)= exp( u0ju0j(2�u0 � x� �=2)) :
So the spherical analytic signal uses the phase concept, which has been defined in

section 2.2. According to theorem 1, the spherical analytic signal of an intrinsically one-
dimensional signal f 0(x) = f((x � n)i) readsf 0A(x) = f((x � n)i)� nfH((x � n)i) : (10)
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Of course, the spherical analytic signal can be computed for all functions which are
Fourier transformable. However, for signals which do not have an intrinsic dimension
of one2, the correspondence to the 1D analytic signal is lost.

Independently of the intrinsic dimensionality of the signal, the analytic signal can
also be calculated in a different way. The 1D analytic signal can be obtained in the
Fourier domain by the transfer function 1 + sign(u). For the spherical analytic signal
we have the same result if we modify the Fourier transform.

Definition 4 The inverse spherical Fourier transform of F (u) is defined by~f(x) = ZR2 exp(k'u=2)F (u) exp(i2�u � x) exp(�k'u=2) du : (11)

Before we investigate the inverse of this transform and some of its properties, we es-
tablish a relation between the spherical analytic signal and the inverse spherical Fourier
transform:

Theorem 2 The spherical analytic signal of f(x) is the inverse spherical Fourier transform ofF (u).
Proof:

The inverse Fourier transform of (1� ujuji)F (u) can be calculated by an integration overu or �u, the integrals are identical. Therefore, we havefA(x) = ZR2(1� ujuji)F (u) exp(i2�u � x) du= 12 ZR2(1� ujuji)F (u) exp(i2�u � x) + (1 + ujuji)F �(u) exp(�i2�u � x) du= ZR2 RfF (u) exp(i2�u � x)g+ ujujIfF (u) exp(i2�u � x)g du= ZR2 exp(k'u=2)F (u) exp(i2�u � x) exp(�k'u=2) du= ~f(x) : �
2The case of intrinsic dimension zero (i.e. a constant signal) is irrelevant, because the Hilbert transform

is zero in both cases.
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Above, we mentioned that the spherical analytic signal can be obtained by a similar
transfer function as in the 1D case if the modified Fourier transform is used. Up to now,
we used the whole spectrum, but sinceexp(k'u=2)F (u) exp(i2�u � x) exp(�k'u=2)= exp(k('u + �)=2)kF �(�u)(exp(�i2�u � x))�(�k) exp(�k('u + �)=2)= exp(k('u + �)=2)
((F (�u) exp(�i2�u � x))�) exp(�k('u + �)=2)= exp(k('u + �)=2)F (�u) exp(�i2�u � x) exp(�k('u + �)=2) ;
i.e., the integrand is symmetric, we can also integrate over the half domain and multiply
the integral by two. Therefore, we can use any transfer function of the form 1+ sign(u�n)
without changing the integral. The most workable cases are those where n = i or n = j.
By simply omitting half of the data, the redundancy in the representation is removed.

The inverse of the transform defined by (11) is the transform which takes a spherical
analytic signal and returns the classical complex spectrum. Since the original signal is
simply the real part of the analytic signal, we haveRf ~f(x)g Æ��F (u) : (12)

In order to calculate the energy of the spherical analytic signal, we firstly need the
transfer function, which changes F (u) to FA(u): it is obtained from (8) and (9) and reads1� ujuji = 1 + 
os('u) + sin('u)k. The energy of the spherical analytic signal isZR2 j(1 + 
os('u) + sin('u)k)F (u)j2 du= ZR2(1 + 
os('u))2jF (u)j2 + sin2('u)jF (u)j2 du= ZR2 2(1 + 
os('u))jF (u)j2 du

and since jF (u)j = jF (�u)j= ZR2(1 + 
os('u))jF (u)j2 + (1� 
os('u))jF (u)j2 du= 2 ZR2 jF (u)j2 du ;
i.e. it is two times the energy of the original signal3.

From the group of similarity transformations (i.e. shifts, rotations and dilations) only
the rotation really affects the spherical analytic signal; the orientation phase is changed
according to the rotation. If we interpret the spherical analytic signal as a vector field

3This is only valid for DC free signals. The energy of the DC component is not doubled as in the case
of the 1D analytic signal.
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in 3D (see also section 3.2), the group of 2D similarity transforms4 even commutes with
the operator which yields the spherical analytic signal.

