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KIEL



Institut für Informatik und Praktische Mathematik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Hypercomplex

Spectral Signal Representations
for the Processing and Analysis of Images

Thomas Bülow
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Zusammenfassung

In der vorliegenden Arbeit werden hyperkomplexe spektrale Methoden für die Bild-
verarbeitung und -analyse eingeführt. Die Arbeit gliedert sich in drei Hauptkapi-
tel. Im ersten Hauptkapitel wird die quaternionische Fouriertransformation (QFT)
für 2D Signale definiert, und ihre wichtigsten Eigenschaften werden untersucht. Die
QFT ist mit der 2D Fourier- und der 2D Hartleytransformation verwandt; Gemein-
samkeiten und Unterschiede dieser drei Transformationen werden unter besonderer
Berücksichtigung der Symmetrieeigenschaften analysiert. Als n-dimensionale Verall-
gemeinerung wird die Clifford-Fouriertransformation eingeführt. Das zweite Haup-
tkapitel beschäftigt sich mit dem Konzept der Phase eines Signals. Wir unterschei-
den die globale, momentane und die lokale Phase. Es wird gezeigt, wie diese eindi-
mensionalen Konzepte der Phase mittels der QFT auf zweidimensionale Signale ve-
rallgemeinert werden können. Zur Verallgemeinerung der momentanen Phase wird
das quaternionische analytische Signal eingeführt; zur Verallgemeinerung der lokalen
Phase definieren wir quaternionische Gabor-Filter. Der in 1D bekannte Zusammen-
hang zwischen der lokalen Phase und der lokalen Signalstruktur wird mittels der
quaternionischen Phase auf 2D erweitert. Im dritten Hauptkapitel werden zwei An-
wendungen der vorgestellten Methoden untersucht. Sowohl zur Disparitätsschätzung
als auch zur Textursegmentierung existieren Methoden, die auf der Verwendung der
(komplexen) lokalen Phase basieren. Diese Methoden werden mittels der quaternion-
ischen lokalen Phase erweitert. In beiden Fällen bleiben bestehende Eigenschaften der
Methoden erhalten und werden durch die quaternionische Phase erweitert.



Abstract

In the present work hypercomplex spectral methods of the processing and analysis of
images are introduced. The thesis is divided into three main chapters. First the quater-
nionic Fourier transform (QFT) for 2D signals is presented and its main properties are
investigated. The QFT is closely related to the 2D Fourier transform and to the 2D
Hartley transform. Similarities and differences of these three transforms are investi-
gated with special emphasis on the symmetry properties. The Clifford Fourier trans-
form is presented as nD generalization of the QFT. Secondly the concept of the phase
of a signal is considered. We distinguish the global, the local and the instantaneous phase
of a signal. It is shown how these 1D concepts can be extended to 2D using the QFT.
In order to extend the concept of global phase we introduce the notion of the quater-
nionic analytic signal of a real signal. Defining quaternionic Gabor filters leads to the
definition of the local quaternionic phase. The relation between signal structure and
local signal phase, which is well-known in 1D, is extended to 2D using the quaternionic
phase. In the third part two application of the theory are presented. For the image pro-
cessing tasks of disparity estimation and texture segmentation there exist approaches
which are based on the (complex) local phase. These methods are extended to the use
of the quaternionic phase. In either case the properties of the complex approaches are
preserved while new features are added by using the quaternionic phase.
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Chapter 1

Introduction

1.1 Motivation

The methods presented in this thesis belong to low level image processing1, which

comprises the first processing steps in any image recognition or computer vision

task. The characterization of these methods is that they transform raw image data

into a first pre-symbolic representation. The data considered are discrete gray-

value images, i.e. matrices of real numbers in mathematical terms. However, in this

thesis most of the methods will first be defined for continuous signals. Afterwards

discretized versions of these methods are applied to the discrete data.

Spectral signal representations are of high importance in image processing. The

power of the Fourier transform, which yields a spectral representation of a given

signal, is well-known. It provides a powerful tool for the manipulation as well

as for the analysis of signals. In image processing we are often interested in local

spectral properties. Sometimes this is expressed in the question: What is where?

[97, 98]. One of the most prominent tools for local spectral image processing and

analysis is the Gabor filter. Gabor filters are simultaneously optimally localized in

the spatial and in the frequency domain. Thus, spatial and frequency properties

are optimally analyzed at the same time by Gabor filters. In the 80’s this resolved

the question whether spatial or spectral features are more important in the mam-

malian visual system [28], since the profiles of cortical receptive fields were found

to strongly resemble the impulse responses of Gabor filters.

1In the general n-dimensional case we will also use the term signal processing instead of image

processing which is restricted to 2D.
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Gabor filters are linear shift invariant (LSI) filters, which makes it very convenient

to use them: LSI-filters can be applied by simply convolving the signal with the

impulse response of the filter. In this thesis we often use the term filter as an ab-

breviation of impulse response of a linear shift-invariant filter when no confusion is

possible.

Our interest in Gabor filters is based on their property of giving access to the local

phase of a signal. The local phase of a real signal is defined as the angular phase of

its complex filter response. It has been shown that there is a close correspondence

between the local structure of a signal and its local phase [47, 45]. This correspon-

dence has been used in different fields of image analysis and computer vision, such

as texture analysis [11] and disparity estimation [42]. The relation between struc-

ture and phase was first established for one-dimensional signals and later extended

to signals of higher dimension. However, the way of extension is not satisfactory

in all respects. The impulse responses of complex Gabor filters of any dimension

are Gaussian functions with a complex modulation with respect to one spatial ori-

entation. Thus, complex Gabor filters can only capture signal variations along this

one orientation. As a consequence the local phase is related merely to intrinsically

one-dimensional signal structure, such that the local phase makes only sense for

intrinsically one-dimensional2 (or simple) signals [45].

An important aim of this thesis is to provide a concept of local phase which can

be derived from linear filter responses, and is related to the intrinsically two-di-

mensional local structure of an image. A complex Gabor filter can be regarded as

consisting of two symmetry components: a real, even component and an imagi-

nary, odd component. These two components are not sufficient for capturing non-

simple structures. This leads to the main idea of this thesis: we introduce filters

which consist of more then two components of different symmetry. More exactly,

in nD, there are 2n components of different reflectional symmetry, with respect to

the n coordinate axes. Thus, we will introduce filters consisting of 2n components.

In order not to loose the concept of one filter, these filters will take values in 2n-

dimensional algebras. This corresponds exactly to the one-dimensional case where

Gabor filters with values in the two-dimensional algebra of complex numbers are

used.

Complex Gabor filters are closely related to the Fourier transform. Actually, the

impulse response of a Gabor filter is equal to the integral kernel of the Fourier

transform for some frequency u, multiplied with a Gaussian function centered at

the origin. While Gabor filters analyze the local spectral properties of a signal, the

2A mathematical definition of intrinsic dimensionality will be given in the following section.
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Fourier transform decomposes a signal into its global spectral components. The

Fourier transform can be considered the basis upon which Gabor filters were intro-

duced. Thus, if one is interested in the development of Gabor filters with values in

higher-dimensional algebras it is a theoretical necessity to develop and analyze the

corresponding generalization of the Fourier transform.

While above we talked about local symmetry, the Fourier transform separates a

real signal into two components which differ in their global symmetry. This is ex-

pressed in the well-known theorem that the Fourier transform of a real signal is

hermitian. Thus, the signal is decomposed into two components of different spec-

ular symmetry with respect to the origin. Analogously to the local filter construc-

tion principle we will define an extension of the complex Fourier transform which

decomposes an n-dimensional signal into its 2n components of different specular

symmetry with respect to the n coordinate axes. Again, this will be accomplished

by replacing the algebra of complex numbers by a 2n-dimensional algebra. An im-

portant task will be to check whether the main properties of the Fourier transform

such as the existence of an inverse transform, the Rayleigh theorem, the convolu-

tion theorem, and the shift and modulation theorems are fulfilled or how they have

to be modified.

The local phase as indicated above is related to the instantaneous phase of a real

signal which is evaluated as the angular phase of its complex-valued analytic sig-

nal. While the analytic signal results from a real signal roughly speaking by sup-

pressing the negative frequency components, leaving the positive frequency com-

ponents untouched, Gabor filters have a single passband in one half of the fre-

quency domain.3 Since the analytic signal is most easily constructed in the fre-

quency domain, there is a close linkage to the Fourier transform. As a third main

subject of this thesis we will consider the definition of the analytic signal of a mul-

tidimensional signal. Up to now there exists no unique definition of the analytic

signal of a multidimensional signal. We will analyze frequency domain construc-

tions of analytic signal definitions. Especially, we will use the frequency domain

reached by the newly defined Fourier transforms in 2n-dimensional algebras.

3Actually, Gabor filters have a certain amount of their energy in the other half of the frequency

domain. However, this amount is negligible in most practical applications.
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1.2 Related Work

The notion intrinsic dimensionality of a signal mentioned above, was used by Krieger

and Zetzsche [72]. They use the following definition. An n-dimensional signal f is

called intrinsically m-dimensional at position x 2 Rn if it is constant with respect

to n-m orthogonal orientations in a neighborhood of x (see figure 1.1). Formally,

a signal f : R! Rn is of intrinsic dimension m at x 2 Rn if it can be expressed in a

neighborhood of x 2 Rn as f(x) = f(Ax);
for some realm� nmatrix A and no other l� n matrix with l < m.

Intrinsic dimensionality is a local signal property. Of course, the intrinsic dimen-

sionality m can never exceed the dimension n of the signal domain. Zetzsche et

al. [99] proved that it is not possible to construct linear filters which respond exclu-

sively to signals which are locally of intrinsic dimension greater than 1.

Figure 1.1: From left to right: an intrinsically 0D, 1D and 2D signal. Note,

that intrinsic dimensionality is a local property. Each of the shown images is of

constant intrinsic dimensionality.

In order to avoid confusion we mention that the notion intrinsic dimensionality is

also used in another context. A set of data points in an n-dimensional vector space

is said to have intrinsic dimension m if m is the minimum number of parameters

needed to describe the set of points. An example of estimating the intrinsic di-

mensionality of a sequence of images is given in [17]. Assume, that the discretized

images are of size N2, each frame of the sequence is represented by a point in theN2-dimensional signal space.

The two definitions of the intrinsic dimensionality apply to different domains. Ac-

cording to Zetzsche’s definition intrinsic dimensionality is a local property of a

function with continuous domain. Considering signals this is a property of one

signal in the spatial domain. According to the second definition, intrinsic dimen-
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sionality is a geometric property of a (discrete) set of points lying within an n-

dimensional vector space, i.e. a property of a set of signals in the signal domain

Throughout this thesis the first definition will be used, since we are dealing with

signals. A signal which is intrinsically one-dimensional is sometimes called a simple

signal .

Haglund [47] has proposed a definition of the local phase of n-dimensional signals.

In his work he used the intrinsic one-dimensional phase in direction of the domi-

nant signal orientation. This can be measured using the orientation tensor [45]. The

phase is then given by a vector, containing the dominant orientation as well as the

intrinsically one-dimensional phase with respect to this orientation. This definition

is reasonable for locally simple signals.

A discretized version of the generalized Fourier transform to be introduced in this

thesis has been used by Chernov [24]. His aim was to construct optimized fast algo-

rithms for calculating the complex Fourier transform of n-dimensional signals. Ell

[34, 35] used a transform similar to our definition for the analysis of linear partial

differential systems. Based on this work Sangwine proposed the use of generalized

Fourier transforms for the processing of color images [85].

A recent attempt to the generalization of the analytic signal of multidimensional

signals has been made by Hahn [48, 49]. He defines an analytic signal as a signal

with single orthant spectrum. This approach suffers from the fact that the original

signal is not contained in its analytic signal. Most of the abovementioned literature

will be reviewed in more detail in the appropriate sections of this thesis.

The work presented in this thesis is one component of a project initiated and guided

by Sommer at the Institute of Computer Science of the University of Kiel, Ger-

many4. The project is concerned with the design of behavior-based systems on the

basis of the fusion of perception and action into the so-called perception-action cy-

cle (PAC). The main interest lies in the algebraic embedding of PAC systems. It

is desired to embed the different tasks of a PAC system such as signal processing,

computer vision, neural computation and learning, and robotics using one unify-

ing algebraic frame. The algebraic frame proposed by Sommer [89] is the geomet-

ric algebra. Geometric algebras are Clifford algebras in a geometric interpretation

introduced by Hestenes et al. [56]. First results can be found e.g. in [9, 8, 26] (com-

puter vision, robotics) and [7] (neural networks). For a more complete overview of

the project see Sommer [89].

4This project is supported by the DFG grant So 320-2-1 under the title Geometric Algebra, a Repre-

sentation Frame of the Perception-Action Cycle.
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The results obtained in the field of signal processing are presented in this thesis.

Since PAC systems have to deal with multidimensional signals, the ideas devel-

oped in this thesis fit into the project outlined here. Especially, it will turn out that

among the 2n-dimensional algebras used in this thesis there are mainly Clifford

algebras.

1.3 Structure of the Thesis

Following the motivation given above we structure the thesis as follows. Besides

this introduction and a final conclusion there are three chapters.

The subject of chapter 2 are global harmonic transforms. Besides reviewing exist-

ing transforms, namely the Hartley transform and the complex Fourier transform,

we introduce the 2D quaternionic Fourier transform (QFT). For this reason, we re-

view the algebra of quaternions and introduce some new concepts, namely the an-

gular phase of a unit quaternion and the notion of a quaternionic hermitian function.

The latter is the appropriate extension of the notion of complex hermitian func-

tions, since it turns out that the QFT of a real signal is quaternionic hermitian. As

an extension of the QFT the n-dimensional Clifford Fourier transform is defined.

This transform is compared to another class of hypercomplex harmonic transforms

introduced here, which is based on commutative hypercomplex algebras, in contrast

to the non-commutative Clifford algebras.

Chapter 3 is devoted to the concept of phase. We distinguish three different types

of phase: Global or Fourier phase, instantaneous phase and local phase. In order to ex-

tend the local phase concept we first review existing approaches to the definition

of a two-dimensional analytic signal. This leads in a natural way to a new defini-

tion which is based on the QFT. The quaternionic extension of the instantaneous

phase and quaternionic Gabor filters are introduced. These filters are intrinsically

two-dimensional, hence they fulfill the requirement posed above. Evaluating the

angular phase of the quaternionic filter response gives the local quaternionic phase

of a two-dimensional signal. We will establish a relation between this phase and

the intrinsically two-dimensional structure of a signal.

Furthermore, we will investigate whether the two following properties of complex

Gabor filters can be extended to quaternion-valued Gabor filters. First, complex

Gabor filters approximate derivatives of the Gaussian function. We will exam-

ine whether quaternion-valued Gabor filters approximate partial derivatives of the

two-dimensional Gaussian function as well. Second, we will test quaternionic Ga-
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bor filters for the optimal fulfillment of the two-dimensional uncertainty principle.

In chapter 4 the theory developed in chapters 2 and 3 is applied to the two image

processing tasks of disparity estimation and texture segmentation. Disparity estima-

tion is the problem of estimating the field of displacement vectors between two

given gray-value images of the same scene taken under different viewing condi-

tions. Since the local phase is equivariant with the spatial position in the image,

it is possible to estimate the disparity based on the local phase. Phase-based ap-

proaches to disparity estimation which use complex Gabor filters exist in the liter-

ature.

Texture segmentation deals with textured image. The task is to segment the im-

ages into regions of different texture. Also in this field there exist approaches using

Gabor amplitude and Gabor phase. In both applications we extend known ap-

proaches which use the complex Gabor phase to the use of quaternionic Gabor

filters.

At the end of each chapter we summarize the main results. It will be clear from the

text, which definitions and theorems are original contributions of this work5 and

which ones are taken from the literature. Among the definitions and theorems the

ones which have not occurred in the literature before are: definitions 2.4, 2.6, 2.7,

2.14, 2.16, 2.17, 3.10, 3.11, and 3.14, and the theorems 2.2, 2.6, 2.9, 2.11, 2.13, 2.16,

3.1, 3.2, and 3.3.

5This work means: this thesis, the articles [18, 19, 20, 21, 22] on which the thesis is based, or, in

few cases, the student project [39] and the master’s thesis [40] which were supervised by the author.
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Chapter 2

Hypercomplex Harmonic Transforms

Harmonic transforms play a crucial role in signal processing. The most promi-

nent example is the Fourier transform which is a complex transform defined for

signals of arbitrary dimension. Closely related to the Fourier transform is the Hart-

ley transform, which is a real transform. In this chapter we show that in 1D the

Hartley transform and the Fourier transform can be viewed as the two levels of

a hierarchy of harmonic transforms where the hierarchical order is given by the

degree of symmetry-selectivity of the transform. In 2D, the Hartley transform and

the Fourier transform are only the first two levels of a three level hierarchy, the third

level of which is the quaternionic Fourier transform (QFT), first introduced by Ell

[35] and Bülow and Sommer [18], independently. If we consider n-dimensional

signals we end up with an (n + 1)-level hierarchy with the n-dimensional Clifford

Fourier transform as the highest level.

The structure of this section is as follows: first, we restrict ourselves to 2D harmonic

transforms. These are the topic of the following section, where we start with an

introduction of the quaternion algebra. Based on this the QFT is introduced. For

real applications a discrete version of the QFT is needed. Thus, we introduce the

DQFT as an analogue to the DFT. Fast algorithms for computing the DQFT exist,

and are presented in section 2.2.3.

Since reviews on the Fourier transform and its meaning for image processing can

be found in many textbooks we will only give a very brief review of this transform

and present the Hartley transform a little bit more detailed. In section 2.4 the three

2D transforms are compared and the abovementioned hierarchy is explained.

In section 2.5 the n-dimensional extension of the QFT, namely the Clifford Fourier

transform (CFT) is introduced. The multiplication in Clifford algebras is not com-
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mutative which makes it sometimes difficult to work with the Clifford Fourier

transform. However, it is possible to replace the Clifford algebra by a commutative

algebra without changing the main properties of the transform, when applied to

real-valued signals. The introduction of the commutative algebras, the correspond-

ing transforms, and the comparison between the 2D CFT and the 2D commutative

transform closes this chapter. Note, that if not stated otherwise, the term algebra

always means R-algebra in the following.

2.1 The Quaternion Algebra

In this section we review the main definitions and properties of the quaternion al-

gebra and introduce a magnitude/phase-representation for quaternions in section

2.1.2. This representation is used throughout the rest of the thesis. For a more

complete review of quaternions see e.g. [64, 36, 10]. The quaternion algebra was

introduced by Hamilton in 1843 [50]. It is a four-dimensional algebra which is de-

noted by H , in honor of Hamilton. The motivation for introducing quaternions was

the aim to extend the geometrical meaning of complex numbers in the plane to 3D

space through a system of hypercomplex numbers.

Definition 2.1 (Quaternions) Consider the set of numbers q = q0 + iq1 + jq2 + kq3,
with ql 2 R; l 2 f0; 1; 2; 3g and the elements i; j and k obey the multiplication rulesij = -ji = k and i2 = j2 = k2 = -1: (2.1)

Together with component-wise addition and the associative multiplication generated by

(2.1) this set is an R-algebra, denoted by H and called the quaternion algebra.

For the components of a quaternion q we sometimes writeq0 = Rq; q1 = Iq; q2 = Jq; q3 = Kq:
Explicitly, these operations can be expressed asRq = 14(q - iqi- jqj- kqk) (2.2)Iq = 14(q - iqi+ jqj+ kqk) (2.3)Jq = 14(q + iqi- jqj+ kqk) (2.4)Kq = 14(q + iqi+ jqj- kqk): (2.5)
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The symbols i, j and k are imaginary units. The full multiplication table of H is

given in table 2.1. 1 i j k1 1 i j ki i -1 k -jj j -k -1 ik k j -i -1
Table 2.1: The multiplication table of H .

The addition and multiplication of two quaternions q and r is defined as follows:q+ r = (q0 + iq1 + jq2 + kq3) + (r0 + ir1 + jr2 + kr3)= (q0 + r0) + i(q1 + r1) + j(q2 + r2) + k(q3 + r3) (2.6)qr = (q0 + iq1 + jq2 + kq3)(r0 + ir1 + jr2 + kr3)= (q0r0 - q1r1 - q2r2 - q3r3)+i(q0r1 + q1r0 + q2r3 - q3r2)+j(q0r2 + q2r0 - q1r3 + q3r1)+k(q0r3 + q3r0 + q1r2 - q2r1): (2.7)

The multiplication rule (2.7) follows uniquely from the multiplication table 2.1.

Note that the multiplication of quaternions is not commutative, e.g. from the multi-

plication table we find ij = -ji = k.

An interpretation of the multiplication defined by (2.7) can be found by regardingq0 as the scalar part and q := iq1 + jq2 + kq3 as the vector part of q. A quaternion

whose scalar part is equal to zero is called a pure quaternion. The product of two

pure quaternions q and r isqr = (-q1r1 - q2r2 - q3r3)+i(q2r3 - q3r2)+j(q3r1 - q1r3)+k(q1r2 - q2r1): (2.8)

From (2.8) it follows that the scalar part of qr is equal to minus the dot product of

two three-dimensional vectors and the vector part is equal to the cross product of

the vectors. Thus, the quaternion product combines in itself the two fundamental products

defined between three-dimensional vectors. We can write qr = -q � r+ q� r.
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Like in the algebra of complex numbers we can define the operation of conjugation

for quaternions.

Definition 2.2 (Conjugation) The endomorphism

¯ : H ! H (2.9)q 7! q̄ = -12(q + iqi+ jqj+ kqk) (2.10)

is called conjugation in H .

According to definition 2.2 the conjugate of a quaternion q = q0 + iq1 + jq2 + kq3,
is given by q̄ = q0 - iq1 - jq2 - kq3 : (2.11)

The norm of q is defined asjqj = pqq̄ =qq20 + q21 + q22 + q23 : (2.12)

For any q 2 Hnf0g a unique multiplicative inverse exists and can be found to beq-1 = q̄=jqj2 [76].

The set H with the addition and multiplication as defined above forms a skew field.

With an additional multiplication by real numbers H becomes an associative division

algebra overR. The associativity can be proven by direct validation of the 27 equal-

ities (elem)en = el(emen), l;m;n 2 f1; 2; 3g with e1; e2; e3 2 fi; j; kg [36]. However,

it can also be shown that H is isomorphic to an algebra of complex 2 � 2 matrices

which directly proves the associativity of H .

It is also possible to regard H as a four-dimensional real linear space with the ba-

sis f1; i; j; kg. Using vector notation we assign to each basis element a natural basis

vector of R4: 1 = (1; 0; 0; 0)>, i = (0; 1; 0; 0)>, j = (0; 0; 1; 0)> , and k = (0; 0; 0; 1)> .

The Euclidean scalar product in this linear space is hq; ri = 12(qr̄ + rq̄) = q0r0 +q1r1+ q2r2+q3r3. Now the notion of orthogonality of quaternions can be defined:

Two quaternions q and r are said to be orthogonal if hq; ri = 0. The norm of a

quaternion as defined by equation (2.12) can be rewritten using the scalar product

as jqj = phq; qi. We also introduce a scalar product for quaternion-valued func-

tions.

Definition 2.3 (Scalar product and norm of quaternion-valued functions)

Let V be the vector space of integrable functions f : Rn! H . Then, by the formulahf; gi = 12 ZRn(f(x)ḡ(x) + g(x)f̄(x))dnx
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we introduce a scalar product in V. The L2-norm of a function f 2 V is given byjjfjj =sZRn jf(x)j2 dnx:
For later use we show how the field of complex numbers can be embedded into H .

A subset of H which consists only of quaternions of the form q = q0+ iq1+ j0+ k0
is isomorphic to C . These quaternions are called i-quaternions. Analogously j-
and k-quaternions can be defined which are also isomorphic to C . Generally, the

following is true:

Theorem 2.1 Any subset of H of the form Rf1;ng = fqjq = a + nbg � H , where n is a

pure unit quaternion, i.e. n = in1 + jn2 + kn3 and
pn21 + n22 + n23 = 1 is isomorphic toC .

Proof: We only have to show that n behaves like the imaginary unit i of the com-

plex numbers.n2 = (in1 + jn2 + kn3)2= -n21 - n22 - n23 + i(n2n3 - n3n2) + j(n3n1 - n1n3) + k(n1n2 - n2n1)= -1;
which completes the proof. 2
The operation of conjugation in C : z 7! z� is a so-called algebra involution, i.e. it

fulfills the two following properties: let z;w 2 C ) (z�)� = z and (wz)� = w�z�. InH there are three nontrivial algebra involutions [24]:�(q) = -iqi = q0 + iq1 - jq2 - kq3;�(q) = -jqj = q0 - iq1 + jq2 - kq3; and (2.13)
(q) = -kqk = q0 - iq1 - jq2 + kq3;
which we will use in order to extend the notion of Hermite symmetry from com-

plex to quaternionic functions. A function f : Rn ! C is called Hermite symmetric

if f(x) = f�(-x) for all x 2 Rn. The notion of Hermite symmetry of a function

is useful in the context of Fourier transforms since the Fourier transform of a real

function has this property.

Definition 2.4 (Quaternionic Hermite symmetry) A function f : R2 ! H is called

quaternionic hermitian if:f(-x; y) = �(f(x; y)) and f(x;-y) = �(f(x; y)) ; (2.14)

for each (x; y) 2 R2.
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Theorem 2.2 For a quaternionic hermitian function f the relationf(-x;-y) = 
(f(x; y)) (2.15)

holds true.

Proof: By definition we have f(-x; y) = �(f(x; y)): (2.16)

Applying the second equation of (2.14) to (2.16) yieldsf(-x;-y) = �(�(f(x; y)))= ij(f(x; y))ji = -k(f(x; y))k= 
(f(x; y)): 2
We will make use of the exponential function for quaternions in the definition of

the quaternionic Fourier transform. Before defining the exponential function we

have to introduce the following lemma.

Lemma 2.1 For any quaternion q the sequence fang withan = nXk=0 qkk! ; n 2 N (2.17)

converges to some r 2 H .

Proof: Since H is a normed algebra we have jqkj = jqjk. It is known that the seriesPnk=0 jqjkk! =Pnk=0 jqkjk! converges for n!1 since jqj is real. Thus, the sequence fang
converges absolutely which implies the lemma. 2
Definition 2.5 (Exponential function) The exponential function for quaternions exp :H ! H is defined via the series

exp(q) = 1Xk=0 qkk! ; q 2 H : (2.18)

Note, that the existence of exp(q) is guaranteed for any q 2 H by lemma 2.1.



2.1 The Quaternion Algebra 15

An important fact to note is that the addition equation

exp(q + r) = exp(q) exp(r) (2.19)

which is true for real and complex numbers is not generally true for quaternions q
and r. Instead (2.19) has to be replaced by the more general relation

exp(h(q; r)) = exp(q) exp(r); (2.20)

where in general h(q; r) 6= q + r. In fact h(q; r) contains the commutator of q andr and higher order commutators. The form of h(q; r) is given by the Campbell-

Hausdorff-formula (see e.g. [55]).

For practical applications exp(q) can be calculated in the following way. Let us

write the quaternion q in the form q = q0 + q, where q0 and q denote the scalar

part and the vector part of q, respectively. We can then evaluate exp(q) as

exp(q) = exp(q0 + q)= exp(q0) exp(q)= exp(q0) exp

� qjqj jqj� (2.21)= exp(q0)�cos(jqj) + qjqj sin(jqj)� :
In the first step we used the fact that a real scalar (here q0) commutes with any

quaternion. In the last step we used the fact that the Euler formula

exp(i�) = cos(�) + i sin(�)
is valid if i is replaced by any pure unit quaternion n

exp(n�) = cos(�) + n sin(�): (2.22)

This follows from the fact that Rf1;ng is isomorphic to C as stated in theorem 2.1.

Representing n in the polar form n = i cos� sin �+ j sin� sin �+k cos�we get the

polar representation of qwhich is q̃ = (jqj; �; �; ). The components qi of q can be

recovered from q̃ by q0 = jqj cos( )q1 = jqj cos(�) sin(�) sin( )q2 = jqj sin(�) sin(�) sin( )q3 = jqj cos(�) sin( ) : (2.23)

However, as we demonstrate later, this polar representation of quaternions does

not suit our needs. For this reason we introduce another way of defining the quater-

nionic phase-angles in section 2.1.2.
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2.1.1 Geometric Interpretation of H
As mentioned in the beginning of this section the introduction of quaternions was

geometrically inspired. As unit complex numbers represent rotations in the plane,

it can be shown that unit quaternions represent rotations in R3. The set of unit

quaternions is the 3D unit hyper-sphereS3 = fq 2 H j jqj = 1g:
Let q 2 S3 be given by q = cos(�) + n sin(�), where n is a pure unit quater-

nion. Further let x be a pure quaternion, representing the three-dimensional vector(x1; x2; x3)>. A rotation about the axis defined by n through the angle 2� takes x
to x 0 = qxq-1. Thus, any unit quaternion q represents a rotation in R3. However,

there is no one-to-one but a two-to-one correspondence between unit quaternions

and the group of rotations in R3 because q and -q represent the same rotation. In

other words S3 is a two-fold covering group of SO(3), that is, SO(3) �= S3=f1;-1g
(see [55]).

