
INSTITUT FÜR INFORMATIK

UND PRAKTISCHE MATHEMATIK

Geometric/Photometric Consensus and

Regular Shape Quasi-Invariants for

Object Localization and Boundary

Extraction

Josef Pauli

Bericht Nr. 9805

Mai 1998

CHRISTIAN-ALBRECHTS-UNIVERSITÄT
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AbstractPolyhedral descriptions of objects are needed in applications like vision-basedrobotics, e.g. to carry out grasping and assembling tasks. This work presentsa novel methodology for the subtask of localizing a three-dimensional tar-get object in the image and extracting the two-dimensional depiction of theboundary. By eliciting the general principles underlying the process of im-age formation we exhaustively make use of general, qualitative assumptions,and thus reduce the role of object-speci�c knowledge for boundary extrac-tion. Geometric/photometric consensus principles are involved in a Houghtransformation based approach for extracting line segments. The perceptualorganization of line segments into polygons or arrangements of polygons, whichoriginate from the silhouette or the shape of approximate polyhedral objects, isbased on shape regularities and quasi-invariants of projective transformation.An a�liated saliency measure combines evaluations of geometric/photometricconsensus features with geometric grouping features. An ordered set of mostsalient polygons or arrangements is the basis for locally applying techniques ofobject recognition or detailled boundary extraction. The generic approachesare demonstrated for technical objects of electrical srap located in real-worldcluttered scenes.
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1 IntroductionThe introductory section embeds our methodology of object localization and boundaryextraction in the general context of purposive, qualitative vision, then presents a detailledreview of relevant literature, and �nally gives an outline of the paper.1.1 General context of our workWilliam of Occam (ca. 1285-1349) was somewhat of a minimalist in medieval philosophy.His motto, which is known as Occam's Razor, reads as follows: "It's vain to do with morewhat can be done with less". This economy principle is self-evident in the paradigm ofpurposive, qualitative vision [1].1. The vision system should gather from the images just the relevant information forsolving a speci�c task.2. The vision procedures should be generally applicable to a category of similar tasksinstead of a single speci�c task.Ad 1. In the �eld of vision-based robotics a category of speci�c tasks can be the robotgrasping of technical objects. In most of these manipulation tasks a polyhedral approxi-mation of the target objects is su�cient (see the survey of robot grasp synthesis algorithmsof Shimoga [2]). For example, in order to manipulate an object using a parallel jaw grip-per it is su�cient to reconstruct from the image a rectangular solid, though round cornersor local protrusion can be a property of the object. It is the corporeal characteristic ofthe robot gripper, which determines the relevant type of shape approximation to describethe geometric relation between gripper und object. For the qualitative reconstruction ofthese shapes just a certain spectrum of image analysis tools is useful, which additionallydepends on the characteristic of the camera system. For example, if a lens with largefocal length is applied, then it is plausible to approximate the geometric aspect of im-age formation by perspective collineations [3]. As straight 3D object boundary lines areprojected into approximate straight image lines, one can use techniques for straight lineextraction, e.g. Hough transformation [4]. Altogether, the kind of task determines thedegree of qualitativeness of the information that must be recovered from the images (seealso [5] for interesting contributions to qualitative vision). A restriction to partial recov-ery is inevitable for solving a robot task in limited time with minimum energy [6]. Inthis sense the design of behavior-based robot systems drives the design of included visionprocedures [7].Ad 2. Applying Occam's Razor to the design of vision procedures also means to quest forapplicability for a category of similar tasks instead of a single speci�c task. This shouldbe reached by exploiting ground truths concerning the situatedness and the corporealityof the robot vision system. The ground truths are constraints on space-time, the camerasystem, and their relationship, which can be generally assumed for the relevant category ofrobot tasks. General assumptions of various types have been applied more or less success-fully in many areas of image processing and computer vision. (a) Pro�les of step, ramp,or sigmoid functions are used as mathematical models in procedures for edge detection3