The reader might ask, why do we use a quaternion-valued Fourier transform which
differs from the QFT (see [4, 6, 7] and for a more mathematical discussion [2])? The
reason is not obvious. Therefore, we will go into some detail.

The QFT covers more symmetry concepts than the complex Fourier transform. The
classical transform maps a reflection at the origin onto the conjugation operator. The
QFT maps a reflection at one of the axes onto one of the algebra automorphisms. This
can be shown by the isomorphism between C 
 C and C 2 :

In the calculation of the QFT, only products of the form ii, ij, ik, jj and kj are used,
the products ji, jk, ki and kk never appear. Therefore, we can use the algebra C 
 C
instead of Q to calculate the QFT. Moreover, we have C 
 C �= C 2 (see e.g. [5, 8]) and
consequently, we can calculate the QFT of a real signal by two complex transformations
using the formula Fq(u) = F (u)1� k2 + F (u1i� u2j)1+ k2 (13)

and the symmetry wrt. the axes is obvious.

In this report, we want to present an isotropic approach which means that symmetry
wrt. the axes is not sufficient. Therefore, we had to design the new transform. The
design of isotropic discrete filters is a quite old topic, see e.g. [3], but still current (e.g.
[15]).

4Note that in the context of a 3D embedding, the group of 2D similarity transforms is the subgroup
of the 3D transforms restricted to shifts in i or j direction, rotations around the real axis and a dilation of
the i and j axes.
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3 Properties of the Spherical Analytic Signal

In this section we describe some global and local aspects of the spherical analytic signal.

3.1 The spatial representation

The definition of the spherical Hilbert transform in the frequency domain can be trans-
formed into a spatial integral transform. The transfer function (8) can be split into two
functions: u1juj and u2juj . The only thing left is to calculate the inverse Fourier transform of

these two functions. In [19, 17] the transform pairs can be found:x12�jxj3 Æ�� � i u1juj and (14)x22�jxj3 Æ�� � i u2juj : (15)

These Fourier correspondences can also be found by direct calculation. First we try
to find the inverse transform of 1juj . It can be obtained using the Hankel transform, see

[1]: ZR2 1juj exp i2�u � x du
substitute x = r(
os(�)i + sin(�)j) and u = q(
os(')i+ sin(')j)= Z 10 Z 2�0 q�1 exp i2�rq 
os('� �)q dq d'
which is the Hankel transform of q�1= r�1 = jxj�1 :

Now, using the derivative theorem of the Fourier transform we obtain:��x1 jxj�1 Æ�� i2� u1juj
and since ��x1 jxj�1 = � x1jxj3
we obtain (14).

The functions x12�jxj3 and x22�jxj3 are the kernels of the 2D Riesz transform ([19]). From

a mathematician’s point of view, the Riesz transform is the multidimensional general-
ization of the Hilbert transform. From (14) and (15) we obtainix12�jxj3 Æ�� u1juj and (16)ix22�jxj3 Æ�� u2juj ; (17)
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by the linearity of the Fourier transformx2�jxj3 i Æ�� ujuj : (18)

Consequently, the spherical Hilbert transform (or the Riesz transform) of a signal f(x)
is obtained by convolving the signal with x2�jxj3 i:fH(x) = ZR2 t2�jtj3 if(x� t) dt : (19)

The spherical analytic signal is directly obtained by the convolutionfA(x) = ZR2 �Æ0(t) + t2�jtj3� f(x� t) dt : (20)

The graph in figure 2 sums up all ways to calculate the spherical analytic signal from
the preceding sections. The inverse spherical Fourier transform is denoted F�1s .

F FA
fA

(Æ0(x) + x2�jxj3 ) � f
F�1s
f F

(1� ujuji)F
F�1

Figure 2: Three ways to calculate the spherical analytic signal
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3.2 The structure multivector

Normally, images are intrinsically two-dimensional, so the concepts described in section
2.3 cannot be applied globally. On the other hand, large areas of images are intrinsically
one-dimensional, at least on a certain scale. Therefore, a local processing would take
advance of the new approach.