2.1.2 The Quaternionic Phase-Angle

Later in this chapter and especially in chapter 3 we demonstrate the usefulness

of the signal-phase concept and show how it is related to the angular phase of

complex numbers. In order to establish a new kind of signal phase based on a

quaternionic signal representation we first need a definition of the angular phase

of a quaternion. There is not a unique angular phase. We introduce one possible

definition which is based on Euler angles.

For a complex number z = a+bi the argument or phase-angle is defined as atan2(b; a),
where atan2 is the sign-dependent arctan-function. I.e. if z is written in the formz = r exp(i�) with r � 0 the argument of z is�. For the function that returns the ar-

gument of any given complex number we introduce the notation arg, i.e. arg(z) =�. As mentioned in the previous section, the quaternion algebra contains three

complex subfields with orthogonal imaginary units. For later use we define three

argument functions each picking out one complex subfield:

Definition 2.6 Let q = a + bi + cj + dk be a quaternion. Then we define the following

functions:

argi(q) = atan2(b; a) (2.24)

argj(q) = atan2(c; a) (2.25)

argk(q) = atan2(d; a): (2.26)
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These argument functions project the quaternion q on one complex subfield as in-

dicated by the index i, j or k and evaluate the phase-angle of the resulting complex

number.

There are different possibilities of polar representations of quaternions. Since the

quaternions constitute a four-dimensional algebra, a magnitude/phase-represen-

tation will always lead to a phase which is given by three real numbers. (The

magnitude of a quaternion q is always given by the real value jqj = pqq̄.)

The representation given by the equations (2.22) has the drawback that it cannot

easily be compared to the classic phase concept. This will be clarified when ana-

lyzing the shift-theorem of the quaternionic Fourier transform (see section 2.2.2).

We propose another quaternionic phase representation here, which is more closely

related to the classical phase concept in a way that will be made clear below.

Theorem 2.3 Each quaternion q can be represented in the formq = jqjei�ek ej� with (�; �; ) 2 [-�; �[�[-�=2; �=2[�[-�=4; �=4]: (2.27)

Before proving the theorem we present two lemmas. The first one gives the explicit

form of the mapping that maps unit quaternions to the related rotation matrix.

This mapping establishes at the same time the isomorphism of S3=f1;-1g to SO(3)
which was mentioned in section 2.1.1. The second lemma specifies the form of the

two-fold covering of SO(3) by S3.
Lemma 2.2 Let q = a + bi+ cj+ dk be a quaternion, and let M be a mapping from the

quaternions to the real 3� 3-matrices in the following way:M(q) =0@ a2 + b2 - c2 - d2 2(bc - ad) 2(bd+ ac)2(bc + ad) a2 - b2 + c2 - d2 2(cd- ab)2(bd- ac) 2(cd+ ab) a2 - b2 - c2 + d2 1A : (2.28)

Then M : fqjq 2 H ; jqj = 1g! SO(3) (2.29)

is a surjective group homomorphism. M(q) is the matrix which represents the same rota-

tion as the quaternion q.

Proof: See [70]. 2
The matrix M(q) is sometimes called Rodriguez matrix.
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Lemma 2.3 Let q1 and q2 be unit quaternions andM(q1) =M(q2): (2.30)

Then it follows that q1 = q2 or q1 = -q2: (2.31)

Proof: Since S3 is a two-fold covering group of SO(3) there correspond exactly

two different quaternions to each rotation matrix. Using (2.28) it is verified thatM(q) =M(-q) for all q 2 S3. 2
Proof of theorem 2.3: Each quaternion q can be written as q = jqjrwhere r is a unit

quaternion. According to Lemma 2.2 each unit quaternion represents a rotation inR3. The matrix R = M(r) can be factorized into three rotationsR = Rx(2�)Rz(2 )Ry(2�); (2.32)

where Rx; Ry and Rz represent rotations about the coordinate axes. The angles2�; 2� and 2 are known as Euler angles (see e.g. [70]). Let q1 = exp(i�), q2 =
exp(j�) and q3 = exp(k ). Then it can easily be shown thatM(q1) = Rx(2�); M(q2) = Ry(2�) and M(q3) = Rz(2 ): (2.33)

Since M is a group homomorphism (lemma 2.2) it follows thatM(q1)M(q3)M(q2) =M(q1q3q2) = M(r): (2.34)

From Lemma 2.3 we get r = q1q3q2 or r = -q1q3q2, which directly leads to the

desired representation — up to a possible minus sign, which can be eliminated by

replacing � by �+ �. Thus, we haveq = �jqj exp(i�) exp(k ) exp(j�): (2.35)

This proves that each quaternion can be expressed in the given polar representa-

tion. In the second part of the proof we have to show that the given intervals of� , � and  are sufficient for expressing any quaternion. In fact, it will turn out

that the intervals are minimal. The proof will be constructive and yields a formula,

that evaluates the magnitude/phase representation for any quaternion q given in

Cartesian representation q = a+bi+cj+dk. The magnitude is directly evaluated.

From now on q = a+bi+cj+dkwill be the normalized quaternion with jqj = 1.
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We construct M(r) according to (2.28). On the other hand, the rotation matrix R
can be given in Euler representation:R = Rx(2�)Rz(2 )Ry(2�) (2.36)= 0BBBBBBBB@ cos(2 ) cos(2�) - sin(2 ) cos(2 ) sin(2�)

cos(2�) sin(2 ) cos(2�)+ sin(2�) sin(2�) cos(2�) cos(2 ) cos(2�) sin(2 ) sin(2�)- sin(2�) cos(2�)
sin(2�) sin(2 ) cos(2�)- cos(2�) sin(2�) sin(2�) cos(2 ) sin(2�) sin(2 ) sin(2�)+ cos(2�) cos(2�) 1CCCCCCCCA

We set M(r) = R which leads to nine equations which have to be solved for �; �
and  . Firstly,  is directly evaluated from R12 which yields the equation- sin(2 ) = 2(bc - ad): (2.37)

Thus,  can be evaluated uniquely within the interval [-�4 ; �4 ] as = -arcsin(2(bc - ad))2 : (2.38)

In order to solve the remaining equations for � and � we have to distinguish

two different cases: The singular case where  = ��4 and the regular case where 2 ]- �4 ; �4 [.
The regular case ( 2 ]- �4 ; �4 [): In this case it is easily verified that� = -12 atan2� -R32

cos(2 ) ; R22
cos(2 )� and � = -12 atan2� -R13

cos(2 ) ; R11
cos(2 )� :

Since, cos(2 ) is always positive in this case, � and � can be simplified to� = atan2 (R32; R22)2 and � = atan2 (R13; R11)2 : (2.39)

The occurring matrix components are expressed in terms of the quaternion q using

(2.28): R11 = a2 + b2 - c2 - d2R13 = 2(bd + ac)R22 = a2 - b2 + c2 - d2R32 = 2(cd + ab)
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Replacing the components of R in (2.39) by the corresponding expressions of (2.28)

and using a compact notation we obtain the final expressions� = argi(q�(q̄))2 and � = argj(�(q̄)q)2 : (2.40)

Thus, � and � are uniquely determined within [-�2 ; �2 [. (Later, the interval of �will

have to be extended to [-�; �[.)
The only ambiguity occurs in the singular case ( = ��=4). In this case the matrix

elements R11, R13, R22 and R32 are zero (see (2.36)). The remaining non-zero matrix

components simplify to R31 = R23 = - sin(2� + 2�) (2.41)R21 = -R33 = - cos(2�+ 2�) (2.42)

for  = -�=4 and R31 = -R23 = - sin(-2�+ 2�) (2.43)-R21 = -R33 = - cos(-2�+ 2�) (2.44)

for  = �=4. In the regular case � and � are uniquely defined. In the singular case,

in contrast, only the sum (if  = -�=4) or the difference (if  = �=4) of � and �
is unique. Thus, we have the freedom to choose one of the angles. In the theory

of Euler matrices this singularity is known as Gimbal lock [70]. There are different

possibilities to deal with this situation. We choose to set one of the angles equal to

zero. If we set � = 0we get � = atan2(-R23; R33)2 (2.45)

or, if we choose to set � = 0, � = atan2(-R31; R33)2 : (2.46)

Again � and � lie within [-�2 ; �2 [. Replacing the symbols Rij by the entries of (2.28)

we get � = argi(q
(q̄))2 (2.47)

if we set � = 0, and � = argj(
(q̄)q)2 (2.48)
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if we set � = 0. In these formulas only the quaternion q occurs. Thus, it is not

necessary to construct the rotation matrix (2.36) explicitly. We only needed it in

order to derive the final expressions for � and �.

Following the above procedure results in a triple of angles which is given in the

interval (�; �; ) 2 [-�=2; �=2[�[-�=2; �=2[�[-�=4; �=4]. As seen above we haver = q1q3q2 or r = -q1q3q2:
If ei�ek ej� = q we have found the final result. Otherwise � has to be treated as

follows: If � < 0, then replace � by�+�, else replace � by �-�. This extends the

interval of � to [-�; �[ such that we finally get(�; �; ) 2 [-�; �[�[-�=2; �=2[�[-�=4; �=4]: 2
Definition 2.7 Let q 2 H be a quaternion. The angular phase of q is then defined byarg(q) = (�; �; ) 2 [-�; �[�[-�=2; �=2[�[-�=4; �=4];
according to Theorem 2.3.

We summarize the formulas for the quaternionic phase-angle in table 2.2.

if  2] - �4 ; �4 [� = argj(�(q̄)q)2� = argi(q�(q̄))2�! � - �
if  = ��4
�! � + �

q = a + bi + cj+ dk; jqj = 1 = -arcsin(2(bc-ad))2
choose

or
� = 0

if ei�ek ej� = -q
and � � 0 and � < 0if ei�ek ej� = -q� = 0 � = argi(q
(q̄))2� = argj(
(q̄)q)2

Table 2.2: How to calculate the quaternionic phase-angle representation from

a quaternion given in Cartesian representation
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2.2 The Quaternionic Fourier Transform

A new transform which is proposed in this thesis as a tool for image processing

is the quaternionic Fourier transform (QFT). In the subsequent sections the QFT is

defined, and some important theorems are introduced. The discrete QFT is given

followed by a discussion of fast algorithms for the QFT. An overview of the litera-

ture on the QFT is given in section 2.2.4.

2.2.1 Definition and Properties of the QFT

The QFT is closely related to the 2D complex Fourier transform. In order to make

comparable the definition of the QFT with the one of the complex Fourier trans-

form we first review the definition of the complex Fourier transform. Since the

complex Fourier transform is a standard tool in signal processing, we refer to text-

books for detailed reviews [12, 58].

Definition 2.8 (Fourier transform) Let f be a real n-dimensional signal andx = (x1; x2; : : : ; xn)> 2 Rn and u = (u1; u2; : : : ; un)> 2 Rn
elements of the spatial and the frequency domain, respectively. The Fourier transform of f
is defined as F(u) = ZRn f(x)e-i2�uxdnx: (2.49)

Theorem 2.4 (Inverse Fourier transform) The Fourier transform is invertible and the

inverse transform is given by f(x) = ZRn F(u)ei2�uxdnu: (2.50)

Proof: We prove the theorem by inserting (2.49) into (2.50):ZRn F(u)ei2�uxdnu= ZRn ZRn f(x 0)ei2�u(x-x 0)dnudnx 0= ZRn f(x 0)�n(x- x 0)dnx 0 = f(x);
where we used the orthogonality of the harmonic exponential functions. 2
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The QFT was recently introduced in [19, 20] and [35], independently. While Ell

used the QFT for the analysis of partial differential systems, we introduced the

QFT for the use in image processing and analysis.

Definition 2.9 (QFT) Let f be a quaternion-valued two-dimensional signal and x = (x; y)> 2R2 and u = (u; v)> 2 R2. The QFT of f, denoted by Fq, is then defined asFq(u) = ZR2 e-i2�uxf(x)e-j2�vyd2x : (2.51)

The mapping from f to Fq is denoted byFq : f 7! Fqffg = Fq: (2.52)

For simplicity we introduce the notationf H Fq or Fq H f
in order to indicate that Fq is the quaternionic Fourier transform of f.
Some notes on definition 2.9 have to be made: Firstly, the QFT resembles very much

the two-dimensional Fourier transform which can be written asF(u) = ZR2 e-i2�uxf(x)e-i2�vyd2x: (2.53)

The only difference between the notations of the transforms is that the imaginary

unit i in the second exponential function is replaced by j for the QFT. Thus, the

QFT maps signals onto a quaternion-valued representation instead of to a complex-

valued one.

Secondly, we note that the QFT has been introduced for real, complex or quater-

nionic signals, which is possible since real and complex numbers can be embedded

into H . In this thesis most of the time we deal with real-valued signals. However,

we introduce quaternion-valued Gabor filters and evaluate their transfer functions.

This involves calculating the QFT of the quaternion-valued Gabor filter responses.

Sangwine [85] uses quaternion-valued signals, which represent color images. We

will review this work in some more detail in section 2.2.4. If complex signals are

to be used — which, to the best of our knowledge, has not been done up to now

— one has to choose one of infinitely many possible embeddings of C into H , i.e. a

complex signal can be written as f = Rffg + iIffg or f = Rffg + i+jp2Iffg or in some

other way (see section 2.1, theorem 2.1). Depending on the choice of embedding,Fq will take a different form. Since in our work complex signals will not be used,

we will not analyze this dependence in more detail.
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The third note concerns the order of the factors under the integral in (2.51). Since

the multiplication of quaternions is not commutative, the order of the exponential

functions and the input function (if not real) is fixed. A change of this order would

affect the result. Thus, the order of the factors can freely be chosen as part of the

definition of the QFT, but it must be kept fixed afterwards. At the end of this

chapter we will introduce an alternative transform using a commutative algebra,

which is not subject to this restriction.

Symmetry properties play an important role in Fourier theory. Symmetry means

here the evenness or oddness of a signal. We call a one-dimensional function f
even if f(x) = f(-x) for all x and odd if f(x) = -f(-x). Any function f can be

written as the sum of an even and an odd function f = fe + fo. The meaning of

symmetries for Fourier theory lies in the following: In the case of the one-dimen-

sional Fourier transform it is known that the transform of the even part of a signal

is even, while the transform of the odd part is odd. Furthermore, the transform

of a real (imaginary) even signal is real (imaginary), while the transform of a real

(imaginary) odd signal is imaginary (real). Bracewell [12] summarizes these facts

in the diagram shown in figure 2.1.

F(u) = Fe(u) + Fo(u) = RFe(u) + IFe(u) +RFo(u) + IFo(u)f(x) = fe(x) + fo(x) = Rfe(x) + Ife(x) +Rfo(x) + Ifo(x)
Figure 2.1: Symmetry properties of the one-dimensional Fourier transform.

We will now analyze the symmetry properties of the QFT. A two–dimensional

signal can be split into even and odd parts along the x–axis and along the y–

axis as well. So, every two–dimensional signal can be written in the form f =fee + foe + feo + foo, where fee denotes the part of f which is even with respect tox and y, foe denotes the part which is odd with respect to x and even with respect

to y and so on. In order to analyze how the quaternionic Fourier transform deals
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with these symmetries, we rewrite the QFT asFq(u) = RR2 cos(2�ux) cos(2�vy)f(x)d2x- i RR2 sin(2�ux) cos(2�vy)f(x)d2x- j RR2 cos(2�ux) sin(2�vy)f(x)d2x+ k RR2 sin(2�ux) sin(2�vy)f(x)d2x: (2.54)

Note, that (2.54) is only valid for real-valued signals. The first summand is even

in both orientations and only involves fee, since the integral kernel is even with

respect to both arguments. Analogously the remaining three summands can be

examined. For the symmetry properties of the QFT of a quaternion-valued signal

we build the diagram shown in figure 2.2.

Figures 2.3 and 2.4 show some of the basis functions of the 2D Fourier transform

and of the quaternionic Fourier transform, respectively. The small images show the

basis functions in the spatial domain. The frequency parameter is modified from

image to image. Only the real parts of the basis functions are shown. In case of

the complex Fourier transform each basis function consists actually of two compo-

nents (real and imaginary), where the imaginary part is shifted in phase against

the real part by �=2. In figure 2.4 each small image represents one basis func-

tion consisting of four components. Again, only the real part is shown. The other

three components are shifted in phase against the real part by �=2 in x-direction

(i-imaginary component), in y-direction (j-imaginary component) and simultane-

ously in x- and y-direction (k-imaginary component). It can be seen from figures 2.3

and 2.4 that the basis functions of the complex Fourier transform are intrinsically

one-dimensional (”plane waves”). In contrast, the basis functions of the quater-

nionic Fourier transform are intrinsically two-dimensional, which allows them to

capture intrinsically two-dimensional image structure.

2.2.2 Main Theorems

BRACEWELL ([12], p. 391) states that for every theorem about the Fourier trans-

form there is a corresponding Hartley transform theorem. We can claim the same

for the correspondence between the two-dimensional Fourier transform and the

quaternionic Fourier transform. We will have a look at these correspondences here

by stating the important QFT-theorems.
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Fq(u) = RFqee(u) + IFqoe(u) + J Fqeo(u) +KFqoo(u)f(x) = Rfee(x) +Rfoe(x) +Rfeo(x) +Rfoo(x)f(x) = Ifee(x) + Ifoe(x) + Ifeo(x) + Ifoo(x)Fq(u) = IFqee(u) +RFqoe(u) +KFqeo(u) + J Fqoo(u)f(x) = J fee(x) +J foe(x) +J feo(x) + J foo(x)Fq(u) = J Fqee(u) +KFqoe(u) +RFqeo(u) + IFqoo(u)f(x) = Kfee(x) +Kfoe(x) +Kfeo(x) +Kfoo(x)Fq(u) = KFqee(u) + J Fqoe(u) + IFqeo(u) +RFqoo(u)
Figure 2.2: Symmetry properties of the QFT
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x u

v
y

Figure 2.3: Some basis functions of the Fourier transform. The small images

are intensity images of the real part of a basis function with fixed frequency u0.
The frequency parameter changes from image to image. One quadrant of the

frequency plane is shown.
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v
y x u

Figure 2.4: Similar to figure 2.3. The images show the real parts of basis func-

tions of the QFT.
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Theorem 2.5 (Inverse QFT) The QFT is invertible. The transform G given byGfFqg(x) = ZR2 ei2�uxFq(u)ej2�vyd2u (2.55)

is the inverse of the QFT.

Proof: By inserting (2.51) into the right hand side of (2.55) we getGfFqg(x) = ZR2 ZR2 ei2�uxe-i2�ux 0f(x 0)e-j2�vy 0ej2�vyd2ud2x 0: (2.56)

Integrating with respect tou and taking into account the orthogonality of harmonic

exponential functions this simplifies toGfFqg(x) = ZR2 �(x- x 0)f(x 0)�(y - y 0)d2x 0= f(x); (2.57)

thus G = F-1q . 2
The convolution theorem of the Fourier transform states that convolution of two

signals in the spatial domain corresponds to their pointwise multiplication in the

frequency domain, i.e.f(x) = (g � h)(x) , F(u) = G(u)H(u) (2.58)

where f, g and h are two-dimensional signals and F, G and H are their Fourier

transforms. We now give the corresponding QFT theorem.

Theorem 2.6 (Convolution theorem (QFT)) Let f, g and h be real two-dimensional

signals and Fq, Gq and Hq their QFT’s. Then,f(x) = (g � h)(x) () Fq(u) = Gq� e(u)Hq(u) +Gq�o(u)�(Hq(u)):
Here � denotes one of the three nontrivial automorphisms of the quaternion algebra as

defined in (2.13). G � e andG �o are the components of G which are even or odd with respect

to the second argument.
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Proof: Fq(u) = ZR2 e-2�ixu ZR2(g(x 0)h(x - x 0))d2x 0| {z } e-2�jyvd2x= (g � h)(x) (2.59)= ZR2 e-2�ix 0ug(x 0)Hq(u)e-2�jy 0vd2x 0= ZR2 e-2�ix 0ug(x 0) cos(-2�y 0v)Hq(u)d2x 0+ ZR2 e-2�ix 0ug(x 0)j sin(-2�y 0v)�(Hq(u))d2x 0= Gq� e(u)Hq(u) +Gq�o(u)�(Hq(u)); (2.60)

which completes the proof. 2
Analogously it can be shown, thatf(x) = (g � h)(x) ) Fq(u) = Hq� e(u)Gq(u) +Hq�o(u)�(Gq(u)) (2.61)= Gq(u)Hqe � (u) + �(Gq(u))Hqo � (u) (2.62)= Hq(u)Gqe � (u) + �(Hq(u))Gqo � (u): (2.63)

In many cases one of the convolving functions is even with respect to at least one

of the arguments. In these cases the QFT convolution theorem simplifies tof(x) = (g � h)(x) ) Fq(u) = Gq(u)Hq(u) (2.64)

which is of the same form as the convolution theorem of the two-dimensional

Fourier transform.

The energy of a signal is defined as the integral (or sum in the case of discrete

signals) over the squared magnitude of the signal. Rayleigh’s theorem states that

the signal energy is preserved by the Fourier transform:ZR2 jf(x)j2d2x = ZR2 jF(u)j2d2u ; (2.65)

where F(u) is the Fourier transform of f(x). Rayleigh’s theorem is valid for arbi-

trary integer dimension of the signal. In mathematical terms Rayleigh’s theorem

states that the L2-norm of a signal is invariant under the Fourier transform. We will

show that the analogous statement for the QFT is true.

Theorem 2.7 (Rayleigh’s theorem (QFT)) The quaternionic Fourier transform preserves

the L2-norm of any real two-dimensional signal f(x):ZR2 jf(x)j2d2x = ZR2 jFq(u)j2d2u (2.66)
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where Fq(u) is the QFT of f(x).
Proof: We make use of Rayleigh’s theorem for the two-dimensional Fourier trans-

form. Thus, we only have to prove thatZR2 jF(u)j2d2u = ZR2 jFq(u)j2d2u() ZR2 jF(u)j2d2u- ZR2 jFq(u)j2d2u = 0 : (2.67)

Regarding the integrands we find out thatjF(u)j2 = �ZR2 f(x) cos(2�(ux + vy))d2x�2 (2.68)+�ZR2 f(x) sin(2�(ux + vy))d2x�2 (2.69)

while jFq(u)j2 = �ZR2 f(x) cos(2�ux) cos(2�vy)d2x�2 (2.70)+�ZR2 f(x) sin(2�ux) cos(2�vy)d2x�2 (2.71)+�ZR2 f(x) cos(2�ux) sin(2�vy)d2x�2 (2.72)+�ZR2 f(x) sin(2�ux) sin(2�vy)d2x�2 : (2.73)

Applying the addition theorems to the sine- and cosine-functions in (2.68) and

(2.69) we see that all the terms of jFq(u)j2 are also contained in jF(u)j2. Only the

mixed terms of jF(u)j2 remain such that the left hand side of (2.67) can be evaluated

as follows: ZR2 jF(u)j2d2u - ZR2 jFq(u)j2d2u (2.74)= -2 ZR2�ZR2 f(x) cos(2�ux) cos(2�vy)d2x � (2.75)ZR2 f(x) sin(2�ux) sin(2�vy)d2x�d2u+2 ZR2�ZR2 f(x) sin(2�ux) cos(2�vy)d2x � (2.76)ZR2 f(x) cos(2�ux) sin(2�vy)d2x�d2u:
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We introduce the abbreviationsA(u) = ZR2 f(x) cos(2�ux) cos(2�vy)d2x � (2.77)ZR2 f(x) sin(2�ux) sin(2�vy)d2x (2.78)B(u) = ZR2 f(x) sin(2�ux) cos(2�vy)d2x � (2.79)ZR2 f(x) cos(2�ux) sin(2�vy)d2x: (2.80)

It is not difficult to see that A and B are odd functions with respect to both argu-

ments: A(u) = -A(-u; v) = -A(u;-v) and B(u) = -B(-u; v) = -B(u;-v). Thus,RR2A(u)d2u = RR2B(u)d2u = 0which completes the proof. 2
The shift theorem of the Fourier transform describes how the transform of a signal

varies when the signal is shifted. If the signal f is shifted by d, it is known that its

Fourier transform is multiplied by a phase factor exp(-2� id �u). How the QFT off is affected by the shift is described by the following theorem.

Theorem 2.8 (Shift theorem (QFT)) LetFq(u) = ZR2 e-i2�uxf(x)e-j2�vyd2x (2.81)

and FqT(u) = ZR2 e-i2�uxf(x - d)e-j2�vyd2x (2.82)

be the QFT’s of a 2D signal f and a shifted version of f, respectively. Then, Fq(u) andFqT(u) are related by shift through d = (d1; d2)>.FqT(u) = e-i2�ud1Fq(u)e-j2�vd2 : (2.83)

If we denote the phase of Fq(u) by (�(u); �(u);  (u))>, then, as a result of the shift, the

first and the second component of the phase undergo a phase-shift0@ �(u)�(u) (u) 1A ! 0@ �(u) - 2�ud1�(u) - 2�vd2 (u) 1A : (2.84)

Proof: Equation (2.83) follows from (2.81) and (2.82) by substituting (x - d) withx 0. If Fq(u) has the polar representationFq(u) = jFq(u)jei�(u)ek (u)ej�(u)
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we find for the polar representation of FqT(u)FqT(u) = e-i2�ud1Fq(u)e-j2�vd2= e-i2�ud1jFq(u)jei�(u)ek (u)ej�(u)e-j2�vd2= jFq(u)jei(�(u)-2�ud1)ek (u)ej(�(u)-2�vd2):
This proves (2.84). 2
We have shown that there exist different possibilities of choosing a phase-angle

representation for quaternions. The definition we introduced in section 2.1.2 was

not motivated so far. The reason for this choice is the shift theorem. A shift of

the signal results in a phase shift of the first two components of the quaternionic

Fourier phase which is in analogy to the complex Fourier shift theorem. This anal-

ogy would not be visible in other phase-angle representations, e.g. in the one intro-

duced in (2.23).

In the shift theorem a shift of the signal in the spatial domain is considered. The

effect of such a shift are the modulation factors shown in (2.83). In the following

theorem we regard the converse situation: the signal is modulated in the spatial

domain, and we ask for the effect in the quaternionic frequency domain.

Theorem 2.9 (Modulation theorem (QFT)) Let f(x) be a quaternion-valued signal andFq(u) its QFT. Further, let fm(x) be a version of f(x) which is modulated by the frequencyu0 = (u0; v0)>: fm(x) = ei2�u0xf(x)ej2�v0y: (2.85)

The QFT of fm(x) is then given byFqffmg(u) = Fq(u - u0): (2.86)

If fm(x) is a real modulated version of f(x), i.e.fm(x) = f(x) cos(2�xu0) cos(2�yv0); (2.87)

the QFT of fm(x) is given byFqffmg(u) = 14(Fq(u + u0) + Fq(u- u0; v+ v0)+ Fq(u + u0; v- v0) + Fq(u - u0)): (2.88)

Proof: First, we consider the QFT offm(x) = ei2�u0xf(x)ej2�v0y:
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By inserting fm into the definition of the QFT we obtainFqm(u) = ZR2 e-i2�uxfm(x)e-j2�vyd2x= ZR2 e-i2�(u-u0)xf(x)e-j2�(v-v0)yd2x= Fq(u - u0):
For the second part of the proof we introduce the abbreviationf(x) = e-i2�uxf(x)e-j2�vy:
Further, we use the notationIee(u0) = ZR2 cos(2�u0x)f(x) cos(2�v0y)d2xIoe(u0) = i ZR2 sin(2�u0x)f(x) cos(2�v0y)d2xIeo(u0) = j ZR2 cos(2�u0x)f(x) sin(2�v0y)d2xIoo(u0) = k ZR2 sin(2�u0x)f(x) sin(2�v0y)d2x;
where obviously Iee(u0) is even with respect to u0 and to v0, Ioe(u0) is odd with

respect to u0 and even with respect to v0 and so on. We can then write14(Fq(u + u0) + Fq(u- u0; v+ v0) + Fq(u+ u0; v- v0) + Fq(u - u0))= 14(Iee(u0) + Ioe(u0) + Ieo(u0) + Ioo(u0))+14(Iee(-u0; v0) + Ioe(-u0; v0) + Ieo(-u0; v0) + Ioo(-u0; v0))+14(Iee(u0;-v0) + Ioe(u0;-v0) + Ieo(u0;-v0) + Ioo(u0;-v0))+14(Iee(-u0) + Ioe(-u0) + Ieo(-u0) + Ioo(-u0))= Iee(u0) = Fqfcos(2�u0x)f(x) cos(2�v0y)g; (2.89)

which completes the proof. 2
Theorem 2.10 (Derivative theorem (QFT)) Let f be a real two-dimensional signal, Fq
its QFT, and n = p+ r; p; r 2 N. ThenFq� @n@xp@yrf
 (u) = (2�)n(iu)pFq(u)(jv)r:
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Proof: We prove the theorem for (p; r) = (1; 0) and (p; r) = (0; 1).Fq� @@xf
 (u) = ZR2 e-i2�ux� @@xf� (x)e-j2�vyd2x (2.90)= ZR�ZRe-i2�ux� @@xf� (x)dx� e-j2�vydy (2.91)= - ZR�ZR� @@xe-i2�ux� f(x)dx� e-j2�vydy (2.92)= 2�iuFq(u) (2.93)

Here we used integration by parts and the fact that the signal f is assumed to tend

to zero for x!1. The proof for (p; r) = (0; 1) is performed analogously.Fq� @@yf
 (u) = ZRe-i2�ux �ZR� @@yf� (x)e-j2�vydy�dx (2.94)= - ZRe-i2�ux �ZRf(x)� @@ye-j2�vy�dy�dx (2.95)= 2�Fq(u)(jv) (2.96)

For general derivatives the theorem follows from successive application of first

order derivatives. 2
Theorem 2.11 The QFT of a real two-dimensional signal f is quaternionic hermitian.