[8]. (b) For the perceptual organization of edges into structures of higher complexity (e.g.line segments, curve segments, ellipses, polygons) approaches of edge linking are applied,which rely on Gestaltic phenomena of proximity, similarity, closure, and continuation [9].(c) Object recognition is most often based on geometric quantities, which are assumedto be invariant under the projective transformations used to model the process of imageformation [10]. Usually a strati�cation into euclidean, similarity, a�ne, and projectivetransformations is considered with the property that in this succession each group of trans-formations is contained in the next. The sets of invariants of these transformation groupsare also organized by subset inclusion but in reverse order, e.g. cross ratio is an invari-ant both under projective and euclidean transformation, however length is only invariantunder euclidean transformations. (d) Frequently, in real applications the assumption ofinvariance is too strong and must be replaced by the assumption of quasi-invariance. Itstheory and important role for grouping and recognition has been worked out by Binford[11]. For example, Gros et al. [12] use geometric quasi-invariants of pairs of line segmentsto match and model images. (e) Finally, for the reconstruction of 3D shape and/or mo-tion the ill-posed problem is treated using regularization approaches, which incorporatesmoothness and rigidity assumptions of the object surface [13]. A critical introspectionreveals some problems concerning the applicability of all these constraints. For example,Jain [14] has pointed out that smoothness and rigidity constraints of objects must beapplied locally to image regions of depicted object surfaces, but the major problem is to�nd those meaningful areas. Obviously, in real applications the listed assumptions aretoo general, and should be more directly related to the type of the actual vision task,i.e. the categories of relevant situations and goals. In knowledge-based systems for imageunderstanding it was proposed to make extensive use of domain-speci�c knowledge [15].These systems �t quite well to Marr's theory of vision in the sense of striving for gen-eral vision systems by explicitly incorporating object-speci�c assumptions [16]. However,the extensive use of knowledge contradicts to Occam's economy principle, and in manyapplications the explicit formulation of object models is di�cult or even impossible.1.2 Characterization of our methodologyHaving the purpose of robot grasping and arranging in mind we present a system forlocalizing approximate polyhedral objects in the image and extracting their qualitativeboundary line con�gurations. The approach is successful in real-world robotic scenes,which are characterized by clutter, occlusion, shading, etc. A global-to-local strategy isfavoured, i.e. �rst to look for a candidate set of objects by taking only the approxi-mate silhouette into account, then to recognize target objects of certain shape classes inthe candidate set by applying view based approaches, and �nally to extract a detailledboundary.Our approach of localization is to �nd salient polygons, which represent single faces orsilhouettes of objects. The saliency of polygons is based on geometric/photometric consen-sus features and on geometric regularity features. The �rst category of features comprisesconsensus evaluations between geometric and photometric line features and geometric andphotometric junction features. The Hough transformation is our basic technique for ex-tracting line segments and for organizing them into polygons. Its robustness concerning4