Compared to local properties of 1D signals, intrinsic one-dimensional signals only
have one additional property: the local orientation. Therefore, it is quite reasonable to
extend the local description by this parameter.

The classical approach of the analytic signal has its local counterpart in the quadra-
ture filters. A pair of quadrature filters (or a complex quadrature filter) is characterized
by the fact that the impulse response is an analytic signal. On the other hand, both
impulse responses can be bounded (i.e. they act on a local neighborhood), so that the
problem of the unlimited impulse response of the Hilbert filter is circumvented.

An example of the output of a 1D quadrature filter can be found in figure 3. While
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Figure 3: Upper left: impulse, upper right: magnitude of filter output, lower left: real
part of filter output, lower right: imaginary part of filter output

the representation in figure 3 is very common, we will introduce now a different rep-
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resentation. One-dimensional signals can be interpreted as surfaces in 2D space. If we
assign the real axis to the signal values and the imaginary axis to the abscissa, we ob-
tain a representation in the complex plane. The analytic signal can be embedded in the
same plane – it corresponds to a vector field which is only non-zero on the imaginary
axis (see figure 4).

−1.5 −1 −0.5 0 0.5 1 1.5

−0.2

0

0.2

Figure 4: Representation of the 1D analytic signal as a vector field

The vector field representation of the analytic signal looks like particles which roll
from a hill (impulse). The rotation is directed away from the peak and the speed (am-
plitude of vectors) decreases with increasing distance.

Based on the spherical analytic signal we now introduce the spherical quadrature
filters. They are defined according to the 1D case.

Definition 5 A hypercomplex filter whose impulse response is a spherical analytic signal is
called a spherical quadrature filter.

In practical applications, the convolution (20) cannot be applied directly either, be-
cause of the unlimited impulse response of the expression (20). Of course, one could
create optimized filters for signals which are supposed to be band-limited, but it is bet-
ter workable to use radial bandpass filters to band-limit the signal actively. The spatial
representation of a radial bandpass can be used to design the spherical quadrature filter
in the spatial domain. The spatial representation looks similar to a Bessel function (see
figure 5). In fact, it is a linear combination of Bessel functions with different scales.

It is remarkable that the spherical quadrature filters have isotropic energy and ex-
actly choose the frequency bands they are designed for. In figure 6 it can be seen that
the energy is isotropic and that it is maximal for the radius 77:8, which corresponds to
a frequency of 16:3256 . The used bandpass has a center frequency of 116 .
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Figure 5: Bessel function

Figure 6: Siemens-star convolved with a spherical quadrature filter (magnitude)
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In figure 7 the output of a spherical quadrature filter applied to an impulse-line is
displayed. The lower right image shows the combined imaginary parts which means

Figure 7: Upper left: impulse-line, upper right: amplitude of filter output, lower left:
real part of filter output, lower right: combined imaginary parts of filter output

that it is simply the imaginary part of the ’correct’ imaginary plane (that one which is
obtained from the orientation phase).

Same as for 1D signals, 2D signals can be embedded as a surface in 3D space. The
signal values are assigned to the real axis and the spatial coordinates to the i- and thej-axis. The spherical analytic signal can be represented in the same embedding. It
corresponds to a vector field, which is only non-zero in the plane spanned by i and j
(see figure 8).

As in the 1D case, the vector field looks like particles which roll from a ridge (im-
pulse-line). The rotation is directed orthogonal away from the ridge and the speed
decreases with increasing distance.

The result of filtering a signal with a spherical quadrature filter is a quaternion-
valued field. Though the bivector (or k) component of the field is always zero, we
denote this field as a multivector field or the structure multivector of the signal.

As already the name induces, the structure multivector is closely related to the struc-
ture tensor. The structure tensor as defined in [10] includes the following information
(in fact, only the orientation vector is considered):� amplitude – measurement for the existence of local structure
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Figure 8: Representation of the spherical analytic signal as a vector field� orientation – orientation of the local structure

Jähne [13] extracts an additional information: the coherence. The coherence is the re-
lationship between the oriented gradients and all gradients, so it is a measurement for
the degree of orientation in a structure and it is closely related to the variance of the
orientation.

The variance is a second order property. It includes a product of the arguments and
therefore, it is not linear. Consequently, the coherence cannot be measured by a lin-
ear approach like the structure multivector. Two structures with different orientations
simply yield the vector sum of both multivector fields.