Proof: We have shown before that the QFT of a real signal has the formFq(u) = Fqee(u) + iFqoe(u) + jFqeo(u) + kFqoo(u):
Applying the automorphisms � and � yields�(Fq(u)) = Fqee(u) + iFqoe(u) - jFqeo(u) - kFqoo(u)= Fqee(u;-v) + iFqoe(u;-v) + jFqeo(u;-v) + kFqoo(u;-v)= Fq(u;-v) (2.97)�(Fq(u)) = Fqee(u) - iFqoe(u) + jFqeo(u) - kFqoo(u)= Fqee(-u; v) + iFqoe(-u; v) + jFqeo(-u; v) + kFqoo(-u; v)= Fq(-u; v); (2.98)

which proves the theorem according to definition 2.4. 2
It can often happen that a signal undergoes an affine transform in the spatial do-

main, which can be written as f(x) ! f(Ax + b), where b 2 R2 and A 2 Gl(2;R).
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In these cases it is desirable to know how this transform affects the frequency rep-

resentation Fq of f. The effect of the shift by b is already known from the shift

theorem. It remains to work out how the frequency representation is transformed

under a linear transform of the spatial domain: f(x) ! f(Ax). This is done by the

following theorem.

Theorem 2.12 (Affine theorem (QFT))

Let f(x) be a real 2D signal and Fq(u) = Fqff(x)g(u) its QFT. Further, let A be the real

regular 2� 2 matrixA = � a bc d � ; with det(A) = ad - bc 6= 0:
The QFT of f(Ax) is then given byFqff(Ax)g(u) = 12det(A) ( Fq(d 0u+ c 0v; b 0u+ a 0v) + Fq(d 0u- c 0v;-b 0u+ a 0v)- kFq(-d 0u+ c 0v;-b 0u+ a 0v) + kFq(-d 0u- c 0v; b 0u+ a 0v) ) ; (2.99)

where we introduced the matrixB = � a 0 b 0c 0 d 0 � =: A
det(A) ) det(B) = 1

det(A) :
Proof: The inverse of A is given byA-1 = 1

det(A) � d -b-c a � :
For the transformed coordinates we introduce the notationAx = x 0 = � x 0y 0 � = � ax+ bycx + dy �) � xy � = 1

det(A) � dx 0 - by 0-cx 0 + ay 0 � :
Now we can express Fqff(Ax)g(u) using the coordinates x 0 in the following way:Fqff(Ax)g(u) = ZR2 e-i2�uxf(Ax)e-j2�vydxdy= 1

det(A) ZR2 e-i2�u(d 0x 0-b 0y 0)f(x 0)e-j2�v(-c 0x 0+a 0y 0)dx 0dy 0= 1
det(A) ZR2 e-i2�u(d 0x-b 0y)f(x)e-j2�v(-c 0x+a 0y)dxdy:
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In order to complete the proof we still have to show thate-i2�u(d 0x-b 0y)e-j2�v(-c 0x+a 0y) = 12 ( e-i2�x(d 0u+c 0v)e-j2�y(b 0u+a 0v)+e-i2�x(d 0u-c 0v)e-j2�y(-b 0u+a 0v) (2.100)-ke-i2�x(-d 0u+c 0v)e-j2�y(-b 0u+a 0v)+ke-i2�x(-d 0u-c 0v)e-j2�y(b 0u+a 0v) ) :
For a more compact form of (2.100) we introduce the notation� = 2�vya 0; � = 2�uyb 0; 
 = 2�vxc 0; � = 2�uxd 0
and get the following expression:e-i(�-�)e-j(-
+�) = 12 �ei(-�-
)ej(-�-�) + ei(-�+
)ej(�-�) (2.101)-kei(�-
)ej(�-�) + kei(�+
)ej(-�-�)� :
We evaluate the right-hand side:12 �ei(-�-
)ej(-�-�) + ei(-�+
)ej(�-�) - kei(�-
)ej(�-�) + kei(�+
)ej(-�-�)�= 12 �ei(-�-
)ej(-�-�) + ei(-�+
)ej(�-�) - e-i(�-
)kej(�-�) + e-i(�+
)kej(-�-�)�= 12e-i� �e-i
e-j� + ei
ej� - ei
kej� + e-i
ke-j�� e-j�= e-i� (cos(
) cos(�) + k sin(
) sin(�) + i cos(
) sin(�) + j sin(
) cos(�)) e-j�= e-i�ei�ej
e-j�:
Obviously, this final result equals the left-hand side of (2.101) which completes the

proof. 2
We can simplify the form of the theorem if we use the following notation. For a

given matrixA let A> be the transpose ofA and At the transpose ofA according to

the minor diagonal:A = � a bc d �) A> = � a cb d � ; At = � d bc a � :
Besides that, we use the fact that the QFT of a real signal is a quaternionic hermitian

function in order to write the theorem in the formFqff(Ax)g(u) = 12det(A) ( Fq(det(B)B-1>u) + Fq(B>tu)+ i(Fq(det(B)B-1>u) - Fq(B>tu))j ) : (2.102)
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Example 1: As an example we will demonstrate the effect of a rotation of the origi-

nal signal. The transformation matrix A is then given byA = �
cos(�) - sin(�)
sin(�) cos(�) �) det(A) = 1; B = At = A; (2.103)A> = A-1 = � cos(�) sin(�)- sin(�) cos(�) � : (2.104)Fqff(Ax)g(u) = 12 ( Fq(Au) + Fq(A-1u)+ i(Fq(Au) - Fq(A-1u))j ) : (2.105)

Example 2: Here we regard a pure dilation of the original signal with different

scaling factors for the x-axis and the y-axis. In this case the transformation matrix

takes the form:A = � a 00 b �) det(A) = ab; (2.106)B = B> = � 1=b 00 1=a � ; Bt = 1abB-1 = � 1=a 00 1=b � : (2.107)Fqff(Ax)g(u) = 12ab �Fq �ua; vb�+ Fq �ua; vb� (2.108)+i�Fq �ua; vb�- Fq �ua; vb�� j� (2.109)= 1abFq �ua; vb� : (2.110)

This result has the same form as the analogue result for the 2D Fourier transform.

The affine theorem of the Hartley transform [14] is like the version for the QFT

more complicated than the affine theorem of the Fourier transform.

2.2.3 DQFT and FQFT

The QFT has been defined for continuous signals so far. For implementation and

application to sampled images we need a discrete transform. The discretized ver-

sion of the QFT will be called discrete quaternionic Fourier transform (DQFT). It is

related to the QFT in the same way as the discrete Fourier transform is related to

the continuous Fourier transform.
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Definition 2.10 (DQFT) Let f be a discrete two-dimensional signal of the size M � N
with components fmn 2 H . The DQFT of f is then given byFquv = M-1Xm=0 N-1Xn=0 exp

�-i2�umM �fmn exp

�-j2�vnN �:
The inverse DQFT readsfmn = 1MN M-1Xu=0 N-1Xv=0 exp

�i2�umM �Fquv exp

�j2�vnN �:
In the case of the Fourier transform there exist algorithms which allow an efficient

implementation. The most famous of these so called fast Fourier transform algo-

rithms is the Cooley-Tukey algorithm (see i.e. [83]). The main idea of this algorithm

in the 1D case is to divide the input vector of lengthN into two parts of lengthN=2,
and to perform a DFT on each half. We assume N to be some integer power of 2,
i.e. N = 2l. The splitting of the transform domain is based on the relationFu = N-1Xn=0 exp

�-2�iunN � fn= N=2-1Xk=0 exp

�-2�iu(2k)N � f2k + N=2-1Xk=0 exp

�-2�iu(2k+ 1)N � f2k+1= N=2-1Xk=0 exp

�-2�iukN=2 � f2k + exp

�-2�iuN �N=2-1Xk=0 exp

�-2�iukN=2 � f2k+1:
This process can be iterated until the domain is split into N=2 parts of length2. Using this procedure the multiplicative complexity is reduced from O(N2) toO(N log(N)).
There are other FFT-algorithms which split the domain at each iterative step into n
parts, depending on the value of N. These algorithms are called radix-n algorithms.

In this terminology the Cooley-Tukey algorithm is a radix-2 algorithm. Additional

speed-up can be reached when the input data is known to be real-valued. In this

case the real input vector of length N can be transformed into a complex vector of

length N=2 following the scheme0BBB@ f0f1
...fN-1 1CCCA! 0BBB@ f0 + if1f2 + if3

...fN-2 + ifN-1 1CCCA :
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This method is called overlapping [24].

The simplest implementation of the DQFT is a cascaded 1D FFT algorithm, which

we will call row-column algorithm. It starts by computing the one-dimensional DFT

of fmn row-wise. f̃un = M-1Xm=0 exp

�-i2�umM �fmn
The intermediate spectrum f̃ is split into real and imaginary part on each of which

a column-wise one-dimensional DFT is performed.FRuv = N-1Xn=0R(f̃un) exp

�-i2�vnN �
(2.111)FIuv = N-1Xn=0 I(f̃un) exp

�-i2�vnN �
(2.112)

From (2.111) and (2.112) the DQFT can be evaluated byFquv = R(FRuv) + iR(FIuv) + jI(FRuv) + kI(FIuv):
The one-dimensional DFTs are performed as FFTs such that the multiplicative com-

plexity of the row-column algorithm is O(MN log(MN)). Thus, the complexity is of

the same order as the complexity of the two-dimensional FFT (FFT2). However,

the number of multiplications required for the row-column algorithm is higher

than the number of multiplications in an FFT2 algorithm by a constant factor.

In [39] a fast quaternionic Fourier transform (FQFT) algorithm has been developed.

For this algorithm the lengths M of the image rows and N of the columns are

assumed to be powers of two. Further we assume the image to be square (M = N).

The algorithm uses a decimation in space method, which is similar to the Cooley-

Tukey two-dimensional FFT. In each recursion step the domain is split into four

smaller domains of half the side-length.

Additionally an overlapping algorithm can be used if the input data is known to

be real valued. Overlapping in this case reduces the domain size from N � N toN=2�N=2 by combining four real numbers to one quaternion:0B@ f11 f12 � � � f1N
...

...
...fN1 fN2 � � � fNN 1CA! 0B@ q11 q12 � � � q1N=2

...
...

...qN=2 1 qN=2 2 � � � qN=2N=2 1CA ;
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where qkl = f(2k-1) (2l-1) + if(2k-1) (2l) + jf(2k) (2l-1) + kf(2k) (2l). Chernov et al. [24, 25]

use the same overlapping procedure in order to speed up the two-dimensional

FFT for real input data: The real N � N input image is shrunk to a quaternionicN=2�N=2 image. On this image a DQFT is performed from which the DFT of the

original image is reconstructed.

2.2.4 Literature on the QFT

Sangwine has used the QFT for color image processing [85]. An RGB color image

with the three components r(x), g(x) and b(x) is written as a pure quaternion-

valued image: f(x) = i r(x) + j g(x) + kb(x)
which can be transformed into the frequency domain by the QFT. This allows to

transform color images holistically instead of transforming each color component

separately using a complex Fourier transform. The same author developed an edge

detector for color images based on the quaternion representation of color images

[86].

Regrettably, no results of the application of the QFT to color images have been

presented so far. We see the following fundamental problem. The QFT couples the

imaginary units i and j to the orientations in the image plane, which gives them

a meaning and interpretation. The color image approach adds a second, different

interpretation to the imaginary units: Each unit is coupled to one of the channels

of an RGB image. Thus, two conflicting interpretations are combined which leads

to a coupling of orientation in the image plane to color.

A second problem lies in the restriction to 2D signals: apparently the three chan-

nels of a color image fit exactly the three imaginary units of the quaternions. How-

ever, the use of quaternions in harmonic transforms is restricted to two-dimen-

sional images; in general, in order to extend the QFT to n-dimensional signals,2n-dimensional algebras have to be used. We develop this later in this thesis. In

3D, for example, there are seven imaginary units, and the correspondence to the

color channels gets lost.

According to this discussion we see the value of the QFT for color image pro-

cessing in the compact and complete representation, but not in its interpretative

power. The value of the representation lies in the fact that it allows to reconstruct

the Fourier transforms of the three channel images from the QFT of one color im-

age.
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Ell [34, 35] introduced the QFT and used it for the analysis of partial differential

systems with a special interest in the stability of 2D linear, time-invariant systems.

In contrast to our work, where the extension of the phase concept to the three-

component phase plays an important role, Ell uses the polar representation (2.23)

and interprets the angle  as the phase of a quaternion-valued system response.

This single phase angle is used as a measure of stability of a system.

2.3 The Hartley Transform

In this section we consider another spectral transform closely related to the Fourier

transform, namely the Hartley transform. The reason for doing so is that the rela-

tion between the Hartley transform and the Fourier transform is similar to the rela-

tion between the Fourier transform and the quaternionic Fourier transform which

we have introduced in section 2.2. Thereby, it will be easier to see in the sequel

which place is occupied by the QFT among the other transforms.

The Hartley transform was introduced by RALPH VINTON LYON HARTLEY in 1942

[54] and did not gain much attention during the first years of its existence. It seems

that only in 1983 an article by RONALD N. BRACEWELL [13, 15] revived the interest

in the Hartley transform. Since that time more than 100 articles on this subject have

followed (see references in [79]).

Definition 2.11 (Hartley transform) Let f be a real n-dimensional signal. The Hartley

transform of f is defined asH(u) = ZRn f(x)(cos(2�ux) + sin(2�ux))dnx:
The Hartley transform differs from the Fourier transform only in the integral kernel

which is cas(2�ux) = cos(2�ux) + sin(2�ux) (cas stands for ”cosine-and-sine”) for

the Hartley transform and cos(2�ux) - i sin(2�ux) for the Fourier transform.

Later, in section 2.4 we will analyze the relations between the Hartley transform,

the Fourier transform and the QFT. For the moment we start by comparing the

Hartley and the Fourier transforms of a one-dimensional real-valued signal f. Both

the Hartley transform and the Fourier transform of f can obviously be split into an
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even and an odd part. Let H be the Hartley transform of f:H(u) = ZRf(x)cas(2�ux)dx (2.113)= ZRf(x) cos(2�ux)dx + ZRf(x) sin(2�ux)dx= He(u) +Ho(u)He(u) = ZRf(x) cos(2�ux)dx; Ho(u) = ZRf(x) sin(2�ux)dx (2.114)

whereHe and Ho denote the even and the odd part of H, respectively.

For the Fourier transform F of fwe have:F(u) = ZRf(x) exp(-i2�ux)dx (2.115)= ZRf(x) cos(2�ux)dx - i ZRf(x) sin(2�ux)dx= Fe(u) + Fo(u)Fe(u) = ZRf(x) cos(2�ux)dx; Fo(u) = -i ZRf(x) sin(2�ux)dx (2.116)

We introduce the following transforms which are derived from the cosine- and the

sine-transform [12] by dividing by two:C(u) = ZRf(x) cos(2�ux)dx (2.117)S(u) = ZRf(x) sin(2�ux)dx (2.118)

We can see easily, how both the Hartley transform and the Fourier transform can

be derived from combinations of these two transforms. Note that neither C nor S
contains the whole information of the input signal, i.e. none of them is invertible

[94]. In order to derive an invertible harmonic transform, C and S must be com-

bined in one way or the other. The Hartley transform and the Fourier transform

are composed from C and S by H = C+ S and F = C- iS, respectively. Thus, it is

easy to see that the Hartley transform and the Fourier transform are related to one

another by F = He- iHo andH = R(F)-I(F), where we again make use of the fact

that the input signal is supposed to be real, such that the real part of the Fourier

transform is even while the imaginary part is odd.

Both, the Hartley transform and the Fourier transform are invertible (the inverse of

the Fourier transform has already been shown in section 2.2.1) and it is a remark-

able fact that the inverse of the Hartley transform is identical with the transform
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itself. Consequently, both H and F carry the whole information about the original

signal but in a different way.

As shown earlier, F contains redundant information in one half of the range of

frequencies. This fact is known as the Hermite symmetry of the Fourier transform

of a real signal: F(u) = F�(-u). However, the information in F is encoded in terms

of amplitude and phase as well. On the other hand, the Hartley transform is a

real-valued transform and carries no redundant information. The information is

encoded only in terms of amplitude in this case.

When BRACEWELL first turned his attention towards the Hartley transform, it was

thought to be valuable as a numerical tool in the first place. For example it has

the advantages of being real for real input data and of being its own inverse trans-

form. Furthermore, there exist very good fast algorithms for the evaluation of the

discrete Hartley transform. Besides that the Hartley transform seemed to have no

real physical significance and to be less fundamental than the Fourier transform,

though [31].

However, it turned out that the analogue Hartley transform can also be imple-

mented optically [94], where it is advantageous that the Hartley transform is a

real-valued transform: Many optical recording devices are sensitive only to the in-

tensity but not to the phase information. This leads to a loss of information in the

case of the Fourier transform whereas only sign information is lost in the case of

the Hartley transform.

2.4 The Hierarchy of 2D Harmonic Transforms

In the introduction to the current chapter we announced to establish a hierarchy

of harmonic transforms. This hierarchy is constructed according to the following

principle: The more detailed the symmetry components of a real input signal are

separated by the transform, the higher the transform stands in the hierarchy. Two

symmetry components are said to be separated, if they belong to different basis

elements of the underlying algebra after the transformation. We restrict ourselves

to real two-dimensional signals in this section.

The underlying algebra of the Hartley transform isR. Since R is a one-dimensional

algebra, the complete transformH of f belongs to the basis element 1 ofR. Thus, no

separation of symmetry components is performed by the Hartley transform. The

Fourier transform with the two-dimensional underlying algebra C separates two
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= k-imaginary

= j-imaginary

= real= i-imaginary

Fqee(u) H(u) Fqeo(u)Fqoe(u) Fo(u)Fqoo(u)Fe(u)
Figure 2.5: The hierarchy of 2D harmonic transforms.

components of different symmetry. This is due to the fact that the Fourier transform

of a real signal is hermitian. Thus, the even part of the Fourier transform F of f
belongs to the real basis element 1, while the odd part belongs to the imaginary

element i, i.e. RF = Fe and iIF = Fo. However, the two symmetry components Fe
and Fo can be separated even finer by a separation in even and odd components

with respect to both coordinate axes. This is done by the quaternionic Fourier

transform. As shown earlier, for the QFT of a real signal we have RFq = Fqee,iIFq = Fqoe, jJ Fq = Fqeo, and kKFq = Fqoo. The signal component fee corresponds toFqee, foe corresponds to Fqoe, and so on. Thus, the four symmetry components of f
are completely separated by the QFT.

According to this discussion, it follows that in 2D the hierarchy of transforms con-

sist of three levels with the Hartley transform on the lowest level, the Fourier trans-

form on the next and the quaternionic Fourier transform on the highest level (see

figure 2.5).

The three transforms are closely related, and since each of them contains the entire

signal information, each can be transformed into the others. LetH, F, and Fq be the

Hartley, Fourier, and quaternionic Fourier transforms of the same signal f, respec-

tively. First we will show how H can be recovered from F. Since F is hermitian we

have Fe = F+ F�2 ; Fo = F- F�2 : (2.119)

From the definitions of the Hartley transform and the Fourier transform it follows

that H = Fe - Fo and thus H = F+ F�2 - F- F�2i : (2.120)
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Further F andH can be recovered from Fq. As stated by theorem (2.11) Fq is quater-

nionic hermitian, such thatRFq = Fqee = Fq + �(Fq) + �(Fq) + 
(Fq)4 (2.121)iIFq = Fqoe = Fq + �(Fq) - �(Fq) - 
(Fq)4 (2.122)jJ Fq = Fqeo = Fq - �(Fq) + �(Fq) - 
(Fq)4 (2.123)kKFq = Fqoo = Fq - �(Fq) - �(Fq) + 
(Fq)4 : (2.124)

Using these equations and the fact that H and F can be written asH = Fqee - Fqoe=i- Fqeo=j- Fqoo=k (2.125)F = Fqee + i(Fqoe=i+ Fqeo=j) - Fqoo=k; (2.126)

where Fqee - Fqoo=k = Fe and i(Fqoe=i+ Fqeo=j) = Fo, we can construct the Fourier and

the Hartley transform of a signal from its QFT.

These expressions show how higher-level transforms can be used in order to ex-

press lower level transforms. The other direction is possible as well, since each

function f : R2! R can be decomposed into its symmetry components byfee(x) = 14(f(x) + f(-x; y) + f(x;-y) + f(-x)) (2.127)foe(x) = 14(f(x) - f(-x; y) + f(x;-y) - f(-x)) (2.128)feo(x) = 14(f(x) + f(-x; y) - f(x;-y) - f(-x)) (2.129)foo(x) = 14(f(x) - f(-x; y) - f(x;-y) + f(-x)): (2.130)

Now we can construct F and Fq from H usingF = Hee - iHoe - iHeo +Hoo (2.131)Fq = Hee - iHoe - jHeo - kHoo: (2.132)

We have derived the formulas for the reconstruction of Fq from H (H ! Fq), and

of H from F (F! H) which implies the formula for the reconstruction of Fq from F
(F! Fq = F! H! Fq).

So far we have analyzed the hierarchy of harmonic transforms for two-dimensio-

nal signals. An n-dimensional signal f can be separated into 2n different symme-

try components fee:::e, foe:::e, : : : , foo:::o. In order to establish the full hierarchy of
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transform with a 2n-dimensional underlying algebra. We will introduce a trans-

form fulfilling this criterion in the next section.

2.5 Hypercomplex Fourier Transforms in nD

Up to this point in this thesis, the algebras of the complex numbers and the quater-

nion algebra played a special role. Complex numbers occur in the one-dimensional

Fourier transform. We introduced quaternions in order to extend the two-dimen-

sional Fourier transform concept.

In this chapter we make use of other so called hypercomplex number systems

for two reasons: First, the use of quaternions is restricted to the two-dimensio-

nal transform. In order to define the n-dimensional analogue of the QFT we will

need higher-dimensional algebras. Secondly, even in the two-dimensional case the

quaternion algebra was not completely satisfactory because of the fact that the

multiplication does not commute. For this reason we will introduce commutative

hypercomplex algebras for the use in hypercomplex Fourier transforms in section

2.5.5.

2.5.1 The Clifford Algebra Cln
In the last section we showed that for an n-dimensional analogue to the QFT an2n-dimensional algebra is needed. As one possibility we introduce the Clifford

algebraCln. Before Cln is defined we give a general definition of a Clifford algebra

(see [71]).

Definition 2.12 (Clifford algebra) Let V be a linear space with the quadratic formhx; yi = nXl;m=1almxlym; alm = aml 2 R:
The algebra generated by the symbols fi1; : : : ; ing and the relations ilim+ imil-2alm = 0
is called the Clifford algebra of the quadratic form h�; �i.
The Clifford algebra Cln is the Clifford algebra of the Euclidean scalar product inRn, i.e. aij = 1 if i = j and aij = 0 else. Cln can be generated from n elements as

follows.
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Let fi1; : : : ; ing be n symbols obeying the multiplication rules i2l = -1 for all l 2f1; : : : ; ng and ilim = -imil for l 6= m. The elements ilim are called elements of

grade two and denoted by ilim = ilm. There are
� n2 � basis elements of grade

two. Applying the same procedure to the elements of grade two we get elements

of grade three: ik(ilm) = (ikl)im = iklm for pair–wise different k; l and m. We

continue like this and get as element with the highest grade one basis element with

grade n. Altogether we get
Pnk=0 � nk � = 2n basis elements. The n basis elements

of grade one fi1; i2; : : : ; ing will be called basis vectors of Cln.

These 2n elements build a basis of the real Clifford algebra Cln. Addition is de-

fined component-wise, multiplication according to the generation rules above, and

multiplication by a real scalar a is performed by multiplying all 2n components by

a. Cln contains the n complex subfieldsRf1; img = fz = a + bimja; b 2 Rg; m 2 f1; : : : ; ng: (2.133)

For later use we define conjugation in Cln.

Definition 2.13 The conjugation of the basis vectors of Cln is defined by

¯ : im 7! im = -im:
The conjugation of general elements of Cln is generated by the vector conjugation as anti-

involution, i.e.

¯ : iab:::c 7! (iab:::c)- = īc : : : ībīa:
2.5.2 Clifford Fourier Transforms

The Clifford Fourier transform, which will be introduced in this section, is the ex-

tension of the quaternionic Fourier transform to n-dimensional signals.

Definition 2.14 (Clifford Fourier transform (CFT))

The Clifford Fourier transform Fc(u) of an n–dimensional signal f(x) is defined byFc(u) = ZRn f(x) nYk=1 exp(-ik2�ukxk)dnx : (2.134)

where u = (u1; u2; : : : ; un), x = (x1; x2; : : : ; xn) and i1; i2; : : : ; in are the basis vectors of

the Clifford algebra Cln. The product is meant to be performed in a fixed order:
Qnj=1 aj =a1a2 � � �an. For simplicity we introduce the notationf Cln Fc or Fc Cln f
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in order to indicate that Fc is the Clifford Fourier transform of f.
For n = 1 the Clifford Fourier transform is the one-dimensional complex Fourier

transform, for n = 2, and for real signals, it is the quaternionic Fourier transform.

We have to introduce the restriction to real signals merely because of the different

order of factors under the integrals in definitions 2.9 and 2.14. However, even for

quaternion-valued signals the QFT is closely related to the two-dimensional CFT.

Theorem 2.13 (Inverse Clifford Fourier transform)

The inverse Clifford Fourier transform exists and is obtained byF-1c fFcg(x) = ZRn Fc(u) nYk=1 exp(-ik2�ukxk)!dnu (2.135)= ZRn Fc(u) nYk=1 exp(in+1-k2�un+1-kxn+1-k)!dnu: (2.136)

Proof: Inserting term (2.134) into the formula (2.135) yieldsZRn ZRn f(x 0) nYj=1 e-ij2�ujx 0jdnx 0 n-1Yk=0 ein-k2�un-kxn-kdnu= ZRn f(x 0)�n(x - x 0)dnx 0= f(x);
where again the orthogonality of the harmonic exponential functions is used. 2
2.5.3 Hypercomplex Numbers

The algebras that occurred so far (namely C , H , and the Clifford algebra Cln) are

examples of so called hypercomplex number systems. In general a hypercomplex

number system is a set of expressions of the forma0 + a1i1 + : : :+ anim (2.137)

where a0; : : : am are real numbers and i1; : : : im are symbols for which multipli-

cation can be defined by prescribing a multiplication table which assigns to each

ordered pair ikil an expression of the form (2.137).
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Table 2.3: The multiplication tables of C (left) and H (right).

The addition of two hypercomplex numbers is performed component-wise, i.e.a0 + a1i1 + : : : amim+ b0 + b1i1 + : : : bmim= (a0 + b0) + (a1 + b1)i1 + : : : (am + bm)im: (2.138)

The set of expressions of the form (2.137) together with the addition and multipli-

cation as defined above forms an algebra. Whether algebraic properties such as

commutativity, associativity, and alternativity are fulfilled or not, depends only on

the form of the multiplication table.

In table 2.3 the multiplication tables of the complex numbers and of the quaternions

are shown, respectively. In the multiplication tables the columns on the left-hand

side give the first factor while the top row indicates the second factor. This is im-

portant since hypercomplex numbers are not commutative, in general.

2.5.4 Commutative Hypercomplex Algebras

For a modification of the CFT we choose another algebra from the set of hyper-

complex algebras introduced before. The most problematic property of the QFT

and the CFT has been the non-commutativity of the multiplication. Therefore, we

define a hypercomplex algebra with similar construction rules as the Clifford alge-

bra Cln but with commutative multiplication rules. This algebra was used in [40]

in order to introduce an alternative to the Clifford Fourier transform.

Definition 2.15 (HCAn) Let fi1; : : : ; ing be n symbols obeying the multiplication rulesi2l = -1 for all l 2 f1; : : : ; ng and ilim = imil for l 6= m. The elements ilim are called

elements of grade two and are denoted by ilim = ilm. There are
� n2 � basis elements of

grade two. Applying the same procedure to the elements of grade two we get elements of

grade three: ik(ilm) = (ikl)im = iklm for pair–wise different k; l and m. We continue

like this and get as the element with the highest grade one basis element with grade n.