parameter estimation is appreciated and the loss of locality is overcome by the geomet-ric/photometric consensus principles. For extracting and characterizing junctions a cornerdetector is used in combination with a rotating wedge �lter. The second category of fea-tures, involved in the saliency measure of polygons, comprises geometric quasi-invariantsunder projective transformation. Speci�cally, they describe regularity aspects of 3D sil-houettes respective 2D polygons. Examples for regularities are parallelism, right-angles,reection-symmetry, translation-symmetry.The ordered places of most salient polygons are visited for special local treatment. First, ahistogram-based indexing approach can be applied for speci�c object recognition or recog-nition of certain shape classes (not treated in this paper). Second, a generic procedure canbe applied for detailled boundary extraction of certain shape classes, e.g. parallelepipeds.Our approach is to extract arrangements of polygons from the images by incorporating avanishing point constraint and a convergence invariance constraint, which both originatefrom general assumptions of projective transformation of regular 3D shapes. A majorcontribution of our work is that the basic procedure of line extraction, i.e. Hough trans-formation, and all subsequent procedures are controlled by constraints, which are inherentin the three-dimensional nature of the scene objects and inherent in the image formationprinciples of the camera system.Our system is organized in several procedures for which the relevant assumptions areclearly stated. The assumptions are related to the situatedness and corporeality of therobot vision system, i.e. quasi-invariants of regular shapes under projective transfor-mation and geometric/photometric consensus of image formation. Furthermore, theseassumptions are strati�ed according to decreasing generality, which imposes a certain de-gree of speciality on the procedures. Concerning the objects in the scene our most generalassumption is that the object shape is an approximate polyhedron, and an example fora speci�c assumption is that an approximate parallelepiped is located in a certain area.We follow the claims of Occam's minimalistic philosophy and elicit the general princi-ples underlying the perspective projection of polyhedra, and then implement proceduresas general applicable as possible. Based on this characterization of our methogology,relevant contributions in the literature will be reviewed.1.3 Detailled review of relevant literatureObject detection can be considered as a cyclic two-step procedure of localization andrecognition [17], which is usually organized in several levels of data abstraction. Localiza-tion is the task of looking for image positions where objects of a certain class are located.In the recognition step one of these locations is considered to identify the speci�c object.Related to the problem of boundary extraction the task of localization is strongly corre-lated with perceptual organization, e.g. to organize those gray value edges, which belongto the boundary of a certain object. Sarkar and Boyer [18] have reviewed the relevantwork in perceptual organization (up to year 1992) and proposed a four-level classi�cationof the approaches, i.e. signal level, primitive level, structural level, assembly level. Forexample, at the signal level pixels are organized into edge chains, at the primitive levelthe edge chains are approximated as polylines (i.e. sequences of line segments), at thestructural level the polylines are combined to polygons, and at the assembly level several5



polygons are organized into arrangements. For future research they suggested: "Thereis a need for research into frameworks for integration of various Gestaltic cues includingnon-geometric ones ...". In line with that, the same authors present in [19] a hierar-chical system for the extraction of curvilinear or rectilinear structures. Regularities inthe distribution of edges are detected using voting methods for Gestaltic phenomena ofproximity, similarity, smooth continuity and closure. The approach is generic in the sensethat various forms of tokens can be treated and represented as graphs, and various typesof structures can be extracted by applying standardized graph analysis algorithms.Our approach more extensively incorporates non-geometric cues, i.e. photometric fea-tures, treats closed line con�gurations of higher complexity including higher level Gestalticphenomena, and from that de�nes a saliency measure for di�erent candidates of line or-ganizations.Frequently, Hough transformation has been used as basic procedure for grouping at theprimitive or structural level [4]. Speci�c arrangements of gray value edges are voting forcertain analytic shapes, e.g. straight lines or ellipses. For example, each line of edgescreates a peak of votes in the space of line parameters and the task is to localize thepeaks. To make the Hough transformation more sensitive one can go back to the signallevel and take the orientations of the gray value edges into account. As orientation is aparameter in a polar representation of a line the number of possible line orientations, forwhich a pixel may vote, can be reduced to the relevant one. The size of this voting kernelinuences the sharpness of the Hough peaks [20], i.e. the accuracy of line parameters.The Hough image can be used for grouping at the structural level or even at the assemblylevel. The problem is to �nd especially those peaks, which arise from lines belonging to aspeci�c object. In the work of Princen et al. [21] a hierarchical procedure is used, whichextracts an exhaustive set of peaks and afterwards selects the relevant subset by applyingGestaltic grouping criteria. Wahl and Biland [22] extract objects from a polyhedral sceneby representing an object boundary as a distributed pattern of peaks in the parameterspace of lines. Unfortunately, the approach is demonstrated only for synthetic images.Alternatively, Ballard [23] introduced the generalized Hough transformation for the ex-traction of complex natural 2D shapes, in which a shape is represented in tabular forminstead of an analytic formula.This short review of extensions of the standard Hough transformation gives the impression,that our Hough voting procedure can serve as basis for perceptual organization at allperception levels and for integrationg cues from all levels. The greatest weakness ofthe standard Hough transformation is the loss of locality, e.g. a line can gain supportfrom pixels anywhere along its length from image border to border. Therefore, two ormore line segments may be misinterpreted as one line, or short line segments may beoverlooked. Consequently, Yang et al. [24] introduce a weighted Hough transformation,in which the connectivity of a line is measured in order to also detect short line segments.Similarly, Foresti et al. [25] extend the Hough transformation to labeled edges. Each labelcorresponds to a line segment, which is extracted by a classical line following proceduretaking connectivity and straightness in the course of edges into account.Our approach to overcome this problem is to apply two principles of geometric/photometricconsensus. The �rst one is the line/edge orientation-consensus mentioned above, and thesecond one considers the characterization of gray value corners and therefore is two-6