The structure multivector consists of three independent components (local phase,
local orientation and local amplitude) and it codes three properties. Consequently, there
is no additional information possible. The structure tensor possesses three degrees of
freedom (it is a symmetric tensor) and codes only two properties. Therefore, one can
additionally extract a third information, the coherence.
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3.3 Detection of key points

The current status of our approach of detecting key points is not totally satisfying, be-
cause it is still nonlinear. The key idea is to calculate the outer energy of the multivector
field. Outer energy means being contrary to the inner energy, which is calculated by the
inner product of the multivectors. Obviously, this cannot be done pointwise, because
the outer product of a multivector with itself is always zero5.

Therefore, we consider a local neighborhood and in this local neighborhood we com-
bine those areas which are assumed to have similar orientations. This is achieved as
follows: the first vector for the outer product is obtained by convolving the signal with
a cosine mask and the second one is obtained by convolving with a sine mask:fC(x) = fH(x) � (
os('x)r(jxj)) (21)fS(x) = fH(x) � (sin('x)r(jxj)) (22)

where r(jxj) is a function which is zero for jxj = 0 and for large jxj (e.g. a shifted
Gaussian function).

If we have an intrinsically 1D structure, both signals have the same phases. If we
have a rectangular corner, they are orthogonal. Consequently, the outer product (cross
product6) fJ(x) = fC(x)� fS(x) (23)

is zero in the first case and is maximized in the second case.

5Note in this context, the inner product stands for the squared magnitude and the outer product is the
cross product between the 3D component vectors obtained from the multivectors.

6In the formula, we use the notation of the cross product in order to distinguish between the algebras
we work on (see also footnote 5).
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4 Experiments and Discussion

This section shows some experiments and an implementation in MatLab. The results
are compared to those which can be found in [10] for example.

4.1 Implementation and tests

Throughout this section we used the implementations which can be found in the ap-
pendix.

The function which computes the structure multivector uses a multi-scale approach,
because the shift of the Gaussian bandpass is coupled with the variance as for the Gabor
wavelets. Both functions are first implementations, which should only underline the
practicability of the approach.

For testing the implementations, we chose some synthetic examples with letters as
gray level or textured images.

Figure 9: Structure multivector applied to an image without texture. Upper left: origi-
nal, upper right: amplitude, lower left: 'i-phase, lower right: 'u-phase

In figure 9 it can be seen that the structure multivector responds only at the edges.
Therefore, the amplitude is a measure for the presence of structure. The 'i-phase is
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Figure 10: Structure multivector applied to an image with one texture. Upper left:
original, upper right: amplitude, lower left: 'i-phase, lower right: 'u-phase

Figure 11: Structure multivector applied to an image with two superposed textures.
Upper left: original, upper right: amplitude, lower left: 'i-phase, lower right: 'u-phase
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Figure 12: Structure multivector applied to an image with two superposed textures and
textured background. Upper left: original, upper right: amplitude, lower left: 'i-phase,
lower right: 'u-phase

linear, which can only be guessed in this representation. But it can be seen that the'i-phase is monotonic modulo a maximal interval (which is in fact 2�). The 'u-phase
represents the orientation of the edge. Note that the highest and the lowest gray level
(standing for � and zero, respectively) represent the same orientation.

In figure 10 it can be seen that the structure multivector responds also inside the
object. The amplitude is nearly constant, which corresponds to a texture with constant
energy. Of course, this property is lost if the wrong scale is considered. The 'i-phase
is linear, see notes above. The 'u-phase represents the orientation of the texture. A
constant gray level corresponds to a constant estimated orientation. The small spikes in
the figure are produced by the extraction of the local orientation angle. The underlying
quaternion-valued field does not show these artifacts.

In figure 11 it can be seen that the structure multivector responds only with respect
to the dominant texture. The magnitude of the response is modulated with that com-
ponent of the weaker texture that is normal to the dominant texture. This effect is even
more obvious in figure 12. The 'i-phase is always directed parallel to the dominant
texture. The 'u-phase represents the orientation of the dominant texture in each case.