Altogether we get
Pnk=0 � nk � = 2n basis elements.
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These 2n elements build a basis of the real commutative algebra HCAn. Addition is defined

component-wise, multiplication according to the generation rules above and multiplication

by a real scalar a is performed by multiplying all 2n components by a.

In order to identify the algebra HCAn among known algebras we state the follow-

ing theorem.

Theorem 2.14 The algebra HCAn is isomorphic to Cm withm = 2n-1.
Proof: See [40]. 2
Note: By Cm we denote the m-fold Cartesian product of C . An element Z 2 Cm
has the form Z = (z1;z2; : : : ;zm). Let Z;W 2 Cm and a 2 R. Then addition,

multiplication and multiplication by a scalar are defined viaZ+W = (z1 +w1;z2 +w2; : : : ;zm +wm) (2.139)ZW = (z1w1;z2w2; : : : ;zmwm) (2.140)aZ = (az1; az2; : : : ; azm); (2.141)

i.e. the operations are performed component-wise. The algebra Cm is not a division

algebra as can easily be seen from the fact, that the equation(0; 1; : : : ; 1)(x1;x2; : : : ;xn) = (0; 2; : : : ; 2) (2.142)

has infinitely many solutions, namely(x1;x2; : : : ;xn) = (x1; 2; : : : ; 2); for all x1 2 C :
More generally the above fact follows from Frobenius’ theorem which states that

there are only three associative division systems. We state the theorem without

proof.

Theorem 2.15 (Frobenius’ theorem) Every associative division algebra is isomorphic to

one of the following: the algebra of real numbers, the algebra of complex numbers, and the

algebra of quaternions.

Example (n = 2): We denote the basis of HCA2 by e1 = 1, e2 = i1, e3 = i2, e4 = i12.
The multiplication table of HCA2 in this basis is given by
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Table 2.4: The multiplication table of HCA2

On the other hand we denote a basis of C 2 byf1 = (1; 0); f2 = (i; 0)f3 = (0; 1); f4 = (0; i): (2.143)

Let a new basis of C 2 be given by Ei = 4Pj=1Aijfj with the transformation matrixA =0BBB@ 1 0 1 00 1 0 10 -1 0 11 0 -1 0 1CCCA :
The Ei follow the same multiplication table as the ei, thus A establishes the iso-

morphism betweenHCA2 and C 2 .

Remark: From the fact that HCA2 is commutative it is immediately clear that it is

not a Clifford algebra. However, HCA2 can be embedded into the Clifford algebraCl4 by the substitutions: i1 ! i12 i2 ! i34 i12 ! i1234: (2.144)

I.e. the set f1; i12; i34; i1234g generates a subalgebra of Cl4 which is isomorphic toHCA2.
Example (n = 3): We denote the basis of HCA3 by e1 = 1, e2 = i1, e3 = i2, e4 = i3,e5 = i12, e6 = i13, e7 = i23, e8 = i123. The multiplication table of HCA3 in this basis

is given by



2.5 Hypercomplex Fourier Transforms in nD 53e1 e2 e3 e4 e5 e6 e7 e8e1 e1 e2 e3 e4 e5 e6 e7 e8e2 e2 -e1 e5 e6 -e3 -e4 e8 -e7e3 e3 e5 -e1 e7 -e2 e8 -e4 -e6e4 e4 e6 e7 -e1 e8 -e2 -e3 -e5e5 e5 -e3 -e2 e8 e1 -e7 -e6 e4e6 e6 -e4 e8 -e2 -e7 e1 -e5 e3e7 e7 e8 -e4 -e3 -e6 -e5 e1 e2e8 e8 -e7 -e6 -e5 e4 e3 e2 -e1
Table 2.5: The multiplication table of HCA3

On the other hand we denote a basis of C 4 byf1 = (1; 0; 0; 0); f2 = (i; 0; 0; 0)f3 = (0; 1; 0; 0); f4 = (0; i; 0; 0)f5 = (0; 0; 1; 0); f6 = (0; 0; i; 0)f7 = (0; 0; 0; 1); f8 = (0; 0; 0; i) (2.145)

We introduce a new basis of C 4 by Ei = 4Pj=1Aijfj with the transformation matrixA =0BBBBBBBBBBBB@ 1 0 1 0 1 0 1 00 1 0 1 0 1 0 10 1 0 1 0 -1 0 -10 1 0 -1 0 1 0 -1-1 0 -1 0 1 0 1 0-1 0 1 0 -1 0 1 0-1 0 1 0 1 0 -1 00 -1 0 1 0 1 0 -1
1CCCCCCCCCCCCA :

It is easily shown that the Ei follow the same multiplication table as the ei, thus A
establishes the isomorphism between HCA3 and C 4 .

2.5.5 Commutative Hypercomplex Fourier Transforms

Since the n-dimensional CFT contains n exponential functions with n different

imaginary units, it is a main property of any algebra which is used in an n-di-
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mensional hypercomplex Fourier transform to contain n complex subfields with

orthogonal imaginary units. We can use this freedom of choosing a hypercomplex

algebra in order to overcome the problems caused by the non-commutativity of

the Clifford algebras used before. These problems became apparent when trying

to establish fast algorithms for the CFT [40] and in the complicated form of the con-

volution theorem (Theorem 2.6) of the QFT. The stated requirement is fulfilled byHCAn since there are n complex subfields given by Rf1; ilg; l 2 f1; : : : ; ng. Thus,

we can introduce a hypercomplex Fourier transform with HCAn as underlying al-

gebra.
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Definition 2.16 (Commutative Hypercomplex Fourier Transform (HCFT))

The HCFT Fh(u) of an n–dimensional signal f(x) is defined byFh(u) = ZRn f(x) exp(-2�u>Inx)dnx : (2.146)

where u = (u1; u2; : : : ; un), x = (x1; x2; : : : ; xn), In is the matrix given byIn = 0BBBB@ i1 0 : : : 00 i2 . . .
...

...
. . . . . . 00 : : : 0 in 1CCCCA ; (2.147)

and i1; i2; : : : ; in are the basis vectors of the commutative hypercomplex algebra HCAn.

Note, that the HCFT can be written in a more compact way than the CFT. This

is due to the fact that the commutativity of HCAn allows us to use the addition

formula of the exponential function (exp(x) exp(y) = exp(x + y)). As noted above

this is not possible in non-commutative algebras.

In order to compare the results of the CFT and HCFT we introduce a simple map-

ping between Cln and HCAn in the following.

Definition 2.17 (Switching) Let Sn be a one-to-one linear mapping from Cln to HCAn
generated by Sn(1) = 1, Sn(ik) = ik and Sn(ikl:::m) = ikl:::m. The indices of ikl:::m are

assumed to be in ascending order.

Since Sn is one-to-one, it is an invertible mapping. The process of applying Sn
and S-1n will be called switching between Cln and HCAn in the following. Switching

betweenCln andHCAn is used to establish the following relation between the CFT

and the HCFT.

Theorem 2.16 Let Fc and Fh be the CFT and the HCFT of the real n-dimensional signalf. Then we have Sn(Fc(u)) = Fh(u):
Proof: The proof follows directly from the following facts:

1. The exponential functions exp(2�im umxm) in the CFT-kernel are ordered by

ascending m.
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2. The switching mapping S is linear. 2
As an example we compare the QFT to the two-dimensional HCFT. The 2D com-

mutative hypercomplex Fourier transform (HCFT) of a two-dimensional signal f is

given by Fh(u) = ZR2 f(x) exp(-2�x>I2u)dx:
with I2 containing the imaginary unitsI2 = � i1 00 i2 � :
Using the switching function S2 it is possible to compare the QFT and the HCFT of

a two-dimensional signal f according to theorem 2.16: For the QFT and the HCFT

of a real two-dimensional signal we have S2(Fq(u)) = Fh(u).
In section 2.2.2 we proved the convolution theorem for the QFT and found an ex-

pression which is more complicated than the analogue of the Fourier transform.

We recall the QFT convolution theorem (see equation (2.6)):g(x) � h(x) H Gq� e(u)Hq(u) +Gq�o(u)�(Hq)(u):
This apparent drawback of the QFT is due to the non-commutativity of the quater-

nion algebra, since in the proof of the convolution theorem two exponential func-

tions containing two different imaginary units as arguments have to be commuted.

This can only be accomplished by splitting up one exponential by applying Euler’s

rule. Thus, the result cannot be expressed as a simple product but only as the sum

of two products. The number of products would increase in higher dimensional

Clifford algebras and soon reach a form which could be hard to overlook. Theorem

2.17 shows how switching to a commutative algebra simplifies the situation.

Theorem 2.17 Let f and g be two real two-dimensional functions, and Fh and Gh their

HCFT’s. Then the convolution of f and g corresponds to a multiplication in the HCFT-

domain: f � g C2 FhGh: (2.148)

Proof: The proof follows the proof of theorem 2.6 with the simplification that be-

cause of the commutativity it is not necessary to split the exponential function into

sine and cosine.
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Corollary 2.1 Let f and g be two two-dimensional functions, and Fq and Gq their QFT’s.

Then the following relation is valid:f � g H S-12 (S2(Gq)S2(Hq)): (2.149)

Proof: From Theorem 2.17 we know thatf � g C2 FhGh:
Applying the switching function S2 this can be rewritten asf � g C2 S2(Fq)S2(Gq) (2.150)

According to theorem 2.16 equation (2.150) can be expressed in terms of the QFT:f � g H S-12 (S2(Fq)S2(Gq)) (2.151)

which completes the proof. 2
2.6 Summary

In this chapter we introduced the 2D quaternionic Fourier transform (QFT) and itsn-dimensional extension, the Clifford Fourier transform (CFT). These transforms

are built by using n different imaginary units in the arguments of the n exponential

functions of the nD Fourier transform. The imaginary units are elements of 2n-

dimensional, non-commutative Clifford algebras.

An important feature of the QFT and of the CFT are their symmetry properties.

The construction of the transforms was actually motivated by the aim to gain these

properties. The symmetry properties of the 1D Fourier transform have been an-

alyzed in detail e.g. in [12]. The Fourier transform of a real signal is hermitian,

i.e. even and odd part of the signal are separated by the complex algebra: the even

part of the transform is real, the odd part is imaginary. In contrast, the Hartley

transform is a real transform and thus it is not selective with respect to symmetry.

We have shown that the QFT extends the symmetry selectivity of the 1D com-

plex Fourier transform to 2D. In 2D there are four components of different sym-

metry which are transformed by the QFT into real, i-imaginary, j-imaginary, andk-imaginary parts, respectively. Thus, we were able to establish a hierarchy of

transforms with respect to the symmetry selectivity. In 1D this hierarchy contains
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only the Hartley transform and the Fourier transform, while in 2D it is extended

by the QFT. In nD the 2n components of different symmetry are separated by the

CFT.

Concentrating on the QFT, we established corresponding theorems to the main the-

orems of the complex Fourier transform, such as the shift theorem and the modu-

lation theorem, the affine theorem, Rayleigh’s theorem, the convolution theorem,

and the existence of the inverse transform. The convolution theorem of the QFT

is slightly more complicated than the convolution theorem of the complex Fourier

transform. This is a result of the non-commutativity of the quaternion algebra. For

this reason another transform has been introduced, similar to the QFT, but using

a commutative four-dimensional hypercomplex number system. Also in nD it is

possible to define a transform using a (2n-dimensional) commutative algebra. We

have shown that for real signals there exists a simple mapping between the results

of a non-commutative CFT and the commutative hypercomplex transform.



Chapter 3

The Phase Concept

On the bases laid in the former chapter we will turn our attention to the phase of a

signal. We will distinguish three different types of signal phase: Global or Fourier

phase, instantaneous phase, and local phase. Sometimes the last two terms are used

interchangeably. However, we will make a distinction as explained below. Global

phase denotes the angular phase of the complex Fourier transform of a signal.

Thus, it gives a real number � 2 [-�; �[ at each position in the complex frequency

domain. The Fourier phase indicates the relative position of the frequency compo-

nents. It has been shown by Oppenheim and Lim [80] that the phase information

is more important for the perceptual impression of an image than the energy of

the frequency components. Figure 3.1 demonstrates this effect1. Two images of

Fourier and Hilbert are Fourier transformed and represented in amplitude/phase

representation in the frequency domain. We first reconstruct Fourier’s image from

its amplitude spectrum alone. Therefore, we set the phase to zero in all frequency

channels. The second reconstruction uses merely phase information. The ampli-

tude is set to a constant value. This choice is very unnatural since the power spec-

tra of natural images are known to be of 1=f2 characteristic [41]. However, in this

case the original image can be recognized shadowy, while in the first case nothing

can be seen. The third reconstruction uses the amplitude of the Fourier transform

of Hilbert’s image combined with the phase of the Fourier transform of Fourier’s

image. In this case Fourier’s image can well be recognized. This shows the impor-

tance of phase information in images.

In image analysis we sometimes need another kind of phase information. Instead

of asking for the phase of a certain frequency component, which is given by the

1The images of Fourier and Hilbert have been taken from a web site on the history of Mathemat-

ics: http://www-groups.dcs.st-and.ac.uk/˜ history



60 CHAPTER 3. THE PHASE CONCEPT

Figure 3.1: First row: an image of Fourier (left), and its Fourier transform:

amplitude (middle) and phase (right). Second row: an image of Hilbert (left),

and its Fourier transform: amplitude (middle) and phase (right). Third row:

the reconstruction of Fourier’s image from amplitude information only (left),

from phase information only (middle), and from the combination of Hilbert’s

amplitude with Fourier’s phase. For a more detailed description see text. A

similar experiment is shown in [23].
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Fourier phase, we might ask for the phase at a certain position in a real signal.

The answer to this question is given by the instantaneous and the local phase in

two different ways. In order to evaluate the instantaneous phase we first construct

the analytic signal which is a combination of the original signal and its Hilbert

transform. From the analytic signal the instantaneous phase can be read of as the

angular phase of the complex value at each position of the signal. Although, the

instantaneous phase seems to yield local information, it depends on the whole sig-

nal, since constructing the analytic signal involves the Hilbert transform which is

a global transform. Thus, the instantaneous phase at any point changes with sig-

nal parts however far away from the point of interest. In order to overcome this,

we use local filters the impulse responses of which are analytic signals themselves.

These filters are called quadrature filters. The filter responses of these filters to a

real signal are complex valued. The local phase is defined as the angular phase of

the complex filter response at a certain position of the signal.

All these concepts are well defined for one-dimensional signals. However, the ex-

tension to higher dimensions is only trivial for the Fourier phase. The extension of

the instantaneous and local phase concept to higher dimensions has been treated in

the literature mostly in a way which is restricted to intrinsically one-dimensional

signals.

We will show how the analytic signal can be defined in 2D using the quaternionic

Fourier transform. We compare the quaternionic analytic signal to earlier approach-

es to the 2D analytic signal. The quaternionic analytic signal allows to generalize

the instantaneous phase which is defined as the triple of phase angles of the quater-

nionic value of the quaternionic analytic signal at each position. In the line indi-

cated above it follows immediately that in addition to the instantaneous quater-

nionic phase there should be the possibility to define a local quaternionic phase.

This is accomplished by introducing quaternionic quadrature filters. Actually, we

will deal with quaternionic Gabor filters which are no exact quaternionic quadra-

ture filters but provide a good approximation to such filters.

3.1 The Analytic Signal

The notion of the analytic signal of a real one-dimensional signal was introduced in

1946 by Gabor [44]. Before going into technical details we will give a vivid expla-

nation of the meaning of the analytic signal. If we regard a real one-dimensional

signal f as varying with time, it can be represented by the oscillating vector from



62 CHAPTER 3. THE PHASE CONCEPT

the origin to f(t) on the real line. Taking a snapshot of the vector at time t0 as

shown in figure 3.1 reveals no information about the amplitude or the instanta-

neous phase of the oscillation. I.e. it is invisible whether f is still growing to the

right or already on the returning way and what is the amplitude of the oscillation.

The analytic signal of f is a complex-valued signal, denoted by fA. Thus, fA can be

visualized as a rotating vector in the complex plane. This vector has the property

that its projection to the real axis is identical to the vector given by f. Moreover, if

a snapshot is taken, the length of the vector, and its angle against the real axis give

the instantaneous amplitude and the instantaneous phase of f, respectively. The

analytic signal is constructed by adding to the real signal f a signal which is shifted

by -�=2 in phase against f.
ffA(t0)f(t0)0

ifHi
Figure 3.2: Snapshot of the oscillating vector to f and the rotating vector to fA
at time t0.

In this chapter we will shortly review the analytic signal in 1D and four approaches

to the analytic signal in 2D which have occurred in the literature [48, 49, 45, 90].

We investigate the different principles which lie at the basis of the definitions and

conclude with a set of desirable properties of the 2D analytic signal. Based on the

QFT it is possible to introduce a novel definition of the analytic signal which fulfills

most of the desired properties.
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3.1.1 The 1D Analytic Signal

As mentioned above, the analytic signal fA of a real one-dimensional signal f is

defined as the sum of f and a version of f which is shifted in phase by (-�=2)
multiplied by i. The shifted version of f is the Hilbert transform fHi of f. Thus,

the analytic signal can be written as fA = f + ifHi. This is the generalization of

the complex notation of harmonic signals given by Euler’s equation exp(i2�ux) =
cos(2�ux) + i sin(2�ux).
A phase shift by (-�=2) – which is expected to be done by the Hilbert transform –

can be realized by taking the negative derivative of a function. E.g. we have- @@x cos(2�ux) = 2�u sin(2�ux);
which shifts the cosine-function and additionally scales the amplitude with the

angular frequency ! = 2�u. In order to avoid this extra scaling we divide each

frequency component by the absolute value of the angular frequency. This proce-

dure can easily be described in the Fourier domain: Taking the negative derivative

results in multiplication by -i2�u. Dividing by j2�uj results in the following pro-

cedure in the frequency domain:F(u) 7! -i ujujF(u) = -i sign(u)F(u);
which makes plausible the definition of the Hilbert transform.

The formal definitions of the Hilbert transform and of the analytic signal are as

follows:

Definition 3.1 (Hilbert Transform) Let f be a real 1D signal and F its Fourier trans-

form. The Hilbert transform of f is then defined in the frequency domain byFHi(u) = -isign(u)F(u) with sign(u) =8<: 1 if u > 00 if u = 0-1 if u < 0 : (3.1)

In spatial domain this reads fHi(x) = f(x) � 1�x; (3.2)

where � denotes the convolution operation.
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The convolution integral in (3.2), namelyfHi(x) = 1� ZR f(�)x- �d�
contains a singularity at x = �. This is handled by evaluating Cauchy’s principle

value, i.e. fHi(x) = 1�P ZR f(�)x- �d� (3.3)= 1� lim�!00@x-�Z-1 f(�)x- �d�+ 1Zx+� f(�)x- �d�1A (3.4)

Definition 3.2 (Analytic Signal) Let f be a real 1D signal and F its Fourier transform.

Its analytic signal in the Fourier domain is then given byFA(u) = F(u) + iFHi(u) (3.5)= F(u)(1 + sign(u)):
In the spatial domain this definition reads:fA(x) = f(x) + ifHi(x) = f(x) ���(x) + i�x� : (3.6)

Thus, the analytic signal of f is constructed by taking the Fourier transform F of f,
suppressing the negative frequencies and multiplying the positive frequencies by

two. Note that, applying this procedure, we do not lose any information about f
because of the Hermite symmetry of the spectrum of a real function.

The analytic signal enables us to define the notions of the instantaneous amplitude

and the instantaneous phase of a signal [45].

Definition 3.3 (Instantaneous Amplitude and Phase) Let f be a real 1D signal andfA its analytic signal. The instantaneous amplitude and and phase of f are then defined by

instantaneous amplitude of f(x) = jfA(x)j (3.7)

instantaneous phase of f(x) = atan2(IfA(x);RfA(x)): (3.8)

For later use we introduce the notion of a Hilbert pair.

Definition 3.4 (Hilbert Pair) Two real one-dimensional functions f and g are called a

Hilbert pair if one is the Hilbert transform of the other, i.e.fHi = g or gHi = f:
If fHi = g it follows that gHi = -f.
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We illustrate the above definitions by a simple example: The analytic signal off(x) = a cos(!x) is given by a cosA(!x) = a cos(!x) + ia sin(!x) = a exp(i!x).
The instantaneous amplitude of f is given by jfA(x)j = a while the instantaneous

phase is atan2(IfA(x);RfA(x)) = !x. Thus, the instantaneous amplitude and

phase of the cosine-function are exactly equal to the expected values a and !x,

respectively. Furthermore, cos and sin constitute a Hilbert pair. Figure 3.3 shows

another example of an oscillating signal together with its instantaneous amplitude

and its instantaneous phase.
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Figure 3.3: An oscillating signal, its instantaneous amplitude (signal envelope)

and its instantaneous phase (dashed).

However, the close relation of the instantaneous amplitude and phase to the local

structure of the signal gets lost if the signal has no well defined angular frequency.

Most of the time it is sufficient to require the signal to be of narrow bandwidth

([45], p. 171).

For this reason later (see the introduction to this chapter) Gabor filters will be in-

troduced which establish a relation between the local structure and the local phase

of a broader class of signals.

Comment on the Notion “Analytic Signal”

When Gabor introduced the analytic signal, he did not use this term. Instead, he

called it the complex signal. The reason why the attribute changed from complex

to analytic may lie in the following fact: The Laplace transform of a right-sided,

complex, one-dimensional signal f is an analytic function in the open right half-
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plane [87]. By right-sided we mean that f vanishes for negative arguments2: f(x) = 0
if x < 0. Since the analytic signal is the Fourier-dual to a right-sided signal (F(u) =0 if u < 0), this may be the reason for the notion “analytic signal”.

Since this notion sometimes causes confusion, we stress the fact that the analytic

signal is not an analytic function. The analytic signal fA : R ! C maps the real

numbers to the complex numbers, while the notion of an analytic function f is

defined only for functions f : C ! C . Even if we extend the domain of fA to the

complex numbers by embedding R into CfA : C ! C ; fA(x + iy) := fA(x);fA is not an analytic function. However, the analytic signal can be derived from a

function, analytic in one half-plane, namely the Laplace transform of FA(u) asfA(x) = LfFAg(x+ i0):
In the following we will use the term analytic signal as a notion on its own right,

without stressing the relation to analytic functions.

3.1.2 Approaches to an Analytic Signal in 2D

In order to extend the definition of the analytic signal to 2D we need some guide-

lines. As such a guideline we give a list of the main properties of the analytic signal

in 1D. Any new definition will be measured according to the degree to which it ex-

tends these properties to higher dimensions.

1. The spectrum of an analytic signal is right-sided

(FA(u) = 0 for u < 0).
2. Hilbert pairs are orthogonal.

3. The real part of the analytic signal fA is equal to the

original signal f.
4. The analytic signal is compatible (in a way explained

below) with the associated harmonic transform (in

case of the 1D analytic signal with the complex Fourier

transform.)

Table 3.1: Four properties of the analytic signal.

2Sometimes the notion causal signal is used instead of right-sided signal. The reason for this

notion is that the impulse response of a causal system is right-sided.
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We will explain the forth point. The analytic signal is called compatible with the

associated harmonic transform with transformation kernel K if RK and IK are a

Hilbert pair. In case of the one-dimensional Fourier transform this property is ful-

filled, since the real part of the Fourier kernel, i.e. R(exp(-i2�ux)) = cos(-2�ux)
is the Hilbert transform of sin(-2�ux), as was shown above.

As mentioned before there is no unique straightforward extension of the analytic

signal to higher dimensions. The above properties will serve as a quality measure

for any extension of the analytic signal to 2D.

All of the extensions of the analytic signal to 2D which will be made in this chapter

have a straightforward extension to n-dimensional signals. Again, we will use the

notation x = (x; y) and u = (u; v).
The first definition is based on the 2D Hilbert transform [90]:

Definition 3.5 (Total 2D Hilbert Transform) Let f be a real two-dimensional signal.

Its Hilbert transform is given byfHi(x) = f(x) �� 1�2xy� ; (3.9)

where � denotes the 2D convolution. In the frequency domain this readsFHi(u) = -F(u)sign(u)sign(v):
Sometimes fHi is called the total Hilbert transform of f [49].

For later use, we define also the partial Hilbert transforms of a 2D signal.

Definition 3.6 (Partial Hilbert Transform) Let f be a real two-dimensional signal. Its

partial Hilbert transforms in x- and y-direction are given byfHi1(x) = f(x) ���(y)�x � ; and (3.10)fHi2(x) = f(x) ���(x)�y � ; (3.11)

respectively. In the frequency domain this readsFHi1(u) = -iF(u)sign(u) and FHi2(u) = -iF(u)sign(v):
The partial Hilbert transform of a 2D signal can of course be defined with respect

to any orientation.

In analogy to 1D an extension of the analytic signal can be defined as follows:
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Figure 3.4: The spectrum of the analytic signal according to definition 3.7.

Definition 3.7 (Total Analytic Signal) The analytic signal of a real 2D signal f is de-

fined as fA(x) = f(x) � (�2(x) + i�2xy) (3.12)= f(x) + ifHi(x); (3.13)

where fHi is given by (3.9). In the frequency domain this definition readsFA(u) = F(u)(1- i sign(u)sign(v)):
The spectrum of fA according to definition 3.7 is shown in figure 3.4. It does

not vanish anywhere in the frequency domain. Hence, there is no analogy to the

causality property of an analytic signal’s spectrum in 1D. Secondly, Hilbert pairs

according to this definition are only orthogonal if the functions are separable [49].

Furthermore, the above definition of the analytic signal is not compatible with the

two-dimensional Fourier transform, since sin(2�ux) is not the total Hilbert trans-

form of cos(2�ux). Thus, the properties 1, 2 and 4 from table 3.1 are not satisfied

by this definition. A common approach to overcome this fact can be found e.g. in

Granlund [45]. This definition starts with the construction in the frequency do-

main. While in 1D the analytic signal is achieved by suppressing the negative fre-

quency components, in 2D one half-plane of the frequency domain is set to zero in

order to fulfill property no. 1 in table 3.1. It is not immediately clear how negative

frequencies can be defined in 2D. However, it is possible to introduce a direction

of reference defined by the unit vector ê = (cos(�); sin(�)). A frequency u withê � u > 0 is called positive while a frequency with ê � u < 0 is called negative. The

2D analytic signal can then be defined in the frequency domain.
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Definition 3.8 (Partial Analytic Signal) Let f be a real 2D signal and F its Fourier

transform. The Fourier transform of the analytic signal is defined by:FA(u) =8<: 2F(u) if u � ê > 0F(u) if u � ê = 00 if u � ê < 0 9=; = F(u)(1 + sign(u � ê)): (3.14)

In the spatial domain (3.14) readsfA(x) = f(x) ���(x � ê) + i�x � ê� �(x � ê?): (3.15)

The vector ê? is a unit vector which is orthogonal to ê : ê � ê? = 0.
Please note the similarity of this definition with the one-dimensional definition

(Def. 3.2). For ê> = (1; 0) equation (3.15) takes the formfA(x) = f(x) ���(x) + i�x� �(y) (3.16)= f(x) + ifHi1: (3.17)

Thus, the reason for the name partial analytic signal lies in the fact that it is the sum

of the original signal and the partial Hilbert transform as imaginary part. The partial

analytic signal with respect to the two coordinate axes has been used by Venkatesh

et al. [93, 92] for the detection of image features. They define the energy maxima of

the partial analytic signal as image features.

According to this definition the analytic signal is calculated line-wise along the

direction of reference. The lines are processed independently. Hence, definition

3.8 is intrinsically 1D, such that it is no satisfactory extension of the analytic signal

to 2D. Its application is reasonable only for simple signals, i.e. signals which vary

only along one orientation [45]. The orientation ê can then be chosen according to

the direction of variation of the image.

If negative frequencies are defined in the way indicated above, we can say that

property 1 of table 3.1 is fulfilled. Properties 2 and 3 are valid as well. This follows

from the fact that merely the 1D analytic signal is evaluated line-wise, which leads

to a trivial extension of these properties. Even property 4 is ”almost” valid: sin(ux+vy) is the partial Hermite transform (i.e. with respect to the x direction) of cos(ux+vy) for all frequencies u with u 6= 0. However, the main drawback of definition 3.8

is the intrinsic one-dimensionality of the definition and the non-uniqueness with

regard to the orientation of reference ê.
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Figure 3.5: The spectrum of the analytic signal according to definition 3.8.

Both definitions presented so far seem to establish the following dilemma: Either

an intrinsically two-dimensional definition of the analytic signal based on the total

Hilbert transform can be introduced, which does not extend the main properties of

the 1D analytic signal, or these properties are extended by an intrinsically one-di-

mensional definition based on the partial Hilbert transform.

An alternative to these approaches was recently introduced by Hahn [48, 49]. Hahn

avoids the term ”analytic signal” and uses Gabor’s original term ”complex signal”

instead.