dimensional in nature. Furthermore, locality of boundary extraction is reached by apply-ing a windowed Hough transformation within the areas of most salient polygons.Cho and Meer [26] propose an approach for detecting image regions by evaluating a con-sensus among a set of slightly di�erent segmentations. Local homogeneity is based oncooccurrence probabilities derived from the essemble of initial segmentations, i.e. prob-abilities that two neighbored pixels belong to the same image region. Region adjacencygraphs at several levels are constructed and exploited for this purpose. In our work a con-sensus methodology is introduced for bridging the gap between geometric and photometricfeatures, and for driving image segmentation based on geometric regularity features (of3D objects), which are quasi-invariants under projective transformation.Amir and Lindenbaum [27] present a grouping methodology for both signal and primitivelevel. A graph is constructed, whose nodes represent primitive tokens such as edges,and whose arcs represent grouping evidence based on collinearity or general smoothnesscriteria. Grouping is done by �nding the best graph partition using a maximum likelihoodapproach. A measure for the quality of detected edge organizations is de�ned, which couldbe used as decision function for selectively postprocessing certain groups. In our approachgraph analysis is avoided at the primitive level of grouping edges (because it seems to betime-consuming), but is used for detecting polygons at the structural level.Castano and Hutchinson [28] present a probabilistic approach to perceptual grouping atthe primitive and structural level. A probability distribution over a space of possible im-age feature groupings is determined and the most likely groupings are selected for furthertreatment. The probabiblities are based on how well a set of image features �ts to aparticular geometric structure and on the expected noise in image data. The approachis demonstrated for two types of low-level geometric structures, i.e. straight lines andbilateral symmetries. Complex symmetrical structures consisting of groups of line seg-ments are extracted in the work of Yl�a-J�a�aski and Ade [29]. In a two-step procedure �rstpairs of line segments are detected, which are the basic symmetry primitives, and secondseveral of them are selectively grouped along the symmetry axes of the segment pairs.Our approach is a more general in the sense that we treat further types of regularitiesand symmetries.In the work of Zisserman et al. [30] grouping is done at all four levels. Line structuresbelonging to an object are extracted by using techniques of edge detection, contour fol-lowing and polygonal approximation (signal level, primitive level, structural level). Therepresentation is given by certain invariants to overcome di�culties in recognizing ob-jects under varying viewpoints. These geometric invariants are used to de�ne an indexingfunction for selecting certain models of object shapes, e.g. certain types of polyhedra orsurfaces of revolution. Based on a minimal set of invariant features a certain object modelis deduced, and based on that a class-based grouping procedure is applied for detailledboundary extraction (assembly level). For example, under a�ne imaging conditions theparallelism of 3D lines of a polyhedra also holds between the projected lines in the im-age. Accordingly, certain lines of the outer border of an object appear with the sameorientation in the interior of the silhouette. This gives an evidence of grouping lines fordescribung a polyhedron. Our approach contributes to this work, in that we introducesome assembly level grouping criteria for boundary extraction of approximate polyhe-dra. These criteria are the parallelism quasi-invariant, the convergence invariant, and a7