The described 2D detection algorithm works fine for images without texture. The
amplitude of the detection filter response can be seen in figure 13. Obviously, the re-
sponse increases with increasing sharpness of the corner.
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Figure 13: Result of the 2D key-point detection applied to the multivector field from
figure 9

4.2 Discussion of results

In contrast to the structure tensor which becomes zero for ideal 2D points (e.g. rectan-
gular corner) the structure multivector responds at a high energy level. Therefore, it is
easier to design a detector for those points, because the energy is higher. Furthermore, a
concept like the outer energy does not produce artificial double lines beneath the origi-
nal edges. These double lines makes it necessary to use a normalized convolution. Our
approach does not need such tricks to obtain clear cut results.

4.3 Future work

In our future work, we will try to linearize the 2D key point detection. This will be done
in an 8D algebra. Furthermore, we will try to separate texture information from edge in-
formation in a second filtering step, using the same algebra. Up to now, textures which
are not parallel to the edge produce artificial 2D key points. The long-term objective
will be the design of filters which covers the entire hierarchy of intrinsic dimensionality,
consisting of (1D and 2D) textures, edges, corners and planes.

Another extension of the presented theory will be the consideration of higher di-
mensional cases, especially the image sequence analysis. The approach of the spherical
analytic signal can be extended to higher dimensions easily.

The theoretical background will be further investigated with regard to the results
from Clifford analysis, especially the monogenic function and other multidimensional
generalizations of the analytic function.
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Appendix

MatLab function for computing the structure multivectorfun
tion[M℄=str_mw(R,sigma,
);% 
omputes the stru
ture multive
tor of a real signal R with a% spheri
al quadrature filter with Gaussian bandpass% sigma^2: varian
e, 
: ratio of wavesif nargin<3,
=0.5;end;s=size(R,1);sh=s/2;sig2=2*sigma;[u,v℄=meshgrid([-sh:sh-1℄,[-sh:sh-1℄);a=sqrt(u.^2+v.^2);g=exp(-2*(pi*(a/s*sigma-
)).^2)*sigma*sqrt(2*pi);g(sh+1,sh+1)=0;N=fftshift(ifft2(ifftshift(g)));N=N(sh+1-sig2:sh+sig2,sh+1-sig2:sh+sig2);a(sh+1,sh+1)=1;g=g./a;u=u.*g;v=v.*g;U=fftshift(ifft2(ifftshift(u)));V=fftshift(ifft2(ifftshift(v)));U=U(sh+1-sig2:sh+sig2,sh+1-sig2:sh+sig2);V=V(sh+1-sig2:sh+sig2,sh+1-sig2:sh+sig2);M(:,:,2)=
onv2(R,-imag(U),'same');M(:,:,3)=
onv2(R,-imag(V),'same');M(:,:,1)=
onv2(R,real(N),'same');
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MatLab function for detecting intrinsically 2D structuresfun
tion[C℄=dete
t2d(M,bd_m,bd_w);% dete
tion of 2D key-points with radial log-normal weighting[u,v℄=meshgrid([-4:4℄,[-4:4℄);m=sqrt(u.^2+v.^2);m(5,5)=1;bp=exp(-bd_w*log(m/bd_m).^2/log(2))./m;bp(5,5)=0;u=u.*bp;v=v.*bp;d
=
onv2(M(:,:,1),u,'same');ds=
onv2(M(:,:,1),v,'same');e
=
onv2(M(:,:,2),u,'same');es=
onv2(M(:,:,2),v,'same');f
=
onv2(M(:,:,3),u,'same');fs=
onv2(M(:,:,3),v,'same');a=e
.*fs-es.*f
;b=ds.*f
-d
.*fs;
=d
.*es-ds.*e
;C=a.^2+b.^2+
.^2;

27



References

[1] BRACEWELL, R. N. Two-Dimensional Imaging. Prentice Hall signal processing se-
ries. Prentice Hall, Englewood Cliffs, 1995.

[2] BRACKX, F., DELANGHE, R., AND SOMMEN, F. Clifford Analysis. Pitman, Boston,
1982.

[3] BRADY, J. M., AND HORN, B. M. P. Rotationally symmetric operators for surface
interpolation. Computer Vision, Graphics, and Image Processing 22, 1 (April 1983),
70–94.
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