Definition 3.9 Let f be a real, two-dimensional function and F its Fourier transform. The

2D complex signal (according to Hahn [49]) is defined in the frequency domain byFA(u) = (1 + sign(u))(1 + sign(v))F(u):
In the spatial domain this readsfA(x) = f(x) ���(x) + i�x���(y) + i�y� (3.18)= f(x) - fHi(x) + i(fHi1(x) + fHi2(x)); (3.19)

where fHi is the total Hilbert transform fHi1 and fHi2 are the partial Hilbert transforms.

The meaning of definition 3.9 becomes clear in the frequency domain: Only the

frequency components with u > 0 and v > 0 are kept, while the components in the

three other quadrants are suppressed (see figure 3.6):FA(u) = (1 + sign(u))(1 + sign(v))F(u):
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0

0 0

4F(u)v u
Figure 3.6: The spectrum of the analytic signal according to Hahn [48] (defini-

tion 3.9).

Thus, the problem of defining positive frequencies is solved in another way then

in definition 3.8.

A main problem of definition 3.9 is the fact that the original signal cannot be re-

constructed from the analytic signal, since due to the Hermite symmetry only one

half-plane of the frequency domain of a real signal is redundant. For this reason

Hahn proposes to calculate not only the analytic signal with the spectrum in the

upper right quadrant but also another analytic signal with its spectrum in the up-

per left quadrant. It can be shown that these two analytic signals together contain

all the information of the original signal [49]. When necessary we distinguish the

two analytic or complex signals by referring to them as definition 3.9 and 3.9a,

respectively.

Thus, the complete analytic signal according to definition 3.9 consists of two com-

plex signals, i.e. two real parts and two imaginary parts or, in polar representation,

of two amplitude- and two phase-components which makes the interpretation, es-

pecially of the amplitude, difficult. Furthermore, it would be more elegant to ex-

press the analytic signal with only one function instead of two. Definition 3.9 ful-

fills properties 1 and 2 from table 3.1. The very important property that it should

be possible to reconstruct the signal from its analytic signal is only fulfilled if two

different complex signals are calculated using two neighbored quadrants of the fre-

quency domain. Hahn [49] mentions that his definition of the 2D analytic signal is

compatible with the 2D Fourier transform for the following reason: The 2D Fourier

kernel can be written in the form

exp(i2�ux) = cos(2�ux) cos(2�vy) - sin(2�ux) sin(2�vy) (3.20)+ i(cos(2�ux) sin(2�vy) + sin(2�ux) cos(2�vy)) (3.21)

where for convenience we omitted the minus sign in the exponential. According

to definition 3.9 this is exactly the complex signal of f(x) = cos(2�ux) cos(2�vy).
However, this fulfills only a weak kind of compatibility and not the one defined by
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us above. This would require that the analytic signal ofR exp(i2�ux) would equal

exp(i2�ux).
The remaining problems can be summarized as follows. The original signal cannot

be recovered from Hahn’s analytic signal. This restriction can only be overcome by

introducing two complex signals for each real signal, which is not a satisfactory so-

lution. Furthermore, Hahn’s analytic signal is not compatible with the 2D Fourier

transform in the strong sense.

Apart from these disadvantages, it is clear from the above analysis, that, among

the definitions introduced so far, Hahn’s definition is closest to a satisfactory 2D

extension of the analytic signal. In the following section we will show how Hahn’s

frequency domain construction can be applied to the construction of a quaternionic

analytic signal, which overcomes the remaining problems.

3.1.3 The Quaternionic Analytic Signal

Hahn’s approach to the analytic signal faces the problem that a two-dimensional

complex hermitian function cannot be recovered if it is known in only one quadrant

of its domain. For this reason Hahn introduced two complex signals to each real

two-dimensional signal. We will show how this problem is solved using the QFT.

Since the QFT of a real signal is quaternionic hermitian (see theorem 2.11), we do

not lose any information about the signal in this case (see figure 3.7).

0

0 0

v u4Fq(u) �(Fq(u; v)) Fq(u; v)�(Fq(u; v))
(Fq(u; v)) v u
Figure 3.7: The quaternionic spectrum of a quaternionic analytic signal (left).

The quaternionic analytic signal contains the whole information of the origi-

nal real signal, since the QFT of a real signal is quaternionic hermitian. Thus,

the quaternionic spectrum of a real signal can be reconstructed from only one

quadrant (right).

Thus, we define the quaternionic analytic signal in the frequency domain as in def-

inition 3.9, with the only difference that we use the quaternionic frequency domain
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defined by the QFT instead of the complex frequency domain.

Definition 3.10 (Quaternionic Analytic Signal) Let f be a real two-dimensional sig-

nal and Fq its QFT. In the quaternionic frequency domain we define the quaternionic ana-

lytic signal of a real signal asFqA(u) = (1 + sign(u))(1 + sign(v))Fq(u);
where x = (x; y) and u = (u; v). Definition 3.10 can be expressed in the spatial domain

as follows: fqA(x) = f(x) + n>fHi(x); (3.22)

where n = (i; j; k)> and fHi is a vector which consists of the total and the partial Hilbert

transforms of f according to definitions 3.5 and 3.6:fHi(x) = 0@ fHi1(x)fHi2(x)fHi(x) 1A : (3.23)

Note that, formally, (3.22) resembles the definition of the one-dimensional analytic

signal (3.6). Since the quaternionic analytic signal consists of four components we

replace the notion of a Hilbert pair (definition 3.4) by the notion of a Hilbert quadru-

ple.

Definition 3.11 (Hilbert Quadruple)

Four real two-dimensional functions f�; � 2 f1; : : : 4g are called a Hilbert quadruple ifI(f�)qA = f� (3.24)J (f�)qA = f� (3.25)K(f�)qA = f� (3.26)

for some permutation of pairwise different �; �; �; � 2 f1; : : : 4g.
Theorem 3.1 The four components of the QFT-kernel build a Hilbert quadruple.

Proof: Since the quaternionic analytic signal of f(x) = cos(!xx) cos(!yy) is given

by fqA(x) = exp(i!xx) exp(j!yy), which is the QFT-kernel, we haveI(R exp(i!xx) exp(j!yy))qA = I exp(i!xx) exp(j!yy) (3.27)J (R exp(i!xx) exp(j!yy))qA = J exp(i!xx) exp(j!yy) (3.28)K(R exp(i!xx) exp(j!yy))qA = K exp(i!xx) exp(j!yy): (3.29)

which concludes the proof. 2
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analytic signal instantaneous amplitude

Def. 3.7
pf2(x) + f2Hi(x)

Def. 3.8
qf2(x) + f2Hi1(x)

Def. 3.9
p[f(x) - fHi(x)]2 + [fHi1(x) + fHi2(x)]2

Def. 3.9a
p[f(x) + fHi(x)]2 + [fHi1(x) - fHi2(x)]2

Def. 3.10
qf2(x) + f2Hi1(x) + f2Hi2(x) + f2Hi(x)

Table 3.2: The tabular shows the different possible definitions of the instanta-

neous magnitude in 2D. On the right hand side the instantaneous amplitude of

the 2D signal f is given according to the definition of the analytic signal indi-

cated on the left hand side.

3.1.4 Comparison of the Different Approaches to the 2D Analytic

Signal

One major advantage of the analytic signal over the original real signal is the possi-

bility to easily define the instantaneous amplitude and phase of a signal. Of course

in 2D the different definitions given above lead to different definitions of the in-

stantaneous amplitude and phase in 2D. We will give these definitions explicitly in

the following.

As shown in section 3.1.1 the instantaneous amplitude of a real 1D signal can be

defined as the absolute value of the associated analytic signal. We will use the same

definition in 2D. Depending on the chosen form of the 2D analytic signal the defi-

nition of the instantaneous amplitude varies. In order to give a clear overview we

list the possible definitions in table 3.2. The instantaneous phase of a real one-di-

mensional signal f is defined as the angular phase of the analytic signal fA. We will

use the same definition in 2D. In order to define the instantaneous phase via the

quaternionic analytic signal (definition 3.10) we make use of the notion of the an-

gular phase of a quaternion as defined in section 2.1.2 (definition 2.7). The different

definitions of the instantaneous phase corresponding to the different definitions of

the two-dimensional analytic signal are given in table 3.3
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analytic signal instantaneous phase

Def. 3.7 atan2(fHi(x); f(x))
Def. 3.8 atan2(fHi1(x); f(x))
Def. 3.9 atan2([fHi1(x) + fHi2(x)]; [f(x) - fHi(x)])
Def. 3.9a atan2([fHi1(x) - fHi2(x)]; [f(x) + fHi(x)])
Def. 3.10 arg(f(x) + nfHi(x))

Table 3.3: The tabular shows the different possible definitions of the instanta-

neous phase in 2D. On the right hand side the instantaneous phase of the 2D

signal f is given according to the definition of the analytic signal indicated on

the left hand side.

In order to compare the different approaches to the 2D analytic signal we test them

on the four properties of the 1D analytic signal given in table 3.1.

The first property (”The spectrum of the analytic signal is right-sided.”) cannot be

tested uniquely, since positive frequencies are not well defined in 2D. If we take the

viewpoint of Hahn [48] that positive frequencies in 2D are those frequencies which

are positive with respect to each component, only the definitions 3.9 and 3.10 fulfill

the first property. However, in table 3.4, where the results of this comparison are

listed, we claim that property no. 1 in table 3.1 is fulfilled if the spectrum of the

analytic signal vanishes either in one half or in three quadrants of the frequency

domain.

Property 3 is concerned with the reconstructibility of the original signal as the real

part of its analytic signal. This property is fulfilled for all definitions except for

definition 3.9. However, we have to mention that in definition 3.9 it is possible to

retain the original image by evaluating both analytic signals (3.9 and 3.9a). This

is not necessary in definition 3.10, since the QFT of a real signal is quaternionic

hermitian. For definitions 3.7, 3.8 and 3.9 the real part of the analytic signal is

identical with the original signal.

As we will show in the next section, the last property is fulfilled optimally by the

new definition (def. 3.10). We demonstrate the effects of the different definitions of

the analytic signal in 2D by applying them to two test-images (see figure 3.8). The

first of these test-images is the product of a horizontal and a vertical cosine-function
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Property

Definition 1 2 3 4 5

Def. 3.7 - - + - +
Def. 3.8 + + + - -
Def. 3.9 + + - - +
Def. 3.9a + + - - +
Def. 3.10 + - + + +

Table 3.4: Behavior of the different definitions of the two-dimensional analytic

signal according to the properties listed in table 3.1. As a fifth point we added

the property of a definition of being intrinsically two-dimensional .

Figure 3.8: The test-images. Left: product of a horizontal and a vertical cosine-

wave, multiplied by a Gaussian window. Right: modulated Gaussian circle.

together with a Gaussian window, the second is a modulated Gaussian weighted

circle (see figure 3.8). In figure 3.9 we show the magnitudes of the different ana-

lytic signals of the test-images. Note, that Hahn’s definition yields two different

analytic signals, denoted here by def. 3.9 and def. 3.9a, respectively. Definition 3.8

is applied with ê = (1; 0). Obviously definitions 3.7 and 3.8 are not successful in

providing the envelope of the first test-image.

In this case, the two amplitudes given by definition 3.9 are identical and coincide

with the result of definition 3.10. It is easy to show that this is always the case

for x1-x2-separable signals. As another interesting property of the quaternionic

analytic signal of a separable signal fwe find that the first two quaternionic phase-

components �(x) and �(x) equal the complex phase of the separable components
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Figure 3.9: The magnitudes of the different analytic signals of the test-images.

From left to right: def. 3.7, def. 3.8, def. 3.9, def. 3.9a, def. 3.10.

of f, �1(x1) and �2(x2), respectively3:�(x1; x2) = �1(x1) (3.30)�(x1; x2) = �2(x2): (3.31)

The envelope of the second test-image is provided most satisfactorily by definition

3.10. Only definition 3.10 handles both cases satisfactorily. Of course, one should

keep in mind that a definition cannot ever be true or false. However, the value of a

definition can be estimated.

Here we are dealing with the extension of an existing definition (the 1D analytic

signal) to a higher-dimensional case. Thus, we can compare the features of the

original and the extended definition and take the compatibility of both as a mea-

sure of the value of the new definition. In this sense, we can say that the new

definition of the analytic signal in 2D is superior to the older approaches. Fur-

thermore, the quaternionic analytic signal comprises in its components the partial

analytic signals with respect to the coordinate axes and the total analytic signal.

The quaternionic analytic signal combines in itself the earlier approaches in a nat-

ural way: The vector fHi in (3.23) is not constructed artificially. The quaternionic

analytic signal is rather defined in a very simple way in the frequency domain.

3.2 Gabor Filters and the Local Phase

We have shown how the instantaneous phase can be evaluated using the analytic

signal. However, the instantaneous phase loses its direct relation to the local signal

3I am grateful to Prof. S. Hahn for pointing out this fact during a personal communication.
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structure, when the signal is not of narrow bandwidth [45]. In order to overcome

this restriction, local linear shift-invariant bandpass filters with a one-sided transfer

function can be applied to a signal. According to the definition of the 1D analytic

signal the impulse responses of these filters, and the filter responses to any real

signal as well, are analytic signals. Filters of this kind are called quadrature filters.

The angular phase of the quadrature filter response to a real signal is called the local

phase. In this section we will review 1D and 2D complex Gabor filters which are an

approximation of a quadrature filter. Further, we regard the relation between the

local structure of a signal and the local phase estimated by a Gabor filter.

Gabor filters correspond to the Fourier kernel in a way clarified below. Thus, it

is possible to define quaternionic Gabor filters based on the quaternionic Fourier

transform and to introduce the local quaternionic phase. Quaternionic Gabor filters

are introduced in section 3.2.3. We will show how some interesting properties of 1D

complex Gabor filters are extended to 2D by quaternionic Gabor filters in sections

3.2.5.4 and 3.2.5.5.

3.2.1 Complex Gabor Filters

Gabor filters have been shown to be a useful tool in different image processing and

analysis tasks such as texture segmentation and classification, edge detection, and

local phase and frequency estimation for image matching. Gabor filters are appro-

priate wherever one is interested in local spectral properties of a signal. They have

the main advantage of being optimally localized with respect to the uncertainty

principle in the spatial and the frequency domain simultaneously [44]. In other

words, they fulfill the uncertainty relation as an equality.

Complex Gabor filters are defined as linear shift-invariant filters with the Gaussian

windowed basis functions of the Fourier transform as their basis functions.

Definition 3.12 (1D Complex Gabor Filter) A one-dimensional complex Gabor filter

is a linear shift-invariant filter with the impulse responseh(x;N;u0; �) = g(x;N;�) exp(i2�u0x); (3.32)

where g(x;N;�) is the Gauss functiong(x;N;�) = N exp

�- x22�2� :
The Gabor filters have as parameters the normalization constant N, the center frequencyu0 and the variance � of the Gauss function. However, most of the time we will not write
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down these arguments explicitly. Where no confusion is possible we use the notation h(x)
and g(x) for the Gabor filter and the Gaussian function at position x, respectively.

Except where specifically indicated we use the normalization N = (p2��2)-1 such

that
RRg(x)dx = 1. Sometimes other parameterizations of the Gabor filter than the

one given in definition 3.12 are used:h(x) = g(x) exp(i!0x) (3.33)= g(x) exp

�icx� � : (3.34)

In (3.33) we simply replaced the center frequencyu0 by the angular frequency!0 =2�u0. This can be converted into (3.34) by definingc = !0� (3.35)

and substituting !0 by c=�. The latter parameterization is especially useful when

the emphasis lies on Gabor wavelets. The reason is that the Gabor filter does not

change its shape when� is varied while we keep cfixed. Thus, all Gabor filters with

the same value c can be derived from one filter by scaling. This is the main prop-

erty of wavelets. However, when the attention lies on spatial frequencies directly,

it may be preferable to parameterize the Gabor filters through � and u0. The mean-

ing of the different parameterizations is visualized in figure 3.10. Analogously the

definition of 2D complex Gabor filters is based on the 2D Fourier transform:

Definition 3.13 (2D Complex Gabor Filter) A two-dimensional complex Gabor filter

is a linear shift-invariant filter with the impulse responseh(x;u0; �; �;�) = g(x 0; y 0) exp(2�i(u0x + v0y)) (3.36)

with g(x; y) = N exp

�-x2 + (�y)2�2 �
where � is the aspect ratio. The coordinates (x 0; y 0) are derived from (x; y) by a rotation

about the origin through the angle �:� x 0y 0 � = � cos� sin�- sin� cos� �� xy � : (3.37)

Again, we will choose the normalization such that
RRg(x; y)dxdy = 1, i.e. N =�2��2 .
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Figure 3.10: Upper row: the imaginary part of three Gabor filters with c = 3
and variance � = 30 (left), � = 60 (middle), and � = 90 (right). Lower row: the

imaginary part of three Gabor filters with ! = 1=10 and variance � = 30 (left),� = 60 (middle), and � = 90 (right).

In frequency domain the 1D Gabor filters take the following form:h(x;u0; �) H(u;u0; �) = exp(-2�2�2(u - u0)2):
The transfer function of a 2D Gabor filter is given byh(x;u0; �; �;�) H(u;u0; �; �;�) = exp(-2�2�2[(u 0 - u 00) + (v 0 - v 00)2=�]):
Thus, Gabor filters are bandpass filters. The radial center frequency of the 2D Ga-

bor filter is given by F = pu20 + v20 and its orientation is � = atan(v0=u0). In most

cases it is convenient to choose � = � such that the orientation of the complex sine

gratings is identical with the orientation of one of the principle axes of the Gauss

function. Figure 3.11 shows the transfer function of a one-dimensional complex

Gabor filter.
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Figure 3.11: The transfer function of a one-dimensional Gabor filter with u0 =100 and � = 0:01.

It can be seen that the main amount of energy of the Gabor filter is centered around

the frequencyu0 in the positive half of the frequency domain. However, the energy

in the negative half is not equal to zero. Because of this property, the filter response

of the Gabor filter to a real signal is only an approximation to an analytic signal

(which is only one-sided in the frequency domain). The error of this approximation

decreases with increasing u and with increasing �.

3.2.2 Local Phase in 1D

The local phase of a signal is defined as the angular phase of its complex Gabor

filter response. The relation to the local structure of the signal becomes clear in

the following way. At a signal position with locally even symmetry only the even

part of the Gabor filter which is real-valued matches. The angular phase of a real

number is either 0 for a positive number or � for a negative one. Thus, if the

even filter component matches the signal positive, the local phase is 0, if it matches

negative, the local phase is �. A similar reflection clarifies the case of a locally odd

structure. In this case only the odd, and thus imaginary, filter component matches

the signal. Since the angular phase of a pure imaginary number is �=2 for a positive

imaginary part and -�=2 otherwise, these values represent odd local structures.

Figure 3.12 shows the variation of the local phase around the four fundamental

structures.
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Figure 3.12: Top row: the four fundamental local structures (rising and falling

step edge, and positive and negative peak) and the variations of the local phase

around these structures (bottom).

φ

Figure 3.13: The relation between local signal structure and local phase. (See

[45].)

Figure 3.13 sketches the relation between structure and phase in another way: the

orientation in the circle indicates the value of the local phase. At the values 0, �=2,� and -�=2 the related structure is shown. An important feature of the local phase

is that it is independent of the signal energy. This makes the local phase very

robust against changing lighting conditions.

Note, that the value of the local phase at a certain signal position depends on the

chosen filter parameters. I.e. Gabor wavelets will only detect features at the scale

to which they are tuned.
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Figure 3.14: Top: a signal with features on two different scales. Bottom left:

the local phase of the signal around the origin on a fine scale (� = 10, c = 2).

Bottom right: the local phase of the signal around the origin on a coarse scale

(� = 100, c = 2). At the origin the local phase equals -�=2 (rising edge) on a

fine scale and 0 (peak) on a coarse scale.

3.2.3 Quaternionic Gabor Filters

Definition 3.14 (Quaternionic Gabor Filter) In analogy to the complex Gabor filters

we introduce quaternionic Gabor filters. The impulse response of a quaternionic Gabor

filter is a Gaussian-windowed basis functions of the QFT:hq(x;u0; �; �) = g(x;�; �) exp(i2�u0x) exp(j2�v0y) (3.38)= g(x;�; �) exp(i!1x) exp(j!2y) (3.39)= g(x;�; �) exp
�ic1!1x� �

exp
�jc2�!2y� � : (3.40)

The different possible parameterizations can be explained in analogy to complex one-dimen-

sional Gabor filters. We do not use rotated Gaussian windows here.

It follows from the modulation theorem of the Fourier transform that complex

Gabor filters are shifted Gaussians in the frequency domain. In section 2.2.2 we
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Figure 3.15: A quaternionic Gabor filter with parameters �1 = 20, �2 = 10,c1 = c2 = 2. The size of the filter mask is 100� 100.

showed that there exists a modulation theorem for the QFT as well. Consequently,

quaternionic Gabor filters are shifted Gaussian functions in the quaternionic fre-

quency domain. Quaternionic Gabor filters thus belong to the ”world” of the QFT

rather than to the ”complex Fourier world”. The QFT of a quaternionic Gabor filter

is given byhq(x;u0; �; �) H Hq(u;u0; �; �) = exp(-2�2�2[(u- u0)2 + (v - v0)2=�2])
Thus, for positive frequencies u0 and v0 the main amount of the Gabor filter’s en-

ergy lies in the upper right quadrant. Therefore, convolving a real signal with a

quaternionic Gabor filter yields an approximation to a quaternionic analytic sig-

nal.

A typical quaternionic Gabor filter is shown in figure 3.15.

3.2.4 Local Phase in 2D

The extension of the phase concept to two or more dimensions is an important,

though nontrivial subject. One approach which has been made by Granlund [45]

shall be reported here. It is based on the orientation tensor which was first intro-

duced by Knutsson [65].

3.2.4.1 Intermezzo: The Orientation Tensor

Local orientation analysis requires a mathematically valid representation of orien-

tation. One main requirement is that the representation takes account of the fact

that orientation of a grey value structure can only be defined modulo 180�. Thus, a

unit vector pointing into the direction of the gradient is not an appropriate repre-

sentation.
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Knutsson [65] proposed the tensor

T = cx̂x̂> = c� x̂21 x̂1x̂2x̂1x̂2 x̂22 �
(3.41)

as representation of the orientation of the vector x. Here c is some real number andx̂ = x=jxj = (x̂1; x̂2)>. The tensor representation is valid in the above sense since a

change of sign of x does not influence the corresponding tensor T.

This abstract conception can be understood using the following interpretation. The

projection operator onto the line defined by x is a valid representation of the ori-

entation of x since it is invariant with respect to rotations through 180� since x and-x define the same line. The projection of a vector a onto the line given by x isPx(a) = (a � x̂)x̂ (3.42)= � (a1x̂1 + a2x̂2)x̂1(a1x̂1 + a2x̂2)x̂2 � (3.43)= � x̂21 x̂1x̂2x̂1x̂2 x̂22 �� a1a2 � : (3.44)

Thus, the projection operator Px is nothing else but the orientation tensor T withc = 1.
A filter method for measuring the local orientation tensor using polar separable

quadrature filters is described in [45]. Jähne [59] proposes a simple filter method

based on separable partial derivative operators and smoothing filters.

The orientation tensor concept is based on the idealized assumption that the image

varies only along one orientation. Such signals are sometimes called simple signals

and can be written as f(x) = g(x�ê), where g depends only on one real variable. The

unit vector ê indicates the direction of variation. Natural images are not generally

simple and consequently the measured local tensors are not necessarily of the form

(3.41)4. For this reason sometimes the name structure tensor is preferred instead

of orientation tensor. The 2D structure tensor is always a linear combination of the

identity operator and the projection operator to a line in R2.
3.2.4.2 Local Complex Phase

Using the structure tensor T the image can be adaptively filtered with an orienta-

tion selective quadrature filter or Gabor filter. The orientation of this filter is cho-

sen according to the eigenvector ê corresponding to the largest eigenvalue of T.

4However, the tensors obtained by the filter methods cited above are always symmetric.
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This eigenvector represents the dominant local orientation of the image. Thus, the

intrinsically one-dimensional local phase across the dominant orientation is mea-

sured as the angular phase of the complex response of a filter with orientation ê.

This makes sense where the signal is locally simple. Granlund et al. [45] propose

to represent the 2D local phase by a three component vector x withx1 = �1 cos(') sin(�) (3.45)x2 = �1 sin(') sin(�) (3.46)x3 = �1 cos(�); (3.47)

where �1 is the largest eigenvalue of the orientation tensor T, ' is the angle of the

corresponding eigenvector against the x-axis and � is the local phase measured by

the Gabor or quadrature filter.

3.2.4.3 Local Quaternionic Phase

We now define the local quaternionic phase of a real two-dimensional signal as

the angular phase of the filter response to a quaternionic Gabor filter. The angular

phase is evaluated according to the rules given in table 2.2.

In 1D we can make the statement: The local phase estimates and spatial position

are equivariant [45]. I.e. generally the local phase of a signal varies monotonically

up to 2�-wrap-arounds. There are only singular points with low or zero signal

energy where this equivariance cannot be found anymore. A simple example is

the cosine function cos(x). If we apply a well-tuned Gabor filter for estimating the

local phase � of this function, we find that it is almost equal to the spatial position:�(x) � x for x 2 [0; 2�[. This leads us to an interpretation of the local quaternionic

phase.

We make a similar example as in the one-dimensional case by replacing cos(x) by

cos(x) cos(y). The first two components of the local phase � and � turn out to ap-

proximate the spatial position: �(x) � x and �(x) � y for (x; y) 2 [0; 2�[�[0; �[.
In general it turns out that these two components of the local phase are equivari-

ant with spatial position. The reason for the interval [0; 2�[�[0; �[, which follows

mathematically from the definition of the angular phase of unit quaternions, can

be understood from figure 3.16.
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Figure 3.16: The function f(x; y) = cos(x) cos(y) with (x; y) 2 [0; 4�[�[0; 3�[
(left) and (x; y) 2 [0; 2�[�[0; �[ (right).

While the spatial position can be recovered uniquely from the local signal struc-

ture within the interval [0; 2�[�[0; �[, there will occur ambiguities if the interval is

extended. The whole function cos(x) cos(y) can be build from patches of the size2�� �. Considering this example the third component of the local phase is always

zero:  = 0. The meaning of this phase component becomes obvious if we vary

the structure of the test signal in the following way:

The function cos(!1x1) cos(!2x2) can be written as the sum

cos(!1x1) cos(!2x2) = 12(cos(!1x1 +!2x2) + cos(!1x1 -!2x2)):
If we consider linear combinations of the formf(x;�) = (1- �) cos(!1x1 +!2x2) + � cos(!1x1 -!2x2) (3.48)

we find that  is constant within each pattern with fixed �, and varies monotoni-

cally with the value of � 2 [0; 1]. This behavior is shown in figure 3.17. The graph

in figure 3.17 results from convolving sampled versions of f(x;�) for different val-

ues of �with a discrete quaternionic Gabor filter and evaluating the -phase of the

filter response according to table 2.2.

Another method5 of evaluating the -phase of f(x;�) is calculating its quaternionic

analytic signal fqA(x;�) and its  -phase analytically. This leads to (x;�) = -0:5 arcsin

� 2(1- 2�)1+ (2�- 1)2� :
5This was proposed by Prof. Hahn.
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Figure 3.17: Dependence of the third phase component  on the local image

structure.

The first two phase components, namely � and � do not change their meaning,

while � varies. Only for the values � = 0 and � = 1, i.e.  = ��4 , the structure

degenerates into an intrinsically one-dimensional structure. Hence, the spatial po-

sition cannot any longer be recovered from the local structure. This corresponds to

the singularity occurring in the evaluation of the angular phase of a quaternion for = ��4 . In this case only ��� can be evaluated. The remaining degree of freedom

can i.e. be eliminated by setting � = 0.
In 1D there were four fundamental local structures which could be distinguished

from the local phase. In 2D we find sixteen such structures as shown in figure

3.18. The structures in the first and second column respond solely to one com-

ponent of the quaternionic Gabor filter.6 The filter responses of the other three

components vanish at the center of the patterns. Consequently the  -component

of the quaternionic phase is 0 for these structures. The patterns in column three

and four respond to superpositions of two components of the quaternionic Gabor

6We consider only the filter response at the center of the image.
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filter (compare figure 3.21). For these patterns takes the values ��=4. In this case

we have the freedom to set � to zero. The �-phase component in this case takes the

same values as the 1D phase for the corresponding 1D structures (compare figure

3.13).

0@ -�00 1A 0@ 00-�=4 1A0@ -�=20-�=4 1A0@ 0-�=20 1A
0@ �=20�=4 1A0@ 000 1A 0@ 0�=20 1A 0@ �=20-�=4 1A 0@ -�0-�=4 1A

0@ -�=2-�=20 1A 0@ �=200 1A 0@ 00�=4 1A0@ �=2-�=20 1A 0@ -�=200 1A 0@ -�=20�=4 1A 0@ -�0�=4 1A
Figure 3.18: Sixteen 2D structures and the corresponding phase values(�; �;  )> evaluated for the central pixel.