vanishing point constraint.1.4 Outline of the workSection 2 recalls the de�nitions of standard Hough transformation and orientation-selectiveHough transformation for line extraction. Furthermore, the geometric/photometric con-sensus features are introduced, which are based on the principle of orientation-consensusbetween lines and edges, and on the principle of junction-consensus between convergencesand corners. Section 3 de�nes regularity features of polygons, which are projective quasi-invariants, i.e. parallelism or right-angle between line segments, reection-symmetry ortranslation-symmetry between polylines. These quasi-invariants are combined with thegeometric/photometric consensus features in a generic procedure for extracting salientquadrangles or polygons. Section 4 introduces grouping criteria at the assembly level,i.e. the vanishing point constraint and the convergence invariance. These assembly levelcriteria are integrated with the consensus features and quasi-invariants at the signal,primitive and structural level. Two generic procedures are presented for extracting thearrangements of polygons for approximate polyhedra. Section 5 discusses the results ofthe work on the basis of 14 assumptions, stated in the previous sections, which are groundtruths inherent in the three-dimensional nature of the scene objects and inherent in theimage formation principles of the camera system. The usefulness of the methodology isdemonstrated for real-world scenes of electrical scrap.
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2 Geometric/photometric consensus principlesObviously, the general assumption behind all approaches of boundary extraction is thatthree-dimensional surface discontinuities must have corresponding gray value edges in theimage. Nearly all problems can be traced back to a gap between the geometric and thephotometric type of scene representation. This section introduces measures for evaluatinga consensus between geometric and photometric features. The one-dimensional featureof straight lines and the two-dimensional feature of a convergence of two straight linesare considered. Exemplary, the Hough transformation is used as basic procedure for lineextraction and the SUSAN operator for corner detection.2.1 Hough transformation for line extractionFor representing straight image lines we prefer the polar form (see Fig. 1), which avoidssingularities. Let P be the set of discrete coordinate tuples p := (x1; x2) for the imagepixels of a gray value image with Iw columns and Ih rows. A threshold parameter �1speci�es the permissible deviation from linearity for a sequence of image pixels.
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FIG. 1: Polar form of a line with distance parameter r and angle parameter � taken relative to the imagecenter.De�nition 1 (Polar representation of a line) The polar representation of an imageline is de�ned byL(p; q) := x1 � cos(�) + x2 � sin(�)� r; jL(p; q)j � �1 (1)Parameter r is the distance from the image center to the line along a direction normal tothe line. Parameter � is the angle of this normal direction related to the x1 axis. Thetwo line parameters q := (r; �) are assumed to be discretized. This calls for the inequalitysymbol in Eq. (1) to describe the permissible deviation from the ideal value zero. For theparameter space Q we de�ne a discrete two-dimensional coordinate system (see Fig. 2).The horizontal axis is for parameter r, whose values reach from �Id2 to +Id2 , where Id isthe length of the image diagonal. The vertical axis is for parameter �, whose values reachfrom 0� to 180� angle degrees. The discrete coordinate system can be regarded as a matrixconsisting of Id columns and 180 rows. 9
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FIG. 2: Coordinate system for the two-dimensional space of line parameters (Hough image); horizontalaxis for parameter r reaching from � Id2 to + Id2 , and vertical axis for parameter � reaching from 0 to 180.Due to discretization each parameter tuple is regarded as a bin of real-valued parametercombinations, i.e. it represents a set of image lines with similar orientation and position.The standard Hough transformation counts for each bin how many edges in a gray valueimage lie along the lines, which are speci�ed by the bin. In the Hough image thesenumbers of edges are represented for each parameter tuple. Each peak in the Houghimage indicates that the gray value image contains an approximate straight line of edges,whose parameters are speci�ed by the position of the peak. A binary image B is used,which represents the edge points by B(p) = 1 and all the other points by B(p) = 0.De�nition 2 (Standard Hough transformation) The standard Hough transforma-tion SHT : Q ! [0; � � � ; Iw � Ih] of the binary image B relative to the polar form L of astraight line is de�ned bySHT (q) := #fp 2 P j B(p) = 1 ^ jL(p; q)j � �1g (2)Fig. 3 shows on top the gray value image of a dark box (used as dummy box in electricalequipment) and at bottom the binarized image of gray value edges. The standard Houghtransformation is depicted in Fig. 4. Typically, wide-spread maxima occur due to thereason that all edges near or on a line cause the SHT to not only increase the level of therelevant bin but also many in their neighborhood. We are interested in sharp peaks inorder to easily locate them in the Hough image (i.e. extract the relevant lines from the grayvalue image) and accurately estimate the line parameters. By making the discretizationof the parameter space more �ne-grained the maxima would be more sharpened and moreaccurate, however the computational expenditure for the Hough transformation wouldincrease signi�cantly.2.2 Orientation-consensus between lines and edgesThe conict between accuracy of extracted lines and e�ciency of line extraction can bereduced by making use of an orientation-consensus between lines and gray value edges.10