3.2.5 Some Properties of Quaternionic Gabor Filters

3.2.5.1 Gabor Filter Expansions of Images

In 1980 Bastiaans [6] proved that any signal can be decomposed into a discrete set

of Gabor functions. However, since the Gabor functions do not build an orthogonal

basis, the coefficients of the expansion cannot be obtained by projecting the signal

onto the Gabor function set. Bastiaans showed that a function set biorthogonal to

the Gabor functions exists which has to be used in order to obtain the expansion

coefficients.

Jain [60] points out that a Gabor filter decomposition can be regarded as nearly

orthogonal since the overlap between the filters in the frequency domain is small,

if the parameters are well chosen. He shows results of images which were ana-

lyzed and synthesized using the same set of Gabor filters. The results show that

there occurs nearly no visible error in the reconstruction. The fact that only the
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channel amplitudes of the reconstruction but not the phases contain a small error

contributes to the good reconstruction, since as mentioned earlier (see introduction

to this chapter) the phase carries the main part of the signal information.v u v u
Figure 3.19: Left: the complex frequency domain covered by the transfer func-

tions of differently tuned Gabor wavelets. Right: the quaternionic frequency

domain covered by the transfer functions of differently tuned quaternionic Ga-

bor wavelets.

3.2.5.2 Relations Between Complex and Quaternionic Gabor Filters

There is a simple relation between complex and quaternionic Gabor filters. Each

component of a complex Gabor filter with aspect ratio � = 1may be written as the

sum of two quaternionic Gabor filter components:he(x; y) = g(x; y) cos(!1x+!2y)= g(x; y)(cos(!1x) cos(!2y) - sin(!1x) sin(!2y))= hqee(x; y) - hqoo(x; y) (3.49)ho(x; y) = g(x; y) sin(!1x +!2y)= g(x; y)(cos(!1x) sin(!2y) + sin(!1x) cos(!2y))= hqoe(x; y) + hqeo(x; y): (3.50)

From the same quaternionic Gabor filter a second complex Gabor filter can be gen-

erated by he(x; y) = g(x; y) cos(!1x-!2y)hqee(x; y) + hqoo(x; y)= hqee(x; y) + hqoo(x; y) (3.51)ho(x; y) = g(x; y) sin(!1x -!2y)= hqeo(x; y) - hqoe(x; y): (3.52)
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k+e (x; y)k+o (x; y)k-e (x; y)k-o (x; y)

9>>>>>>>>>>=>>>>>>>>>>;9>>>>>>>>>>=>>>>>>>>>>;
j � j�! m+(x; y)j � j�! m-(x; y)++-

-
Figure 3.20: Relation between quaternionic and complex Gabor filter re-

sponses.

Thus, each quaternionic Gabor filter corresponds to two complex Gabor filters.

Sometimes these two filters are denoted byh+ ((3.49)+i (3.50)) andh- ((3.51)+i(3.52)),

respectively. Analogously, we denote the filter responses to h+ and h- by k+ andk-, and the local amplitudes jk+j and jk-j bym+ andm-, respectively. The response

of a signal f(x; y) to a Gabor filter will be denoted by k(x; y) for a complex Gabor

filter and kq(x; y) for a quaternionic Gabor filter:k(x; y) = h(x; y) � f(x; y)= (he(x; y) + iho(x; y))f(x; y)= ke(x; y) + iko(x; y) (3.53)kq(x; y) = hq(x; y) � f(x; y)= (hqee(x; y) + ihqoe(x; y) + jhqeo(x; y) + khqoo(x; y))f(x; y)= kqee(x; y) + ikqoe(x; y) + jkqeo(x; y) + kkqoo(x; y): (3.54)

Figure 3.20 shows the relations between the responses of an image f to a quater-

nionic Gabor filter and to the corresponding complex Gabor filters.

Theorem 3.2 The filter responses of the complex Gabor filters h+ and h- can be obtained

from kq by k+(x) = (kqee - kqoo) + i(kqoe + kqeo) (3.55)k-(x) = (kqee + kqoo) + i(kqoe - kqeo): (3.56)
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Figure 3.21: Relation between quaternionic and complex Gabor filters.



3.2 Gabor Filters and the Local Phase 93

Proof: The theorem follows from the definition of h+ and h- and the fact that hq is

an LSI-filter. 2
Algebraically, the relation between quaternionic and complex Gabor filters can be

illuminated if we apply the switch operation from definition 2.17 to the quater-

nionic filter:

Theorem 3.3 Let hq be a quaternionic Gabor filter. Then�(S2(hq(x))) = (h+(x); h-(x)) 2 C 2 ;
where � establishes the isomorphism between HCA2 and C 2 :� : HCA2 ! C 2 (3.57)(� + �i1 + 
i2 + �i3) 7! ((� - �) + i(�+ 
); (� + �) + i(�- 
)): (3.58)

The same is true for the filter responses to real images�(S2(kq(x))) = (k+(x); k-(x)) 2 C 2 :
Proof: The theorem follows directly from applying � to S2(hq(x)) and the definition

of h+ and h-. 2
3.2.5.3 Algorithmic Complexity of Gabor Filtering

When performing a Gabor filtering on the computer we have to use discrete Gabor

filter masks of the form: h = [hm;n]m;n2f1;:::Mg withhm;n = exp

"-�m- M - 12 �2, (2�1)2 - �n- M- 12 �2, (2�2)2#��
cos

�2�M �u�m- M- 12 �+ v�n- M- 12 ��
+i sin

�2�M �u�m- M- 12 �+ v�n- M- 12 ��
� : (3.59)

Using this convention the Gabor filter mask is an M �M matrix. The origin is lo-

cated at the center of the matrix, therefore it is advantageous to choose M odd, in

order to have a center pixel in the filter mask. The frequencies u and v count how

many periods fit into the filter mask in horizontal and vertical direction, respec-

tively.
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The number of multiplications required by the convolution of anN�N image with

an M �M filter mask in a direct manner is O(N2M2). When the filter mask h is

separable (h = hc � hr), where hc and hr are a column vector and a row vector of

lengthM, respectively, the filtering operation is much faster. Since the convolution

operation is associative we can write the filtering asF = f � (hc � hr) = (f � hc) � hr: (3.60)

Thus, the number of required multiplications reduces to O(N2M). It has been

shown how Gabor filter components can be constructed as the sum of components

of a quaternionic Gabor filter. Since quaternionic Gabor filters are separable, this

opens the possibility of implementing the convolution with complex Gabor fil-

ters in a separable way. Figure 3.22 clarifies this result in ”image notation”.-=�� =
Figure 3.22: A complex Gabor filter as linear combination of separable quater-

nionic Gabor filter components.

The situation changes when the aspect ratio is not equal to one. The reason is that

the rotated Gaussian function with � 6= 1 is not separable anymore, a property

that was used in the above method. However, even in this case a reduction of the
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Figure 3.23: A Gabor filter with � 6= �.

algorithmic complexity is possible. The rotated Gaussian function with � 6= 1 is

given byg(x; y;�; �;�) = exp

�-(x cos� + y sin�)22�2 - (-x sin�+ y cos�)22(��)2 �
(3.61)= exp

�-(x2 cos2� + 2xy sin� cos�+ y2 sin2�)2�2 (3.62)- (x2 sin2�- 2xy sin� cos� + y2 cos2�)2(��)2 � : (3.63)

Thus, a Gabor filter with orientation � and aspect ratio � can be written ash(x; y;�;�; �) = exp

�-2xy sin� cos�2�2 + 2xy sin� cos�2(��)2 � (A(x; y) + B(x; y));
(3.64)

whereA and B are separable functions. Regrettably it is not possible to decompose

the exponential function in equation (3.64) into a sum of separable functions.

However, the method can be applied, whenever the Gaussian function is separable,

even if the aspect ratio differs from 1. This is the case, when the rotation is only

applied to the modulation term of the Gabor filter and not to the window function.

A Gabor filter of this kind is shown in figure (3.23). This kind of Gabor filter can

also be decomposed into the sum of two separable filters in the way shown above.

This result is of no practical relevance though, since we know of no application

which uses Gabor filters with � 6= �.

Often DC-corrected Gabor filters of the formG(x) = e-x2=2�21e-y2=2�22(eic1x=�1eic2y=�2 - const:)
are used. In this case the even component of the Gabor filter can be represented as

the sum of three separable functions:Rh(x) = e-x2=2�21e-y2=2�22 cos(c1x=�1) cos(c2y=�2)-e-x2=2�21e-y2=2�22 sin(c1x=�1) sin(c2y=�2)-e-x2=2�21e-y2=2�22 � const: (3.65)
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Even in this case it is much faster to apply the separable convolutions and to add

the results afterwards.

The above procedure of minimizing the algorithmic complexity of Gabor filtering

can be applied to Gabor filters of arbitrary dimension, and with increasing dimen-

sion the effect becomes more and more important.

3.2.5.4 QGFs and the Uncertainty Principle

An often cited property of Gabor filters is their optimal simultaneous localization

in the spatial and the frequency domain. This makes them suitable for local fre-

quency analysis. For one-dimensional signals the notion ”optimal localization” is

formalized by the uncertainty principle of communication theory first formulated

by Gabor [44]. Mathematically Gabor’s formulation is equivalent to Heisenberg’s

uncertainty principle of quantum mechanics. For a review of the meaning of the

uncertainty principle for image processing see also Wilson et al. [97]. The effective

width or spatial uncertainty �x of a complex signal f is usually defined as the square

root of the variance of the energy distribution of f:(�x)2 = ZR f(x)f�(x)x2 dxZR f(x)f�(x)dx : (3.66)

Analogously, the effective bandwidth is defined as(�u)2 = ZR F(u)F�(u)u2 duZR F(u)F�(u)du : (3.67)

A fundamental lower bound for the joint localization of a signal in spatial and

frequency domain is given by the uncertainty relation�x�u � 14� (3.68)

The term ”Gabor filters are optimally localized in both domains simultaneously”

is justified since Gabor filters can be shown to achieve the minimum product of

uncertainties [44] �x�u = 14�: (3.69)
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It could be shown by Papoulis [81] that each two-dimensional filter or signal f(x; y)
fulfills two uncertainty relations�x�u � 14� and �y�v � 14�; (3.70)

where �x is defined by (�x)2 = ZR f(x; y)f�(x; y)x2 dxdyZR f(x; y)f�(x; y)dxdy (3.71)

and �y,�u, and �v analogously. Daugman combined these two relations to a new

one which restricts the joint resolution of any two-dimensional filter in the two-di-

mensional spatial and frequency domains [28]:�x�y�u�v � 116�2 : (3.72)

It can be shown that the lower limit is reached by a two-dimensional complex Ga-

bor filter.

We extend the definition of the uncertainties in order to make it applicable to

quaternion-valued functions:(�x)2 = ZR f(x; y)f̄(x; y)x2 dxdyZR f(x; y)f̄(x; y)dxdy (3.73)(�u)2 = ZR F(u; v)F̄(u; v)u2 dudvZR F(u; v)F̄(u; v)dudv : (3.74)

The analogous definitions apply to �y and�v. For complex signals the real-valued

energy distribution is given by ff�. For quaternion-valued signals this part is taken

by ff̄. Thus, the two-dimensional uncertainty relation for two-dimensional quater-

nionic signals is identical to Daugman’s relation (3.72).

The uncertainty of a quaternionic Gabor filter hq can be evaluated as follows. Let
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�- x22�2x - y22�2y� exp(2�iu0x) exp(2�j v0y) (3.75)HHq(u) = exp(-2�2�2x(u - u0)2 - 2�2�2y(v- v0)2): (3.76)

Evaluating (3.73) and (3.74) we find�x = �xp2; �y = �yp2; �u = 18�2x�2 ; �v = 18�2y�2 ; (3.77)

which leads to �x�y�u�v = 116�2 : (3.78)

Thus, quaternionic Gabor filters share with their complex counterparts the prop-

erty of being jointly optimally localized in the spatial and in the frequency domain.

3.2.5.5 Comparison of Quaternionic Gabor Filters and Derivatives of Gaus-

sians

As shown in [78] 1D derivatives of Gaussians can well be approximated by Gabor

filters for an appropriately chosen set of parameters. It could be verified that in the

limit n ! 1 where n is the order of the derivative the two filters are identically.

For small n the remaining error becomes bigger with increasing c (see (3.35) for the

definition of c), where the error is measured according to the L2-norm.

This resemblance can be lifted to 2D using 2D complex Gabor filters only for deriva-

tives of the form @n@xnG(x; y) and @n@ynG(x; y) or in general @n@x 0nG(x; y) where x 0 =x cos� - y sin�, i.e. for directional derivatives.

Derivatives of Gaussians are frequently used in image analysis, when differen-

tial geometric methods play an essential role [68, 66, 69, 67] and [4, 5]. However,

all mixed derivatives which contain derivatives with respect to the x- and the y-

coordinate cannot be approximated by complex Gabor filters. In this chapter we

extend the investigation of Michaelis [78] to 2D using quaternionic Gabor filters

instead of complex Gabor filters and show that we can find a corresponding QGF

component for each derivative of a Gaussian of the form @n@xr@ysG(x; y); r + s = n.
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Normalization of the Filters

Before fitting the quaternionic Gabor filters to derivatives of Gaussians we normal-

ize both filters so that they have L2-norm equal to 1. We will then fit the Gabor

filters to the derivatives of the Gaussian by minimizing the L2-norm of the differ-

ence. We denote the four parts of a quaternionic Gabor filter ashee = Neee-x22�21 e-y22�22 cos

�c1x�1 � cos

�c2y�2 � (3.79)hoe = Noee-x22�21 e-y22�22 sin

�c1x�1 � cos

�c2y�2 � (3.80)heo = Neoe-x22�21 e-y22�22 cos

�c1x�1 � sin

�c2y�2 � (3.81)hoo = Nooe-x22�21 e-y22�22 sin

�c1x�1 � sin

�c2y�2 � : (3.82)

The L2-norm of the quaternionic Gabor filter components can be calculated us-

ing the L2-norms of the 1D Gabor filters given in [78] and the relations L2(hab) =L2(ha)L2(hb), where a; b 2 fe; og. Thus, we obtain:L2(hee) = Nee2 q�1�2�(1 + e-c21)(1 + e-c22) (3.83)L2(hoe) = Noe2 q�1�2�(1- e-c21)(1 + e-c22) (3.84)L2(heo) = Neo2 q�1�2�(1+ e-c21)(1 - e-c22) (3.85)L2(hoo) = Noo2 q�1�2�(1 - e-c21)(1- e-c22): (3.86)

The components of the quaternionic Gabor filter when normalized to L2(hab) = 1
consequently take the form:hee = 2q�1�2�(1 + e-c21)(1+ e-c22)e-x22�21 e-y22�22 cos

�c1x�1 � cos

�c2y�2 � (3.87)hoe = 2q�1�2�(1 - e-c21)(1+ e-c22)e-x22�21 e-y22�22 sin

�c1x�1 � cos

�c2y�2 � (3.88)heo = 2q�1�2�(1 + e-c21)(1- e-c22)e-x22�21 e-y22�22 cos

�c1x�1 � sin

�c2y�2 � (3.89)hoo = 2q�1�2�(1 - e-c21)(1- e-c22)e-x22�21 e-y22�22 sin

�c1x�1 � sin

�c2y�2 � : (3.90)
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The same procedure is performed for derivatives of the Gaussian function. By D
we denote the Gaussian, while the derivatives are denoted by Dr;s = (@x)r(@y)sD.

We list the first derivatives and then give the general expression.D(x) = N2e-x2-y22�2 (3.91)D1;0(x) = -N2 x�2e-x2-y22�2 (3.92)D0;1(x) = -N2 y�2e-x2-y22�2 (3.93)D1;1(x) = N2xy�4 e-x2-y22�2 (3.94)D2;0(x) = N2 1�2 �x2�2 - 1� e-x2-y22�2 (3.95)D0;2(x) = N2 1�2 �y2�2 - 1� e-x2-y22�2 (3.96)D2;1(x) = -N2 y�4 �x2�2 - 1� e-x2-y22�2 (3.97)D1;2(x) = -N2 x�4 �y2�2 - 1� e-x2-y22�2 (3.98)D2;2(x) = N2 1�4 �y2�2 - 1��x2�2 - 1� e-x2-y22�2 (3.99)Dr;s(x) = (-1)r+sN2 1(p2�)r+sHr� xp2��Hs� yp2��e-x2-y22�2 : (3.100)

Here, the functions Hn are Hermite polynomials. If we denote by Dn the nth
derivative of the 1D Gaussian D = N exp(-x2=2�2), the above expressions can

be derived from Dr;s(x) = Dr(x)Ds(y):
The L2-norms of Dn(x) are given in [78]. The L2-norms of the derivatives of the 2D

Gaussian function are thus found to be (assuming r � s):L2(Dr;s) = L2(Ds;r) (3.101)= L2(Dr)L2(Ds) (3.102)= N2�(3 � 5 � � � (2s- 1))r(2s+ 1)(2s+ 3) � � � (2r- 1)2r+s�2(r+s)-2 (3.103)

Before we derive the quaternionic Gabor functions which fit optimally to the low-

order derivatives of the Gaussian function, we regard the asymptotic behavior of
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derivatives of the Gaussian function for the differential order tending to infinity.

From [78] we findDr;s !8>>>>>>><>>>>>>>: (-)p+qN(r; s; �)e-x2-y24�2 cos
�xp2r+1p2� � cos

�yp2s+1p2� � ; r = 2p; s = 2q(-)p+q+1N(r; s; �)e-x2-y24�2 sin
�xp2r+1p2� �

cos
�yp2s+1p2� � ; r = 2p + 1; s = 2q(-)p+q+1N(r; s; �)e-x2-y24�2 cos

�xp2r+1p2� � sin
�yp2s+1p2� � ; r = 2p; s = 2q+ 1(-)p+qN(r; s; �)e-x2-y24�2 sin

�xp2r+1p2� �
sin
�yp2s+1p2� � ; r = 2p + 1; s = 2q + 1

Thus, the higher derivatives of the Gaussian function resemble the components

of quaternionic Gabor filters. In the limit these functions are identical. The ap-

propriate values of the quaternionic Gabor filter parameters are �1 = �2 = p2�,c1 = p2r+ 1 and c2 = p2s+ 1. The only significant errors can be found for the

first derivatives. The optimal quaternionic Gabor filters which fit these derivatives

are derived in the following.

Optimal Fit for D00
To start with the trivial case we regard the Gaussian function itself. Normalized toL2(D00) = 1 it reads D00(x) = 1�p�e-x2+y22�2 ;
while the even/even-component of the quaternionic Gabor filter (also normalized

to 1) ishee(x) = 2q�1�2�(1 + e-c21)(1 + e-c22)e- x22�21 e- y22�22 cos

�c1x�1 � cos

�c2y�2 � : (3.104)

With the parameters c1 = c2 = 0 and �1 = �2 = � (3.104) becomeshee(x) = 1p��e-x2+y22�2 (3.105)= D00(x): (3.106)

With the above parameters the Gabor filter is degenerated because the frequency

of the cosine function is zero, i.e. the cosine term is constant in this case.
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Optimal Fits for D01, D10 and D11
We investigate the optimal fit for the Gaussian derivativeD01. The optimally fitting

quaternionic Gabor filter component forD10 follows from symmetry. The Gaussian

derivative D01 and the Gabor function heo both normalized to 1 areD01(x) = -r 2� y�2e-x2+y22�2 (3.107)

and heo(x) = 2e- x22�21 e- y22�22q�1�2�(1 + e-c21)(1 - e-c22) cos

�c1x�1 � sin

�c2y�2 � :(3.108)

Like in the previous example we find c1 = 0 and �1 = � as optimal parameters.

Thus, heo takes the formheo(x) =s 2��2�(1- e-c22)e- x22�2 e- y22�22 sin

�c2y�2 � : (3.109)

We divide (3.107) and (3.109) by exp(-x2=(2�2))�-1=2�-1=4 and end up withD1 andho (the first derivative of the one-dimensional Gaussian function and the odd part

of the one-dimensional Gabor function, both normalized to 1.D1(y) = -s 2�p� y�2e- y22�2 (3.110)

and ho(y) = s 2�2p�(1- e-c22)e- y22�22 sin

�c2y�2 � : (3.111)

The remaining parameters c2 and �2 have to be chosen in order to minimize theL2-norm of the error which is given byL2(D1(y) + ho(y)) = sL2(D1) + L2(hs) + 2 ZRD1hs dx= s2+ 2 ZRD1hs dx (3.112)=: p2- 2A1(c2; �; �2):
If � is set to 1=p2 the integral in (3.112) can be evaluated toA1(c2; �2) = 294c�322 (1- e-c2)-12e- c22+4�22 (1+ 2�22)-32 : (3.113)
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Figure 3.24: The error L2(D1 - ho). Left: the error as gray value image. The

white line indicates the optimal value for � depending on c. Right: the error

along this line.

A grey value image of the L2-error is shown in figure 3.24. For fixed values of c
the optimal choice of � is indicated by the white curve. From (3.112) it follows

immediately that A1 � 1 for all admissible values of c and �2. Thus, in order to

minimize the L2-error we have to maximize A1. For fixed values of c it follows

from the necessary condition @�2A1 = 0 that �2 has to be of the form�2 = 1p6qc2 +pc4 + 9 (3.114)

which is indicated by the white curve in figure 3.24. The L2-error turns out to be

minimal in the limit c ! 0 where �2 according to (3.114) tends to 1=p2. Inserting�2 = 1=p2 into (3.113) we get A1(c2) = c2q2 sinh(c222 )
which can be shown to tend to 1 for c! 0 using de l’Hospital’s rule. Consequently,

setting c1 = c2 = 0 and �1 = �2 = � the L2-error vanishes. For reasons of symmetry

the same parameters have to be used in order to fit hoe and hoo optimally to D10
and D11, respectively.

Optimal Fits for Second and Third Order Derivatives

In the preceding investigation we could simplify the two-dimensional fitting prob-

lem to a one-dimensional fitting problem using the separability of Gaussian deriva-

tives and quaternionic Gabor filters. We will prove the general applicability of this
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approach. Let Drs be a Gaussian derivative and hab the appropriate component of

a quaternionic Gabor filter with a; b 2 fe; og. We have to minimize the L2-norm of

the error which is given byL2(Drs � hab) = sL2(Drs) + L2(hab)� 2 ZR2Drs(x)hab(x)d2x (3.115)=: p2- 2Ars; Ars = ����ZR2Drs(x)hab(x)d2x���� (3.116)L2(Dr � ha) = p2- 2Ar; Ar = ����ZRDr(x)ha(x)dx���� (3.117)L2(Ds � hb) = p2- 2As; As = ����ZRDs(y)hb(y)dy���� (3.118)

Since the above L2-norms exist and are non-negative real numbers we can conclude

that Ar; As; Ar;s 2 [0; 1]. Further we know that Ar;s = ArAs. Thus, in order to

maximize Ars we have to maximize Ar and As separately, which is the same as

minimizing L2(Dr � ha) and L2(Ds � hb), separately.

The optimal fit for he(x) to D2(x) with � = 1=p2 is c = 2:29 and �Gabor = 1:073
with an error of 10%. The optimal parameters for the fit of ho(x) to D3(x) with� = 1=p(2) are c = 2:62 and �Gabor = 1:03 with an error of about 6%. These values

are taken from [78]. The optimal parameters and the remaining L2-errors are listed

in table 3.5. In order to calculate the L2-error of the optimal fitting Gabor filter we

make use of the L2-error of the one-dimensional Gabor filters. The desired errorL2(Drs � hab) can be found from L2(Dr � ha) and L2(Ds � hb) using the following

formula:L2(Drs � hab) = r-12 (2- [L2(Dr � ha)]2) (2- [L2(Ds � hb)]2) + 2 (3.119)= r[L2(Dr � ha)]2 + [L2(Ds � hb)]2 - [L2(Dr � ha)]2[L2(Ds � hb)]22� p[L2(Dr � ha)]2 + [L2(Ds � hb)]2:
The last approximation is valid for small errors.

An Example

If an image f is considered as a surface inR3with the Monge representation (x; y; f(x))
we can evaluate its Gaussian curvature. For the use of Gaussian curvature in im-

age analysis see e.g. [3]. The derivative of a discretized image can be approximated



3.2 Gabor Filters and the Local Phase 105Drs hab �1 �2 c1 c2 L2-errorD20 hcc 1:073 1=p2 2:29 0 10%D02 hcc 1=p2 1:073 0 2:29 10%D21 hcs 1:073 1=p2 2:29 ! 0 10%D12 hsc 1=p2 1:073 ! 0 2:29 10%D22 hcc 1:073 1:073 2:29 2:29 14%D30 hsc 1:03 1=p2 2:62 0 6%D03 hcs 1=p2 1:03 0 2:62 6%D31 hss 1:03 1=p2 2:62 ! 0 6%D13 hss 1=p2 1:03 ! 0 2:62 6%D32 hsc 1:03 1:073 2:62 2:29 12%D23 hcs 1:073 1:03 2:29 2:62 12%D33 hss 1:03 1:03 2:62 2:62 8%
Table 3.5: The optimal parameters for the approximation of derivatives of a

two-dimensional Gaussian by quaternionic Gabor filters.

by convolving the image with the corresponding derivative of the Gaussian. The

Gaussian curvature of the ”image surface” is defined byK = fxxfyy - f2xy(1 + f2x + f2y)2 : (3.120)

We are going to investigate how well the Gaussian curvature can be approximated

by using quaternionic Gabor filters instead of derivatives of the Gaussian function.

If we would like to use only one quaternionic Gabor filter we face the problem that

we have to approximate the five filters Dx, Dy, Dxx, Dxy and Dyy by one quater-

nionic filter with only four components.

As an example we try to approximate the sampled Gaussian derivatives with the

parameters: side-length= 20 pixel, � = 2, and N = 1. We minimize the sum of the

five L2-errors of the approximation. As optimal values for the approximating QGF

we find �1 = �2 = 2:5008, c1 = c2 = 1:2031 and N = 0:0113. However, the sum of

the L2-error is about 56 % of the sum of the L2-norms of the Gaussian derivatives

and the shape of the approximations to Dxx and Dyy is unacceptable (see figure

3.25).
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Figure 3.25: The five derivatives of the Gaussian: Dx, Dy, Dxx, Dxy and Dyy
(top), and the approximation by one quaternionic Gabor filter (bottom). Where

the Gabor component and the Gaussian derivative differ in sign the inverse

Gabor component is shown.

A reasonable improvement can be made by approximating the derivatives by two

different quaternionic Gabor filters. The first Gabor filter is tuned to approximateDx, Dy and Dxy while the second Gabor filter is meant to approximate Dxx. Dyy
can be taken as the transpose of Dxx. The optimal parameters for the first filter

are �1 = �2 = 2:1108, c1 = c2 = 0:4896 and N = 0:04337 and for the second�1 = 3:0349, �2 = 2, c1 = 2:29, c2 ! 0 and N = 0:04337.
Note (for the first filter) the deviation from the results given earlier in this chap-

ter. The reason for this is, that the filter components are tuned simultaneously and

consequently the norm of the Gabor components cannot always equal the norm

of the derivatives as assumed above. If we allow an additional weight for each

Gabor component the optimal parameters will be �1 = �2 = 2 and c1 = c2 ! 0.
The weight is chosen so that the L2-norm of each component equals the L2-norm

of the corresponding Gaussian derivative. With this method the overall L2-error is

about 1:5% and there is almost no visible difference between Gaussian derivatives

and the Gabor filters (see figure 3.26). Figure 3.27 shows the comparison between

the Gaussian derivatives and quaternionic Gabor filters in estimating the Gaus-

sian curvature of an image according to (3.120). The 1% of pixels with the highest

curvature are marked white.
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Figure 3.26: The five derivatives of the Gaussian: Dx, Dy, Dxx, Dxy and Dyy
(top), and the approximation by two quaternionic Gabor filters with adjusted

weights (bottom), where the Gabor component and the Gaussian derivative

differ in sign the inverse Gabor component is shown.

Figure 3.27: The points with the highest Gaussian curvature estimated using

derivatives of Gaussians (left) and quaternionic Gabor filters (middle). The

right image shows the original image together with one component of the used

filters.
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Comment on the Rotational Degree of Freedom of Gabor Filters

The convolution of an image with the derivative of a Gaussian function has the

same effect as first convolving the image with the original Gaussian function and

afterwards differentiating the blurred image. As shown above the derivative of

a Gaussian can well be approximated by Gabor functions. In this approximation

quaternionic Gabor filters are related to 2D Cartesian differential operators while

complex Gabor filters are in analogy to 2D directional derivatives.

In this sense for complex Gabor filters as for directional derivatives the rotation is

a natural degree of freedom, while for quaternionic Gabor filters it is not.

3.3 Summary

In this chapter we were able to show that the concepts of instantaneous phase and

local phase, which play an important role in signal processing and analysis, can be

generalized in the case of two-dimensional signals by methods derived from the

quaternionic Fourier transform.

In one-dimensional signal processing the instantaneous phase of a real signal is

defined as the angular phase of its complex-valued analytic signal. There have oc-

curred several different approaches to a definition of an analytic signal of higher-

dimensional signals. We have reviewed these approaches and have proposed a

new definition which is based on the quaternionic Fourier transform. Our defi-

nition is closely related to Hahn’s approach [48], which is the most recent of the

existing approaches. Hahn’s approach is based on the idea of the analytic signal

having a single quadrant spectrum. Therefore the definition suffers from the fact

that the original signal cannot be extracted from its analytic signal. We have shown

that this drawback can be overcome by replacing the complex Fourier transform by

the quaternionic Fourier transform.

The quaternionic analytic signal allows the definition of the quaternionic instan-

taneous phase of a real signal. Here the definition of the angular phase of a unit

quaternion, newly introduced in chapter 2, has been used. As in one-dimensio-

nal signal processing it is often desirable in image processing to evaluate the local

phase instead of the instantaneous phase. In contrast to the instantaneous phase,

the local phase at a certain position is evaluated merely on the basis of a local

neighborhood of the location of interest. From the different filters which can be

used for estimating the local phase we choose Gabor filters. Following the ideas
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developed in chapter 2 we were able to replace two-dimensional complex Gabor

filters by quaternionic Gabor filters. The local quaternionic phase has been defined

as the angular phase of the quaternionic Gabor filter response to an image.

The relation between the local phase and the local signal structure, which is well

established and widely used for simple (i.e. intrinsically one-dimensional) signals

and their local complex phase, has been extended to a relation between the local

quaternionic phase and intrinsically 2D signal structures. Here, the newly defined

quaternionic phase, consisting of a triple of real numbers instead of only one num-

ber as the complex phase, provides a new tool.

Furthermore, it has been shown that the quaternionic Gabor filters are simultane-

ously optimally localized in the spatial and in the frequency domain according to

the two-dimensional extension of the uncertainty principle of communication the-

ory. Finally, we have demonstrated that quaternionic Gabor filters provide a good

approximation to mixed partial derivatives of the Gaussian function.
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Chapter 4

Applications

In this chapter we will demonstrate how quaternionic Gabor filters and the quater-

nionic phase can be used in applications. The first problem we address is phase-

based disparity estimation, the second is texture segmentation. For both problems

many approaches using complex Gabor filters exist in the literature; the quater-

nionic approaches demonstrated here are mainly extensions of known methods.

However, in both applications completely new features emerge from the use of

quaternionic filters.

In the following we will introduce the notation used in this chapter. The next two

sections are devoted to disparity estimation (section 4.2) and texture segmentation

(section 4.3). The results shown in this chapter are meant to sketch the possible

use and the meaning of the theory developed so far. We do not claim to have built

complete systems, and so many improvements are certainly possible.

4.1 Notation

Throughout this chapter we will use the following notation. As defined in section

3.2.3 the impulse response of a quaternionic Gabor filter hq is given ashq(x;u0; �; �) = g(x; �; �) exp(i2�u0x) exp(j2�v0y) (4.1)= (hqee + ihqoe + jhqeo + khqoo)(x;u0; �; �); (4.2)

with g(x; y) = �2��2 exp

�-x2 + (�y)2�2 � :
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When talking about this impulse response, often we simply call it a quaternionic

Gabor filter in the following. Note that according to this definition the filter com-

ponents hqee, hqoe, hqeo, and hqoo are defined to be real-valued functions. Most of the

time the parametersu; � and �will not be written explicitly, but will be given in the

text when necessary. Thus, a quaternionic Gabor filter will in general be denoted

by hq(x).
The two complex Gabor filters contained in each QGF (see section 3.2.5.2) are de-

noted byh+ = (hqee-hqoo)+i(hqoe+hqeo) andh- = (hqee+hqoo)+i(hqoe-hqeo). The reason

for this notation is that the argument of the modulating factor is exp(i2�(ux+vy))
for h+ and exp(i2�(ux-vy)) for h-. The components of these filters are shown in

figure 4.1.

Figure 4.1: Top: The impulse response of a quaternionic Gabor filter. From left

to right: hqee, hqoe, hqeo and hqoo. Bottom: The corresponding complex Gabor

filters: From left to right h+e , h+o , h-e and h-o .

Given an image f, the filter response of the quaternionic Gabor filter is denoted

as kq(x) = (f � hq)(x). The analogous notation is used for all the components

and combinations of the impulse response, i.e. kqeo(x) = (f � hqeo)(x) and k+(x) =(f � h+)(x), and so on.
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4.2 Disparity Estimation

4.2.1 The Problem

The following problem will be attacked: Given two images f1 and f2 differing by a

local displacement (i.e. f1(x) = f2(x+d(x))) extract the vector field d. This problem

is called disparity estimation , and d is called the displacement vector field or disparity

field. In components the disparity field will be written as d = (dx; dy)> where the

indices indicate horizontal and vertical disparity.

In practice constraints have to be imposed on the input images in order for this

problem to have a solution. Firstly, the range of d should be small compared to

the domain of f1 and f2. Otherwise, structures visible in f1 would lie outside the

domain of f2, i.e. f1 and f2 would have no visible relation to each other. In case f1
and f2 are images taken by a camera the constraint means that both images should

represent the same scene, while d is due to different viewing conditions.

Another constraint on the solubility is imposed by the occurrence of intrinsically

one-dimensional structures. A displacement along such a structure is locally not

perceivable. In this case only the component of the displacement field perpendicu-

lar to the one-dimensional structure can locally be extracted from the images if no

a priori information is available. This problem is called the aperture problem.

In practical applications the two images can be two consecutive frames of an image

sequence, i.e. f1(x) = f(x; t1) and f2(x) = f(x; t2). In this case, some time interval�t = t2- t1 lies between the times when f1 and f2 are taken and the solution d can

be written as d = v�twhere v is called image velocity field or optical flow field. The

image velocity is related to – but not identical with – the motion field. The motion

field is the 2D projection of the real motion occurring in the 3D scene, while the

image velocity field describes variations in the gray value structure of the images.

In what ways these two fields can differ is described e.g. in [57]. The image velocity

field is the input of the structure from motion problem, which has the aim of finding

the structure of the 3D scene from an image sequence. The notion of structure can

have very different meanings: In [37, 38], Faugeras introduced the stratification

of 3D vision and analyzed how much information is needed in order to find the

projective, affine, or the Euclidean structure of the scene.

A similar problem occurs in the diagnosis of medical images where a useful tech-

nique is to subtract two (e.g. X-ray) images taken at different times in order to

reveal some changes in the tissue [46, 96]. For this application it is crucial that



114 CHAPTER 4. APPLICATIONS

the images be transformed in order to match exactly, since the camera and patient

position vary from image to image [75].

A problem related to the above tasks is the matching of two images taken by a

stereo camera. If the epipolar geometry is known, the disparity estimation can

be reduced to a one-dimensional estimation problem where only the horizontal

disparity has to be found. Similar to the structure from motion task, also here

further processing of the disparity field can lead to a spatial depth map of the 3D

scene.

The situations referred to above deal with pairs of natural images. However, this

is not generally the case, since the disparity estimation problem is also soluble for

synthetic images like random dot stereograms. Julesz [62] showed that random

dot images differing by some displacement d lead to spatial depth information,

perceivable by human observers.

4.2.2 Methods for Solving the Disparity Estimation Problem

One class of methods used for disparity estimation is the class of feature-based

methods. In this approach one starts with the extraction of image features like

edges, corners, maxima of local curvature and so on. Generally these features

are sparse, which makes it possible to find the corresponding features in the two

images by searching only a small number of possible candidates. Small number

means here small compared to the number of pixels in the images. One disadvan-

tage of feature-based approaches is that they yield a sparse disparity map, where

the intermediate disparity values have to be interpolated.

Another approach are region-based methods. These methods extract a region from

the first image and look for an optimally matching region in the second image. This

is either done by maximizing the cross-correlation or by minimizing the sum of

squared gray-value distances. These methods are also referred to as block-matching

methods.

Another important class of disparity estimation methods are phase-based methods

which shall be extended to quaternionic phase in the following section. For a re-

view on the main methods for estimating stereo disparity see e.g. [51]. We will

refrain from reviewing the main idea of complex phase-based disparity estima-

tion, since it is subsumed by the quaternionic phase-based method which will be

developed here in detail. However, in the final section a comparison with aspects

of phase-based approaches found in the literature is drawn.
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4.2.3 Quaternionic Phase-based Disparity Estimation

In section 2.2.1 we presented the shift theorem for the QFT:f(x; y) H Fq(u; v) (4.3)=) f(x+ d1; y+ d2) H
exp(i2�ud1)Fq(u; v) exp(j2�vd2): (4.4)

Knowing the phase of the original spectrum (�1; �1;  1) and that of the translated

spectrum (�2; �2;  2) the global image shift can be evaluated as dx = �1-�22�u anddy = �1-�22�v [18]. From the range of the quaternionic phase it follows that dx and dy
can be identified within an interval of length 1u and 12v respectively. We always setdx and dy to the smallest possible translation, i.e. dx 2 [- 12u ; 12u [ and dy 2 [- 14v; 14v[.
Using the QFT approach only global translations can be estimated. However, in

general the disparity will vary from point to point. Therefore, we modify the

quaternionic phase approach by replacing the QFT-phase by the local quaternionic

phase as defined in section 3.2.4.3. The local phase approach to disparity estimation

starts with the assumption that two given images f1 and f2 are related byf1(x) = f2(x + d(x));
where d(x) is the desired displacement field. Assuming that the phase is varying

linearly, the displacement d(x) is given bydx(x) = �2(x) - �1(x) + n(2� + k)2�uref ; dy(x) = �2(x) - �1(x) +m�2�vref ; (4.5)

with some reference frequencies (uref; vref) which are not known a priori. Here�(x) and �(x) are the first two local quaternionic phase components measured by

a quaternionic Gabor filter. Furthermore, n;m 2 Zare chosen such that dx and dy
take values in the admitted range. Depending on m, k is defined ask = � 0; if m is even.1; if m is odd.

Some choice has to be made on the values of the reference frequencies (uref; vref) in

order to estimate the disparity. The goodness of the approximation of d depends

strongly on the choice of the reference frequencies uref and vref. There are two

main approaches for choosing the frequencies. The first is the so-called constant

model where uref and vref are chosen to be the center frequencies of the applied

QGF. For the complex case the constant model has been used e.g. by Maki et al.

[77] and Sanger [84]. The second is the local model. Based on the main assumption
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that the local phase at corresponding points of the two images will take the same

value �1(x) = �2(x + d), an estimate for d is obtained by approximating �2 by a

first-order Taylor development about x:�2(x + d) � �2(x) + (d � r)�2(x): (4.6)

Here we used the notation � = (�; �). Solving (4.6) for d yields the disparity

estimate in the local model. In our experiments we use the additional assumption

that � merely varies along the x-direction and � only along the y-direction. Using

this assumption we estimate the disparity by (4.5) with the reference frequencies:uref = 12� @�1@x (x); vref = 12� @�1@y (x):
At locations where uref or vref equals zero (4.5) is not defined. These locations will

be excluded from the evaluation by a confidence mask that we introduce later in

this chapter.

In the complex case the local model has been used by Fleet et al. [42] and Langley

et al. [74]. The complex phase methods using the local model can be refined by

taking the mean between the derivatives of the phases in the first and the second

image [61], or the weighted mean of the derivatives where the weight is the energy

of the filter response in the first and the second image [74]. These refinements

can also be applied in the quaternionic case. Using quaternionic Gabor filters is

computationally efficient since the filter masks are separable.

4.2.4 Experiments on Synthetic Data

The first experiments were performed on synthetic images. In [52], Hansen used

sinusoidal signals for testing a phase-based method for one-dimensional disparity

estimation. We use the two-dimensional analogue to these, i.e. sinusoidals of the

form cos(2�ux) cos(2�vy). In figure 4.2 a pair of images is shown where the left im-

age is the original image with the parameters u = 160 pixels-1 and v = 140 pixels-1.
The second image results from the first one by an affine coordinate transformationx 0 = Ax + b with A1 = � 1:03 0:1-0:05 1 �

and b1 = (4:15; 1:38)> pixels. In the

first experiment we use the constant model and choose as central frequencies of

the applied quaternionic Gabor filters the same frequencies as the ones of the si-

nusoidal structure of the left test-image. In figure 4.3 the true disparity between

the test-images is shown. For simplicity we show the horizontal and the vertical

disparity in two separate plots. In the bottom row of figure 4.3 the error of the
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Figure 4.2: Two synthetic images. The second is a distorted version of the first

one, where the distortion is the result of the affine transformation (A1;b1).
estimated disparity is shown. The error given in pixels is far below one, i.e. we

achieve sub-pixel accuracy, which is a typical property of phase-based approaches

to disparity estimation. As shown in figures 4.4 and 4.5 where noise up to an SNR

of 0dB is added the method is stable under the influence of noise.
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Figure 4.3: Top: The true disparity (horizontal (left) and vertical (right)) corre-

sponding to the images in figure 4.2. Bottom: The error of the measurement in

the horizontal (left) and the vertical direction (right).

However, the results of the constant model are extremely sensitive to the central

frequencies of the applied filters. The reason is that, if the images contain periodic
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Figure 4.4: Top: The same images as in figure 4.2 but with zero-mean noise

(SNR= 3). Bottom: The error of the measurement in the horizontal (left) and

the vertical distortion (right).

structures, the filter responses vary with the spatial frequency of this structure and

not with the central frequency of the Gabor filter. However, in the constant model

the reference frequency is equal to the central frequency of the Gabor filter. Thus,

the results are only reliable if the Gabor filter is exactly tuned to the frequency of

the periodic image structure. An analytic investigation on the properties of the

constant and the local model applied to periodic structures and the a step edge can

be found in [51].

Figure 4.6 shows another pair of test-images with u = 110 pixels-1, v = 110 pixels-1A2 = � 0:95 0:01-0:03 1:01 � and b2 = (0:3; 0:4)>. In figure 4.7 the errors of the esti-

mated disparities are shown for different central frequencies of the QGFs. Since

the constant model uses as a frequency of reference the central frequencies of the

QGFs, while the change of local phase depends mainly of the frequency of the in-

vestigated structure, there occur errors of up to 50% which make this model useless

for application to periodic sinusoidal structures.

In order to overcome this weakness we replaced the constant model by the local

model. This model uses as reference frequency the rate of change of the local phase
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Figure 4.5: Top: The same images as in figure 4.2 but with zero-mean noise

(SNR= 0). Bottom: The error of the measurement in the horizontal (left) and

the vertical distortion (right).

as estimated by the QGFs. A well known problem in the calculation of the rate

of change are the discontinuities of the local phase [30]. This makes it impossible

to use a simple finite difference method, which estimates the derivative at a cer-

tain point as the difference of the values at two neighbored points. We use here

a method that has been employed by Bovik [11] for the evaluation of the rate of

change of the local phase as measured with a complex Gabor filter.

From (2.40) we know that the �- and �-components of the local quaternionic phase

of an image f are given (up to a possible ��-correction of �) almost everywhere by�(x) = atan2(n�(x); d�(x))=2 (4.7)�(x) = atan2(n�(x); d�(x))=2; (4.8)

where we introduced the functionsn�(x) = -2(kqeo(x)kqoo(x) + kqee(x)kqoe(x)) (4.9)d�(x) = (kqee(x))2 - (kqoe(x))2 + (kqeo(x))2 - (kqoo(x))2 (4.10)n�(x) = -2(kqoe(x)kqoo(x) + kqee(x)kqeo(x)) (4.11)d�(x) = (kqee(x))2 + (kqoe(x))2 - (kqeo(x))2 - (kqoo(x))2: (4.12)
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Figure 4.6: Top: Two synthetic images. The second is a distorted version of

the first one, where the distortion is the result of the affine transform (A2;b2).
Bottom: the true horizontal (left) and vertical (right) disparity.

The k-functions are the responses of a component of the quaternionic Gabor filter

to the image, e.g. kee(x) = (hqee � f)(x) and koe(x) = (hqoe � f)(x). From (4.7) and (4.8)

the derivatives of the phase-components are found to be@@x�(x) = d�(x) @@xn�(x) - n�(x) @@xd�(x)n2�(x) + d2�(x) (4.13)@@y�(x) = d�(x) @@yn�(x) - n�(x) @@yd�(x)n2�(x) + d2�(x) : (4.14)

The derivatives of the functions n�, d�, n� and n� can be evaluated analytically.

In the resulting expressions derivatives of the k-functions will occur. For differen-

tiating these functions the following simple trick is applied: the derivation of the

convolution of the image with the quaternionic Gabor filter is performed by first

differentiating analytically the quaternionic Gabor filter and convolving the result

with the image. @@xkq(x) = @@x(hq � f)(x) = �� @@xhq� � f� (x): (4.15)
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Figure 4.7: The errors of the estimated disparities (left: horizontal disparity,

right: vertical disparity) between the two images in figure 4.6 using the con-

stant model. From top to bottom the central frequencies of the applied QGFs

are: u = v = 15 (top), u = 15 ; v = 110 (middle) and u = v = 120 (bottom).

Following this procedure we circumvent the unwrapping problem that can oth-

erwise lead to considerable difficulties in estimating the local frequency from the

local phase. The results of replacing the constant model by the local model, i.e. of

setting the reference frequencies to uref = 12� @@x�(x) and vref = 12� @@y�(x) are shown

in figure 4.8. Obviously the results of using the local model are much better when

periodic image structures are considered. In our experiments the maximal error in
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the components of the disparity vectors is about 0:4 of a pixels. These results are in

agreement with Hansen’s results [51].

4.2.5 A Confidence Measure

In phase based disparity estimation, situations in which the phase estimate is not

reliable are very probable to occur. In the case of the complex Gabor phase this

is always the case when the energy of the filter response is small. In regions of

the filtered image where this is the case, the local phase does not generally vary

monotonically, such that in singular points the local frequency will be zero. This

makes the estimation of the local disparity impossible, since the disparity equals

the phase difference divided by the local frequency.

From the above considerations it becomes clear that it is desirable to have a con-

fidence measure that indicates how reliable the estimated disparity is. By thresh-

olding the confidence map, a binary mask is obtained that indicates in which parts

of the image disparity estimation is possible or impossible. In the classic complex

case such a measure will usually be based on the energy of the filter response (see

Hansen [51] for a comparison of different confidence measures).

In the quaternionic case we will need two confidence measures, one for the relia-

bility of the �-component of the quaternionic phase and one for its �-component.

Interestingly, it will turn out that these two measures are identical. From (2.40) we

know that the first two quaternionic phase components are defined almost every-

where via �(x) = argi(kq(x)�(k̄q(x))); �(x) = argj(�(k̄q(x))kq(x)):
The functions argi and argj select one complex subfield from the given quaternion

and return the phase-angle of the corresponding complex number. We introduce

three new functions which evaluate the magnitude of these complex numbers.

Definition 4.1 Let q = a + bi + cj + dk be a quaternion. Then the partial moduli of q
are defined to bemodi(q) =pa2 + b2; modj(q) =pa2 + c2; and modk(q) =pa2 + d2:
Thus, modi(q) exp(i argi(q)) = a + bi is the projection of q onto the first complex

subfield in polar representation. Analogously the projections onto the other two complex

subfield components are given.
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Figure 4.8: The errors of the estimated disparities (left: horizontal disparity,

right: vertical disparity) between the two images in figure 4.6 using the local

model. From top to bottom the central frequencies of the applied QGFs are:u = v = 15 (top), u = 15 ; v = 110 (middle) and u = v = 120 (bottom).
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Given this definition it is possible to adapt the confidence measures known for

complex filters. One approach is to construct a binary confidence map by thresh-

olding the energy of the filter response [51]. Thus, the measure is given byConf(x) = � 1 if jk(x)j > �0 else.

The analogue of this in the quaternionic case isCh(kq(x)) = � 1 if modi(kq(x)�(k̄q(x))) > �0 else.
(4.16)Cv(kq(x)) = � 1 if modj(�(k̄q(x))kq(x)) > �0 else.
(4.17)

We will use the following confidence measure:

Definition 4.2 Given the quaternionic Gabor filter responses kq1 and kq2 of two images f1
and f2 the binary confidence map is given byConfh(x) = Ch(kq1 (x))Ch(kq2(x)) (4.18)Confv(x) = Cv(kq1 (x))Cv(kq2(x)): (4.19)

Here, Confh and Confv are the confidence measures for the horizontal and the vertical

disparity, respectively.

However, it is not necessary to use both of these measures, since they turn out to

be identical. In fact, the following general theorem holds.

Theorem 4.1 The identity modi(q�(q̄)) = modj(�(q̄)q)
holds for any quaternion q.

Proof: The theorem can be verified by direct computation of both sides of the equa-

tion and component-wise comparison. 2
Corollary 4.1 For the quaternionic Gabor filter responses kq1 and kq2 to any two images the

horizontal and vertical confidence measures as defined by (4.18) and (4.19) are identical:Confh(x) = Confv(x):
Proof: From theorem 4.1 it follows that the two functions defined in (4.16) and

(4.17) are identical. Using this fact in definition 4.2 proves the corollary. 2
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Figure 4.9: The first two frames of the Rubik cube sequence.

4.2.6 Experiments on Real Data

We apply the method developed so far to two real image sequences, namely to the

Rubik cube sequence and to the diverging tree sequence [2].

First, we use the first two frames of the Rubik cube sequence. The sequence shows a

Rubik’s cube on a rotating hub where the rotation is — when viewed from above

— counterclockwise. The two frames, which were used for this experiment are

shown in figure 4.9. There was no ground truth available for this sequence. How-

ever, since the motion is easy and well-defined by the rotation of the hub, it is

possible to a certain extent to judge the displacement estimates by eye. The QGF

parameters were u = v = 110 as center frequencies, c = 3, and the size of the filter

mask was 40�40 pixels. Figure 4.10 shows the estimated horizontal and vertical

displacements as intensity images. The brightest value in the horizontal disparity

image represents a displacement of dx � 1:5 pixels which can be confirmed by

simple pixel counting over some frames of the sequence, since the rotation of the

object in the scene is uniform. The displacement vectors obtained from the combi-

nation of the horizontal and vertical displacement are presented in figure 4.11. For

better visibility, not the whole image, but two sub-sampled regions are shown, one

containing the upper part of the cube and the other containing the lower part of

the hub. These are the two regions with the highest confidence.

4.2.7 Diagonal Disparity Information

In this section we will only deal with QGFs with aspect ratio � = 1 and identical

horizontal and vertical central frequencies u = v.
Given a QGF hq with central frequencies u and v, the corresponding complex Ga-
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Figure 4.10: The estimates for the horizontal (right) and the vertical (left) dis-

placement as intensity images.

bor filters h+ and h- as defined at the beginning of this chapter will both have

the central frequency f = pu2 + v2 and spatial orientation � = tan-1(�v=u). Foru = v this reduces to f = p2u and � = �45�. Since the phase-based disparity esti-

mation method is well known for complex Gabor phase, we can apply this method

in order to estimate the local displacement along the diagonals of the image. This

can lead to additional disparity estimates because at some points the reliability of

the diagonal estimates may be higher, while at other points the reliability of the

estimates along the axes is better than the diagonal one. The two local complex

phases that can be derived from the quaternionic Gabor filter response are defined

as �+(x) = atan2(I(h+(x));R(h+(x))) (4.20)�-(x) = atan2(I(h-(x));R(h-(x))): (4.21)

In analogy to (4.5) the disparity estimate is given byd+(x) = �+2 (x) - �+1 (x) + 2�m2�u+ref (4.22)d-(x) = �-2 (x) - �-1 (x) + 2�n2�u-ref ; (4.23)

where m and n are chosen such that ��+ and ��- both lie within the interval[-�; �[. The reference frequencies u+ref and u-ref can again be chosen according to

the constant model as u+ref = u-ref = p2u or according to the local model asu+ref = 1p2 � 11 � � r�+(x) and u-ref = 1p2 � 11 � � r�-(x): (4.24)

In our experiments we restricted ourselves to the use of the local model. Again,

the differentiation is performed analytically and the occurring derivatives of the



4.2 Disparity Estimation 127

05101520253035404550

0

2

4

6

8

10

12

14

16

18

0102030405060

0

2

4

6

8

10

12

14

16

Figure 4.11: The estimates for the disparity vector field for the images in figure

4.9. For better visibility two subregions of the images are shown.
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Figure 4.12: The decomposition of a displacement vector into horizontal and

vertical component as measured by the quaternionic phase (left) and into the

diagonal components as measured by the two complex phases �+ and �-.

Figure 4.13: The first two frames of the tree-sequence.

filtered images are obtained as the filter response of the images to the differentiated

QGFs. For clarification the decomposition of a displacement vector d into either

horizontal and vertical or into diagonal components is sketched in figure 4.12.

It is an important fact that this additional disparity information is obtained with-

out any additional convolution operations. The only additional operations that

have to be performed are building the sums and differences of already existing fil-

ter responses and pointwise non-linear operations, actually magnitude and phase-

evaluation.

As an example for the integration of local displacement information from the two

methods we investigate the two frames of the tree-sequence shown in figure 4.13.

The displacement field resulting only from the direct QFT-phase and the full dis-

placement field integrating the results of both methods is shown in figure 4.14. The
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true displacement field of the diverging tree sequence is a radial vector field with

all the vectors pointing from the center outwards. The magnitude of displacement

is proportional to the distance from the center.

4.2.8 Comparison to Other Approaches and Discussion

In this section the main objective was to demonstrate how quaternionic Gabor fil-

ters and the quaternionic phase can be used for the estimation of the displacement

field or image velocity field from two frames of an image sequence. It turned out

that there are two sets of displacement information contained in the quaternionic

Gabor representation of the images. The first displacement field is estimated from

the �- and �-components of the local quaternionic phase which give the displace-

ment in horizontal and vertical direction. The second way to calculate the displace-

ment is from the two complex phases contained in the quaternionic representation.

These two complex phases stem from the two complex Gabor filters which are

contained in the QGF. These components evaluate the displacement in direction

of the two image diagonals. From the diagonal displacement the displacement in(x; y)-coordinates is obtained by a simple coordinate change. Of course these two

methods yield partly redundant information. However, there are regions where

only either the one or the other of the two methods provides values with a high

reliability. Integrating these two methods we obtain a denser image velocity field

than can be obtained by either of the methods alone.

A main advantage of this method is that it is possible to obtain the displacement

field at low computational cost. All the involved filter masks are separable, and

so the convolution can be implemented very efficiently. Only six separable real

convolutions are needed, including the convolutions with the differentiated QGFs

for the local frequency estimation in the local model. All further computations are

performed pointwise and have therefore a computational complexity of the order

of the number of image pixels.

In [43], Fleet claims that phase-based disparity estimation is limited to the estima-

tion of the component of the disparity vector normal to an oriented structure in

the image. According to this view, the full 2D displacement field can only be com-

bined from the local measurements by taking into account a larger support under

the assumption of coherence of neighboring measurements. The main assumption

in this claim is that the image is intrinsically one-dimensional nearly everywhere.

However, even if a signal can locally well be approximated by an intrinsically one-

dimensional signal there seems to be enough displacement information even along
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Figure 4.14: Top: The displacement field as resulting directly from the local

quaternionic phase. Bottom: The integrated displacement field, containing in-

formation from direct quaternionic phase and from the diagonal phase.
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the main orientation. This is especially true in natural scenes outside the block-

world. The quaternionic confidence measure singles out those regions where hor-

izontal and vertical displacement can reliably be estimated simultaneously. Using

the quaternionic phase approach the full displacement vectors are evaluated locally

at those points where the aperture problem can be circumvented. However, these

properties have to be studied in much more detail and with more rigor, which is

outside the scope of this thesis.

Of course this system is not complete and the results could be improved. Firstly, the

presented method is only able to deal with small displacements. In order to over-

come these restrictions one could for example implement a hierarchical multi-scale

approach, which starts by estimating the displacement on a coarse scale, yield-

ing a rough approximation of the strong displacements. Subsequently, this first

estimate is projected to finer scales and a finer estimate is achieved at each level.

This approach has been implemented for the complex phase in [95]. Secondly,

common approaches in phase-based disparity estimation improve their result it-

eratively based on the following idea: In real images the local phase will not be

exactly linear. Thus, there will occur some error in the estimated displacement

vector d(x). With the true disparity the phase difference �2(x) - �1(x + d) will

be zero. For erroneous d this difference will take some non-zero value based on

which a correction � can be derived. The estimate d is then replaced by d+ � and

again the phase difference can be evaluated. Thus, the disparity estimate can be

improved iteratively. This procedure is used by Weng [95]. An alternative iterative

approach is proposed by Ahrns [1].

4.3 Texture Segmentation

The task addressed in this section is: Segment a given image into uniformly textured

regions. This so-called texture segmentation problem is one branch of the general

problem of image segmentation which is one important step in many computer vi-

sion tasks. Regarding global variations of gray values or mean gray values over

some neighborhood is in most cases not sufficient for a correct segmentation. For

this reason rather the global variations of local measures characterizing the texture

have to be regarded.