FIG. 3: (Top) Gray value image of an electrical dummy box, (bottom) binarized gradient magnitudesindicating the positions of gray value edges.
FIG. 4: Standard Hough transformation of the binarized image in Fig. 3. Wide-spread maxima in theHough image, i.e. the accumulation array with discrete line parameters (distance r and angle �) forindexing columns and rows.Assumption 1 (Line/edge orientation-consensus for a line point) The orien-tation � of a line of gray value edge points and orientation O(p) of an edge at pointp := (x1; x2) on the line are approximately equal. The replacement of � by O(p) in thepolar form of the image line implies just a small deviation from ideal value zero. Thenecessary geometric/photometric consensus is speci�ed by parameter �2.jx1 � cos(O(x1; x2)) + x2 � sin(O(x1; x2))� rj � �2 (3)A line of edge points may originate from the gray value contrast at the object surface, e.g.due to texture, inscription, shape discontinuities or �gure/background separation. Smalldistortions in the imaging process and inaccuracies in determining the edge orientation are11



considered in Eq. (3) by parameter �2, which speci�es the upper bound for the permissibleerror. In our system the orientations of gray value edges are extracted by appropriatelycombining four di�erently oriented 2D{Gabor-functions, which are sensitive to the direc-tions 0�, 45�, 90�, 135� (see [31], pp. 219-258). The standard Hough transformation willbe modi�ed by taking the orientation at each edge point into account and accumulatingonly those small set of parameter tuples, for which Eq. (3) holds. A tolerance band 4awill be introduced to take care for the inaccuracy of the edge orientation O(p) at positionp (adopted from Princen et al. [21]).De�nition 3 (Orientation-selectiveHough transformation) The orientation-selec-tive Hough transformation OHT : Q ! [0; � � � ; Iw � Ih] of the binary image B and theorientation image O relative to the polar form L of a straight line is de�ned byOHT (q) := #fp 2 P j B(p) = 1 ^ jL(p; q)j � �1 ^ �� 4a2 � O(p) � �+ 4a2 g (4)Fig. 5 shows the result of the OHT, if we assign 4a = 4� angle degrees for the toleranceband of edge orientations. Compared to the SHT in Fig. 4 we realize that more localmaxima are sharpened in the OHT.
FIG. 5: Orientation-selective Hough transformation of the binarized image in Fig. 3 taking an image ofedge orientations into account. Several local maxima are much more sharpened than in the Hough imageof SHT in Fig. 4.The local maxima can be obtained iteratively by looking for the global maximum, erasingthe peak position together with a small surrounding area and restarting the search for thenext maximum. Due to the sharpness of the peaks in OHT it is much easier (comparedto SHT) to control the area size to be erased in each iteration. Fig. 6 shows the extractedlines speci�ed by the set of 10 most maximal peaks in the Hough images of SHT and OHT(top and bottom respectively). Obviously, the lines extracted via OHT, which consider12