The posed problem is rather vague since the term texture is not well defined and

there is no unique way of characterizing mathematically the local gray-value vari-

ations perceived as texture by human observers. For this reason very different
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approaches to texture segmentation have been taken. As local measure for the

characterization of texture local statistical properties [53, 58] and local geometric

building blocks (textons) [63] have been used among others. Another whole branch

in texture segmentation research is based on the local spatial frequency for charac-

terizing texture. As mentioned earlier (see section 4.2.3) Gabor filters play a special

role in the analysis of local frequency. On the one hand the Gabor filter based

approaches to texture analysis are motivated by psychophysical research since 2D

Gabor filters have proven to be a good model for the cortical receptive field profiles

[27] while on the other hand they are supported by the observation that a whole

class of textures (so-called deterministic textures) give rise to periodic gray value

structures. We will restrict ourselves to the Gabor filter based approaches here. In

the following the term texture will always be understood as image texture in con-

trast to surface texture. While surface texture is a property of a 3D real-world object,

image texture in this context is a property of a 2D intensity image.

In the following sections we analyze in detail the pioneering work of Bovik et

al. [11] and in parallel introduce the corresponding quaternionic Gabor filter based

approach to texture segmentation. In the final section we discuss our result and

make some remarks on other texture segmentation approaches based on Gabor

filters.

4.3.1 Bovik’s Approach

Bovik et al. [11] introduced a Gabor filter based approach to texture segmentation.

As mentioned above, texture segmentation is the task of segmenting an image into

uniformly textured regions. According to Bovik’s approach a uniform texture is

characterized by a dominant frequency and orientation. Here, characterization does

not mean full characterization of a texture in all its aspects, but ”weak character-

ization” which yields just enough information in order to solve the segmentation

task. Thus, different textures occurring in a given image are supposed to differ

significantly at least in either the dominant frequency or the dominant orientation.

This assumption leads to the following simple texture model. An image containing

only one homogeneous texture is modeled asfi(x) = ci(x) cos(2�(uix+ viy)) + si(x) sin(2�(uix+ viy))= ai(x) cos(2�(uix+ viy) + pi(x)); (4.25)

where the amplitude ai = pc2i + s2i and the phase pi = - tan-1 � sici� are assumed

to vary slowly, i.e. in such a way that the dominant frequency component is al-
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ways well approximated by (ui; vi). The characterizing dominant frequency and

orientation of the texture fi are juij =pu2i + v2i and �i = - tan-1( viui ), respectively.

A textured image containing n different textures fi is then given by n textures of

the form (4.25) each of which occurring in exactly one connected region Ri of the

image. Defining the characteristic functions zi of the regions aszi(x) = � 1 if x 2 Ri0 else,

we can write the texture image f asf(x) = nXi=1 fi(x)zi(x): (4.26)

The regionsRi are assumed to define a partitioning of the domain of f, i.e.
Pni=1 zi(x)� 1 and zi(x)zj(x) � 0 if i 6= j. The set of all possible textures f will be denoted byT . This texture model fits optimally the texture segmentation technique applied by

Bovik et al.

The first step in the segmentation procedure is devoted to filter selection. In this

stage the parameters of a number of Gabor filters that will be used for the seg-

mentation are chosen. In their approach Bovik et al. restrict themselves to filters

with aspect ratio � = 1. The bandwidth of the filters is chosen depending on the

frequency of the filter by fixing the parameter c = �!. Thus, only frequency and

orientation of the filters (and the number of applied filters) have to be chosen. The

authors set the number of filters to two in all experiments. This choice is based

on the a priori knowledge that all experiments are performed with images con-

sisting of two uniformly textured regions. The choice of juij and �i is performed

by a peak-finding algorithm on the power spectrum of the input image, applied

to one half of the frequency plane. In this stage human supervision is used. De-

pending on the type of texture (highly oriented vs. nonoriented) different ways of

selecting the ”right” peaks are chosen. Hence, the presented method is not a com-

pletely unsupervised one. However, the authors propose an unsupervised filter

selection scheme, which consists of smoothing the power spectrum of the image

with a Gaussian filter, extracting the local maxima of the smoothed image and se-

lecting the filter parameters by applying a threshold to the local maxima image.

The segmentation itself is performed in an unsupervised way. The image f is con-

volved with the set of selected Gabor filters hi which yields n filtered images ki,
where n is the number of selected filters. The complex filtered images are trans-
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formed into the amplitude/phase-representation according tomi = jkij; � = -atan2 (I(ki);R(ki)) : (4.27)

The first level of segmentation is based on the comparison of the channel ampli-

tudes. At this stage each pixel of the image is assigned to one channel. We will

denote the region of pixels belonging to channel i by Ri. The classification is sim-

ply based on the comparison of the amplitudes mi at each position in the image:x 2 Ri () arg� maxj2f1;::: ;ng(mj(x))� = i; (4.28)

where the function arg returns the index ofm. The experiments show that smoother

segmentation results are obtained if the local amplitudes mi are smoothed by con-

volution with a Gaussian filter before applying (4.28). For smoothing Bovik usesgi(23x), where gi is the envelope of the Gabor filter hi.
According to the above view, i.e. that different textures differ in dominant fre-

quency and/or in dominant orientation, the segmentation task is finished at this

stage. However, situations occur where two regions contain textures which be-

long to the same (frequency and orientation) channel but are shifted against each

other. Using (4.28) these two textures are assigned to the same region. Using the

additional information contained in the phase � obtained by (4.27) the border line

between the shifted textures is detectable, since it gives rise to a discontinuity in

the phase. This discontinuity is difficult to detect directly because of the natural

discontinuities occurring due to the 2�-wrap-around of the phase. Bovik et al. cir-

cumvent this difficulty by analyzing the local frequency instead of the local phase.

Within a homogeneous textured region the local frequency is assumed to be ap-

proximately constant while at the position of a phase-discontinuity there occurs

a local-frequency discontinuity as well. These can be detected by the conditionr2�(x) = 0 as zero-crossings of the Laplacian of the local phase. As demonstrated

in the section on disparity estimation (section 4.2.3) the derivatives of � can be

determined analytically to be expressions containing derivatives of ke and ko. As

before these derivatives are evaluated by convolving the input image by the deriva-

tive of the Gabor filter components @xk = (@xh) � f. Using this procedure the need

for phase unwrapping, i.e. the transformation of the phase into a continuous rep-

resentation without 2�wraparounds, is circumvented. In the following section we

demonstrate how this approach can be extended using quaternionic Gabor filters.

A schematic view of Bovik’s segmentation procedure is given in figure 4.15.
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Texture Imagef(x)
Filter Selection: : :
Convolution: : :

Demodulation: : :
Segmented Image

(first level)

Detect Phase-
Discontinuities: : :

Filtered Images

h1 hnk1(x) kn(x)m1(x) �1(x) mn(x) �n(x)R1 : : : Rn
Segmentation of R1 Segmentation ofRn

Final Segmentation

Region Assignment

Gabor Filters

Figure 4.15: Bovik’s segmentation procedure. According to the textured in-

put image f a set of Gabor filters h1 to hn is selected. The filter responses k1
to kn are demodulated into magnitude/phase-representation. The first seg-

mentation step uses the channel amplitude and (4.28) in order to segment f
into n regions R1 toRn. Phase information is used for the detection of phase-

discontinuities, in order to segment the Ri into subregions where necessary.

For further explanation see text.
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4.3.2 Quaternionic Extension of Bovik’s Approach

The extension of Bovik’s approach to texture segmentation using quaternionic Ga-

bor filters is straightforward. Before outlining the segmentation procedure in the

quaternionic case we modify the texture model given above. If quaternionic Gabor

filters are applied instead of complex filters, the following texture model is more

appropriate. A textured image is assumed to consist of homogeneously textured

regions fq(x) = nXi=1 fqi (x)zi(x); (4.29)

where this time the homogeneous textures are of the formfqi (x) = cci(x) cos(2�uix) cos(2�viy)+ sci(x) sin(2�uix) cos(2�viy)+ csi(x) cos(2�uix) sin(2�viy)+ ssi(x) sin(2�uix) sin(2�viy):
Again, the functions cci, sci, csi and ssi are assumed to vary slowly. The set of all

possible textures fq will be denoted by T q. Obviously, this model is most appropri-

ate for the use of quaternionic filters, since the four terms exactly correspond to the

modulation functions of the components of a quaternionic Gabor filter. In figure

4.16 two model textures are shown which demonstrate the difference between the

two models.

Figure 4.16: Two examples of textured images. Left: A textured image fit-

ting Bovik’s texture model (4.26). Right: An image fitting the extended texture

model (4.29). For simplicity, in both examples constant coefficients have been

chosen.

Note that the quaternionic texture model comprises Bovik’s model as a special case,

i.e. T � T q.

The first stages of the segmentation procedure stay basically the same as described

in the previous chapter. Only slight modifications have to be made. The filter
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selection stage is performed by a peak-finding algorithm in the quaternionic power

spectrum. The difference is that here the peak finding is only performed over one

quadrant of the frequency domain instead of one half in the complex approach.

As we have shown when introducing the quaternionic analytic signal in section

3.1.3, one quadrant of the quaternionic frequency domain contains the complete

information about the image.

Having selected a set of n quaternionic Gabor filters hqi the textured image is

convolved with these filters, which yields the filtered images kqi . These images

are transformed into the polar representation of quaternions introduced in section

2.1.2. This leads to an amplitude/phase-representation (mi; �i; �i;  i) of the fil-

tered images.

Like in Bovik’s approach the first level of segmentation is reached by a channel

assignment of each pixel using (4.28), where this time mi is the magnitude of the

quaternionic filter response. In this stage the segmentation results differ only in

one aspect from Bovik’s algorithm: A real texture with the dominant frequenciesu0 = (u0; v0) with u0; v0 > 0 contains a component with the negative frequencyu1 = (-u0;-v0) as well, due to the hermitian symmetry of the spectrum. A com-

plex Gabor filter approximately constructs the analytic signal, i.e. it suppresses the

redundant negative frequency component. The entire relevant information is con-

tained in one half-plane of the complex frequency domain. Thus, we can choose

this half-plane such that u2 = (u0;-v0) lies in the same half-plane as u0. If v0 6= 0,
textures with dominant frequency u0 and u2 belong to different frequency chan-

nels, while u0 belongs to the same channel as u1 and u2 to the same channel asu3 = (-u0; v0) = -u2. A texture f0 with dominant frequency u0 and another

texture f2 with dominant frequency u2 respond to different Gabor filters and will

be assigned to different regions — e.g. R0 and R2 — in the first stage of Bovik’s

method. We assume that f0 and f2 carry the same amount of energy. Any superpo-

sition f = a0f0+a2f2 will be assigned either toR0 or to R2, depending on whetherja0j > ja2j or ja0j < ja2j. If ja0j = ja2j the assignment will fail or will be of a ran-

dom nature. A further segmentation step of detecting phase-discontinuities will

not help in this case.

As shown in 3.1.3 the QFT of a real signal contains all non-redundant information

in one quadrant of the frequency domain. Thus, a quaternionic Gabor filter will

equally well respond to f0, f1, f2, and f3 as well as to arbitrary linear superpositions.

Hence, these textures are not discriminated by the channel assignment step of the

quaternionic approach. However, as we will demonstrate later, the textures f0 andf2 as well as their linear superpositions are discriminated by the  -component of
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Figure 4.17: A textured image containing two differently textured regions with(u; v) = (0:05; 0:05) pixels-1 in the upper half and (u; v) = (0:05; -0:05)
pixels-1 in the lower half (top), the channel assignment based segmentation

using the complex approach (middle) and using the quaternionic approach

(right). On this stage the quaternionic approach is apparently inferior. Its supe-

riority will become obvious only in a later stage of the segmentation procedure.

Figure 4.18: Left: A synthetic textured image containing three distinguishable

regions which all belong to the same frequency channel. Right: The segmen-

tation result obtained from the detection of the phase discontinuities either in

the complex or in the quaternionic case.

the local quaternionic phase.

An example of a textured image containing two differently textured regions and

the segmentation results after the channel assignment step in the complex and in

the quaternionic case are shown in figure 4.17. All segmentation results shown in

this section are schematic and not the results of real experiments. Experimental

results will be shown in section 4.3.3. In this first stage the image is segmented

into regions belonging to different frequency channels. However, within these re-

gions there may exist subregions which differ either in a phase shift or by a su-

perimposed frequency component with the same frequency juj as the dominant

component but with orientation -� instead of the dominant orientation �. An

example of a synthetic textured image containing only one dominant frequency

component but three distinguishable regions is shown in figure 4.18. In order to

segment phase-shifted regions belonging to the same frequency channel we use

the �- and �-component of the local quaternionic phase which behave similarly to

the complex phase, in that they vary monotonically in general. Thus, phase discon-
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tinuities can be detected byr2� = 0 andr2� = 0 (see explanation in section 4.3.1).

In the example of figure 4.18 the image would be segmented into two regions: The

upper half containing the whole central disk on the one hand and the rest of the

image on the other hand. This segmentation result is the same for either the com-

plex or the quaternionic approach as introduced so far. The complex Gabor filter

tuned to the dominant frequency is blind to the superimposed ripples in the central

disk of the image in figure 4.18. As shown in section 3.2.4.3 the  -component of

the phase holds the information about the mixture of two superimposed frequency

components like the ones denoted by f0 and f2 above. Denoting the mixed texture

by f = (1-�)f0+�f2 there is a one-to-one mapping of to �. Thus, it is possible to

segment the image in 4.18 into its three regions, based solely on the  -component

of the local phase.

4.3.3 Experimental Results

The meaning of the  -component of the quaternionic phase has been explained in

section 3.2.4.3. We demonstrate its segmentation power first on a synthetic texture

consisting of three different textures (figure 4.19). This image resembles an image

used by Bovik ([11] p. 64, fig. 6), with the difference that in [11] only two different

regions are used. The third region (upper right and lower left region), which is the

superposition of the two orthogonally oriented sinusoidals, can not be segmented

using the complex approach. In contrast, the  -component of the quaternionic

phase distinguishes not only local frequency and orientation but also local struc-

ture as explained in the last section. See also figure 4.21 for clarification. We tested

the robustness of  for segmentation by adding Gaussian noise to the synthetic

texture in figure 4.19. The result is shown in figure 4.20. We added noise with

zero mean and variance 1:5 and 5, respectively. The texture itself has zero mean

and takes values between -1 and 1. The SNR is -2:7 and -13:2, respectively. Al-

though it is almost impossible for a human observer to segment the image with the

strongest noise, by means of more than 78% of the pixels are correctly classified.

4.3.3.1 Detection of Defects in Woven Materials

As a practical application we demonstrate how the quaternionic Gabor segmenta-

tion method can be used for the detection of defects in woven materials. We regard

this task as a texture segmentation problem, where we want to segment the reg-

ular texture from defective regions. However, defects are often so small that they
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Figure 4.19: The textured image, its QFT-magnitude spectrum (origin at the

center, and high values marked dark, low values marked white), and the  -

component of the local phase (top), and the segmentation result, the pixels

which were misclassified (1:22%) and the edges of the  -component found by

a Sobel filter superimposed to the original texture (bottom).

Figure 4.20: The texture from figure 4.19 with added Gaussian noise. In the

upper row the SNR is -2:7 dB, and more than 97% of the pixels are classified

correctly. In the lower row the SNR is -13:2 dB and about 78% of the pixles

are classified correctly. From left to right the rows show the contaminated tex-

ture, the  -component of the local phase, the median filtered  -component,

the segmented texture and the wrongly classified pixels.
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complex

Demodulation 
Thresholding

Error

�
Convolution with GF

Add noise

quaternionic

Figure 4.21: Comparison of the complex and the quaternionic segmentation

approach. The input image (top) is convolved with an optimally tuned com-

plex (right column) and quaternionic (middle column) Gabor filter. In the sec-

ond row the real parts of the filter responses are shown. The filtered images

are transformed into amplitude/phase-representation. In the complex case the

magnitude (not shown) is constant, and the phase � is varying monotonically.

No segmentation is possible. In the quaternionic case segmentation based on

the  -component (magnitude and other phase-components are not shown) is

possible. The left column is like the middle column, but with added noise

(SNR=0 dB).
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Figure 4.22: From left to right: A subregion of Brodatz’ texture D77. The

smoothed  -component of the local quaternionic phase as intensity image and

after applying a threshold. The edges of the thresholded  -phase superim-

posed to the input image.

do not exhibit periodic structure. That makes the defect detection not feasible for

a channel assignment method — complex or quaternionic — based on the mag-

nitude of response to a certain channel filter. We test the following method here.

Given a homogeneous woven texture we extract the dominant quaternionic fre-

quency component. The image is convolved with the corresponding quaternionic

Gabor filter (where the remaining parameters are chosen as ch = cv = 3) and the -component of the local phase is extracted. A flaw in the texture manifests itself

in a change of the local structure, which is what is measured by the -phase. As the

experiments show,  varies only very modestly within a homogeneously textured

region. The mean  -value of a homogeneous texture f will be denoted as  f. For

the segmentation we chose an interval of acceptance ITexture = [ f - �; f + �]. The

defective region will be denoted by RFlaw. The assignment rule is then given byx 2 RFlaw ,  (x) 62 ITexture:
As a second example we use a subregion of the texture D77 (see figure 4.22 taken

from Brodatz’ album [16]). We apply one QGF whose central frequencies have

been tuned to the main peak in the power (QFT)-spectrum of the image. In this

case the frequencies are 21 cycles/image in vertical direction and 12 cycles per

image in horizontal direction. In the regular part of the texture we find  � 0:5
while at the irregularity we get  � 0. Before applying a threshold, the  -image

is smoothed with a Gaussian filter with �Gauss = 1:5�QGF where � = (�1; �2)>.

This choice is based on an empirical result by Bovik et al. [11]. Since at the flaw

the applied filters do not match optimally, also the amplitude of the filter output

yields a hint for the defect searched for. However, the amplitude is very sensitive to

changing lightning conditions as shown in the following experiments. However,  
is insensitive to changes in contrast. This is important, because of the fact that the

lightning conditions are not necessarily optimal (e.g. not homogeneous) in practical
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applications [29].

We simulate changing lightning conditions by adding a gray-value ramp with con-

stant slope (figure 4.23) and by changing the contrast inhomogeneously (figure

4.24). In figure 4.25 the amplitude of the filter responses are shown for the different

lightning conditions. A segmentation on the basis of the amplitude envelopes is

not possible by a thresholding procedure.

Figure 4.23: As in figure 4.22. To the original image a gray value ramp with

constant slope is added.

Figure 4.24: As in figure 4.22. The contrast is modified to vary from left (low

contrast) to right (high contrast).

Figure 4.25: The amplitude envelopes of the quaternionic Gabor filter response

to the texture D77 under different lightning conditions. Left: Original illumi-

nation. Middle: A gray value ramp added. Right: Changing contrast.
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Figure 4.26: Another subregion of D77. As in figure 4.22.

The flaw detection method presented here has the advantage of being fast, since

only separable convolutions have to be performed and only the  -component of

the local phase has to be evaluated which is a pointwise nonlinear operation. The

method is robust to changing lightning conditions.

4.3.4 Comparison to Other Approaches and Discussion

In the previous sections we introduced a texture segmentation scheme based on

quaternionic Gabor filters. The procedure is based on the one introduced by Bovik

et al. [11]. Actually, the quaternionic scheme includes Bovik’s method at least if

the used Gabor filters have an isotropic Gaussian envelope. This is the case in

Bovik’s experiments. Thus, we can reproduce all of their results. Additionally, the

quaternionic approach provides the  -phase as a new entity. In special situations

this entity allows a finer segmentation. This is the case when there occur regions

which contain the same dominant frequency, once in a pure form and once with

another differently oriented frequency component superimposed. These situations

which occur often e.g. in woven fabrics can be handled by the  -phase. There has

been a lot of activity in texture segmentation using Gabor filters. We will comment

on some of these approaches here.

Du Buf (1990) [30] uses merely Gabor phase information for texture segmentation,

where the applied filters are selected non-automatically from a given filter set cov-

ering the whole frequency plane. To the phase component of each filtered image

one of two proposed phase demodulation methods is applied. Since global un-

wrapping schemes are applied, there occur problems whenever the image contains

regions with different local frequencies. Overall, this method seems inferior to the

local phase-discontinuity detection used by Bovik. Results on synthetic images are

provided.
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Dunn (1994,’95) [33, 32] introduces a method for finding an optimal 2D Gabor filter

for the discrimination of a two-texture image. This filter is designed such that

the discontinuity in the magnitude of the filtered image is most significant at the

texture boundary. Since examples of the two textures must be known beforehand,

this is a so-called supervised segmentation method.

In contrast to directly assigning each pixel to the best-matching channel and de-

tecting phase discontinuities afterwards, many authors apply some clustering al-

gorithm to the extracted Gabor features for segmentation:

Jain et al. (1991): Jain [60] uses a decomposition of the textured image by a set of

approximately orthogonal even-symmetric real Gabor filters, which approximates

a wavelet transform. For the segmentation only a subset of the filtered images is

used: The filtered images are ordered according to the Euclidean distance to the

input image in increasing order and the first k images are used for segmentation.

The filtered images are subjected a nonlinear transformation from which a feature

image is computed. For segmentation a two-phase clustering algorithm is applied

to these feature images. The first stage is a k-means algorithm, the result of which

is improved in a second stage. The clustering algorithm also takes into account the

pixel coordinates (in addition to the feature images), which accounts for the fact

that neighboring pixels tend to belong to the same texture.

Teuner et al. (1995) point out that the dominant frequencies do not necessarily coin-

cide with the ones that are important for segmentation [91]: A dominant frequency

is only helpful for segmentation when it does not occur everywhere in the textured

image. The authors provide a measure called the spectral feature contrast, which

indicates the discriminatory power of a Gabor feature. The same authors use the

feature contrast for the reduction of the dimensionality of the feature space [82].

Our approach to texture segmentation is directly based on Bovik’s method. In this

stage we have shown that the quaternionic Gabor approach is more powerful than

the complex Gabor filter approach, since the texture model is extended by using

quaternionic filters. This extension of the texture model is realized without any

additional computational effort since quaternionic Gabor filters are separable. The

other methods mentioned here have not been applied to quaternionic Gabor filters

yet. However, there seem to be no fundamental problems in an extension of e.g. the

feature contrast to quaternionic Gabor filter. Quaternionic Gabor filters show their

efficiency in the first stage, and it seems probable that this can be improved by

combining the approach presented here with more recent methods developed for

texture segmentation using complex Gabor filters.
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4.4 Summary

We have applied quaternionic Gabor filters and the local quaternionic phase to two

practical tasks, namely disparity estimation and texture segmentation. One class of

methods for disparity estimation comprises the so-called phase-based approaches.

These approaches use the property of the local phase of being equivariant with spa-

tial position. We have extended an existing approach which is based on complex

Gabor filters to the use of quaternionic Gabor filters. The complex approach con-

sidered here is restricted to the evaluation of the horizontal disparity. According to

the shift theorem of the quaternionic Fourier transform the first two components of

the quaternionic phase are equivariant with the spatial position. We have shown

how the full disparity field can be estimated on the basis of the first two compo-

nents of the local quaternionic phase.

It was shown in chapter 3 that each quaternionic Gabor filter corresponds to two

complex Gabor filters. In addition to the disparity information found from the

quaternionic phase we have used the phase of these complex filters. This yields a

higher density of the estimated disparity field than each of the two methods alone.

Experiments on two real image pairs are provided.

As a second application of quaternionic Gabor filters we have presented their use

in texture segmentation. A pioneering approach for the usage of local amplitude

and phase in texture segmentation has been provided by Bovik [11]. Bovik’s ap-

proach uses complex Gabor filters. We have modified this approach to the use of

quaternionic Gabor filters. We were able to show that the class of textures which

are separable according to Bovik’s model is considerably extended by the use of

quaternionic filters. It is especially worth noting that we do not have to increase

the computational load in order to achieve the additional segmentation power of

the quaternionic approach. It has been shown that the third component of the lo-

cal quaternionic phase provides an important new feature for segmentation which

is not contained in Bovik’s approach when complex Gabor filters are used.
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Conclusion

The main goal of this thesis was to establish a correspondence between the local

phase and the local structure of intrinsically two-dimensional signals. For one-di-

mensional signals this correspondence is well-known. In 2D, generic filters had to

be introduced which make accessible an extended local phase concept. This was

accomplished by introducing Gabor filters with values in Clifford algebras. In 1D,

Gabor filters can be regarded as an approximation of quadrature filters. Such filters

are defined via the analytic signal, which is most easily constructed in the Fourier

domain. Thus, in order to lay the theoretical foundation for the introduction of

hypercomplex Gabor filters, we had to introduce the notions of a hypercomplex

Fourier transform and of the hypercomplex analytic signal. These concepts have

been developed in this thesis, with the main emphasis on two-dimensional signals.

However, all concepts can easily be extended to n-dimensional signals.

The original contributions of this thesis, and the articles upon which it is based, are

the following:� We have presented the Clifford Fourier transform (CFT). A hypercomplex

Fourier transform (HCFT) based on a commutative 2n-dimensional algebra

has been introduced and compared to the n-dimensional Clifford Fourier

transform. It turns out that the CFT and the HCFT of a real n-dimensional

signal are related by a simple mapping which we call switching.� We were able to show that the quaternionic Fourier transform (QFT) builds

the highest level of a natural three-level hierarchy of two-dimensional har-

monic transforms. The principle on which this hierarchy is based is the sym-

metry selectivity of the transform with respect to real signals. The first and
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second level are made up by the Hartley transform and the Fourier transform,

respectively. This hierarchy can be extended to an (n + 1)-level hierarchy ofn-dimensional harmonic transforms, on the top of which stands the Clifford

Fourier transform. In 2D, the QFT comprises the Fourier transform and the

Hartley transform. The Fourier transform and the Hartley transform are sim-

ply linear combinations of QFT components.� We defined the quaternionic analytic signal based on the quaternionic Fourier

transform, and compared it to existing approaches. The most recent of these

approaches is the complex signal with single quadrant spectrum, proposed

by Hahn [48, 49]. This approach suffers from the fact that the original signal

is not contained in its analytic or complex signal. It has been shown that this

can be cured by replacing the complex Fourier transform by the quaternionic

Fourier transform, which leads to the quaternionic analytic signal. The reason

for the superiority of the QFT in this context lies in the fact that the QFT of a

real signal is quaternionic hermitian, a property which we introduced in this

thesis.� On the basis of the QFT, we introduced quaternionic Gabor filters. In 1D, the

numerical similarity of Gabor filters and derivatives of the Gaussian has been

analyzed by Michaelis [78]. We were able to extend this to 2D as a similarity

between quaternionic Gabor filters and (mixed) partial derivatives of a 2D

Gaussian. Furthermore we showed that quaternionic Gabor filters fulfill the

two-dimensional version of the uncertainty principle of communication the-

ory in an optimal manner. Quaternionic Gabor filter masks are separable and

therefore convolution can be implemented very efficiently. This can be used

in order to speed up convolution even with complex Gabor filters, since these

are linear combinations of quaternionic Gabor filter components.� The quaternionic Gabor filters allow the definition of an extended concept of

the local phase consisting of three real components. This generalizes the rela-

tion of the local phase of a signal to the local structure, which is well known

in 1D, to intrinsically two-dimensional signals. Applications in the two ar-

eas of texture segmentation and disparity estimation have been performed.

Especially in texture segmentation tasks the local quaternionic phase shows

high discriminatory power. It is an important fact that this additional feature

comes without any additional computational cost.

Developing the theory of hypercomplex spectral signal representations, we were

able to construct linear filters which have the possibility of capturing the intrin-
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sically two-dimensional signal structure. Their intrinsic two-dimensional struc-

ture is a fundamental property of images. Images contain regions of intrinsically

zero-dimensional and one-dimensional structure as well, but these structures can

equally well be described by one-dimensional signals.

The possibility of capturing intrinsically two-dimensional structure is the main fea-

ture of the hypercomplex signal representations. The value of the representation

lies in the fact that it contains the symmetry information of a signal in a way which

is more directly accessible by a linear method than in other linear representations.

Of course, the full signal information is as well contained in the pixel representa-

tion or in the complex Fourier representation. However, the information is pre-

sented in very different ways. It has been shown that the QFT and quaternionic

Gabor filters make accessible intrinsically two-dimensional structure more directly

than the other mentioned representations. Future research will be concerned with

extensions of the applications sketched in this thesis. On the other hand, there re-

main open theoretical questions like the existence of a phase concept in dimensionsn > 2.
Surely, the methods presented here are only a first step in using hypercomplex

methods in image processing. It should be possible to construct hypercomplex fil-

ters which capture other symmetries than the reflectional symmetries with respect

to the coordinate axes, which were used here. Thus, we have the hope of hav-

ing opened a door to future research in multidimensional signal processing using

representations in hypercomplex algebras.
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[46] H.G. Gröndahl and K. Gröndahl. Subtraction radiography for the diagnosis

of periodontal bone lesions. Oral Surg., 55:208–213, 1983.

[47] L. Haglund. Adaptive Multidimensional Filtering. PhD thesis, Linköping Uni-
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