FIG. 6: Extracted image lines based on 10 most maximal peaks in the Hough image, (top) of SHT,(bottom) of OHT. The lines extracted via OHT are more relevant and accurate for describing the objectboundary.the line/edge orientation-consensus, are more relevant and accurate for describing theobject boundary.The line/edge orientation-consensus not only supports the extraction of relevant lines, butis also useful for verifying or adjusting a subset of candidate lines, which are determinedin the context of other approaches (see Sections 3 and 4 later on). Furthermore, theorientation-consensus is used to verify certain segments of lines, i.e. restrict the unboundedlines extracted with OHT to the relevant segments of an object boundary. The �nite setof discrete points pi; i 2 f1; � � � ; Ng, of a line bounded between p1 and pN is denotedby L(p1; pN ). In Fig. 7 the line L(pa; pd) through the characteristic points fpa; pb; pc; pdgis only relevant between pb and pc. Fig. 8 shows the course of edge orientation for thepoints pi located on the line segment L(pa; pd). The horizontal axis is for the points onthe line segment and the vertical axis for the orientations. Furthermore, the orientation� of the line segment L(pa; pd) is depicted, which is of course independent of the pointson the line. For the points of the line segment L(pb; pc) we obtain small deviation valuesbetween the edge orientations and the line orientation. On the other hand, there is largevariance in the set of deviation values coming from edge orientations of the points of theline segments L(pa; pb) or L(pc; pd).FIG. 7: Example line with characteristic points fpa; pb; pc; pdg, de�ned by intersection with other linesand with the image border. Just the segment between pb and pc is relevant for the boundary.For verifying a line segment we evaluate the deviation between the orientation of the lineand the orientations of the gray value edges of all points on the line segment.13



pa pb pc pdFIG. 8: Course of edge orientation of points along the line L(pa; pd), and orientation � of this line. Smalldeviation within the relevant segment L(pb; pc), and large deviations within the other two segments.De�nition 4 (Orientation-deviation related to a line segment) The orientation-deviation between orientation � of a line and the orientations of all edges on a segmentL(p1; pN ) of the line is de�ned byDLE(�;L(p1; pN )) := 1N NXi=1DO(�;O(pi)) (5)DO(�;O(pi)) := minfj��O(pi)j; j��O(pi) + 180�j; j��O(pi)� 180�jg90� (6)The minimization involved in Eq. (6) is due to the restriction of edge and line orientation inthe angle interval [0�; � � � ; 180�] respectively. As an example of application, the deviationbetween a line orientation � = 0� and an edge orientation O(pi) = 180� must be de�nedto be zero. Furthermore, a normalization factor is introduced to restrict the deviationvalues in the real unit interval. The orientation-deviation related to the line segmentsL(pa; pb), L(pb; pc), and L(pc; pd) in Fig. 7 is shown in Fig. 9. For line segment L(pb; pc)it is minimal, as expected, because this line segment originates from the actual boundaryof the target object.Based on the de�nition for orientation-deviation we can formally introduce the line/edgeorientation-consensus between the orientation of a line and the orientations of all edgeson a segment of the line.Assumption 2 (Line/edge orientation-consensus for a line segment) Let �3 bethe permissible orientation-deviation in the sense of a necessary geometric/photometricconsensus. The line/edge orientation-consensus holds between the orientation � of a lineand the orientations O(pi) of all edges on a segment L(p1; pN ) of the line, ifDLE(�;L(p1; pN )) � �3 (7)14
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conFIG. 9: Mean variance of the edge orientations for three line segments L(pa; pb), L(pb; pc), L(pc; pd)related to line orientation �.For example, Fig. 9 shows that the line/edge orientation-consensus just holds for the linesegment L(pb; pc), if we apply a consensus threshold �3 = 0:15. For the extraction ofobject boundaries we will generally assume that the line/edge orientation-consensus justholds for the line segments, which are relevant for a boundary.2.3 Junction-consensus between convergences and cornersThe geometric line feature and the photometric edge feature are one-dimensional in nature.A further sophisticated consensus criterion can be de�ned on the basis of two-dimensionalimage structures. In the projected object boundary usually two or more lines meet ata common point (see points pb and pc in Fig. 7). A collection of non-parallel imageline segments meeting at a common point is designated as a line convergence. At theconvergence point a gray value corner should be detected in the image. Generally, grayvalue corners are located at the curvature extrema along edge sequences. A review ofseveral corner detectors was presented in [32], however we used the recently publishedSUSAN operator [33]. Exemplary, Fig. 10 shows a set of gray value corners with especiallythe corners at the points pb and pc included.According to that wemust consider a consensus between the geometric convergence featureand the photometric corner feature. Common attributes are needed for characterizing ajunction of lines and a junction of edge sequences. We de�ne a (#M)-junction to consist ofM converging lines resp. edge sequences. A (#M)-junction of lines can be characterizedby the position pcv of the convergence point and the orientations A := (�1; � � � ; �M) ofthe converging lines related to the horizontal axis. Similary, a (#M)-junction of edgesequences is characterized by the position pcr of the corner point and the orientationsB := (�1; � � � ; �M) of the converging edge sequences against the horizontal axis.15



FIG. 10: The SUSAN operator has detected a set of gray value corners shown as white squares. We �ndall those gray value corners included which are characteristic for the three-dimensional object boundary.De�nition 5 (Junction-deviation related to a line convergence) The junction-deviation between a (#M)-junction of lines with orientations A at a convergence pointpcv and a (#M)-junction of edge sequences with orientations B at a corner point pcr isde�ned by DCC (pcv; pcr;A;B) := �1 �DJP (pcv; pcr) + �2 �DJO(A;B) (8)DJP (pcv ; pcr) := kpcv � pcrkId (9)DJO(A;B) := 1180� �M MXi=1minfj�i � �ij; j�i � �i + 360�j; j�i � �i � 360�jg (10)Eq. (8) combines two components of junction-deviation with the factors �1 and �2, whichare used to weight each part. The �rst component (Eq. (9)) evaluates the euclidean dis-tance between convergence and corner point. The second component (Eq. (10) computesthe deviation between the orientation of a line and of the corresponding edge sequence,and this is done for all corresponding pairs in order to compute a mean value. Both com-ponents and the �nal outcome of Eq. (8) are normalized in the real unit interval. Basedon this de�nition we formally introduce a convergence/corner junction-consensus.Assumption 3 (Convergence/corner junction-consensus) Let �4 be the permissiblejunction-deviation in the sense of a necessary geometric/photometric consensus. Theconvergence/corner junction-consensus (CCJC) holds between a (#M)-junction of linesand a (#M)-junction of edge sequences, ifDCC (pcv; pcr;A;B) � �4 (11)This convergence/corner junction-consensus will be used as a criterion to evaluate whethera junction belongs to the boundary of a target object. For illustration it is applied tothree junctions designated in Fig. 11 by the indices 1; 2; 3. It is remarkable that junctions1 and 2 belong to the boundary of the target object but junction 3 doesn't. The whitesquares show the convergence points pcv1; pcv2; pcv3. They are determined by intersectionof straight lines extracted via OHT (see also Fig. 6 (bottom)). The black squares showthe corner points pcr1; pcr2; pcr3. They have been selected from the whole set of cornerpoints in Fig. 10 based on nearest neighborhood to the convergence points. Related toEq. (9) we realize that all three convergence points have corresponding corner points16



in close neighborhood. I.e. for the three junctions 1; 2; 3 we obtain position deviations(normalized by the image diagonal Id) of about 0:009; 0:006; 0:008 respectively. Accordingto that, a small position deviation is only a necessary but not a su�cient criterion toclassify junction 3 unlike to 1 and 2. Therefore, the junctions must be characterized inmore detail, which is considered in Eq. (10).
FIG. 11: A subset of three gray value corners is selected. They are located in close neighborhood tothree convergence points of relevant boundary lines respectively. Just the corners at junctions 1 and 2are relevant for boundary extraction but not the corner at junction 3.A steerable wedge �lter, adopted from [34], has been applied at the convergence pointspcv1; pcv2; pcv3 in order to locally characterize the gray value structure. We prefer con-vergence points instead of the neighboring corner points, because the convergence pointsarise from line detection, which is more robust than corner detection. A wedge is rotatingin discrete steps around a convergence point and at each step the mean gray value withinthe wedge mask is computed. E.g. the wedge started in horizontal direction pointing tothe right and than rotated counter-clockwise in increments of 4� angle degrees. Accordingto the steerability property of this �lter we compute the �lter response at the basic orien-tations, and approximate �lter responses in between two basic orientations (if necessary).This gives a one-dimensional course of smoothed gray values around the convergencepoint. The �rst derivative of a one-dimensional Gaussian is applied to this course andthe magnitude computed from it. We obtain for each discrete orientation a signi�cancemeasurement for the existence of an edge sequence owing with that orientation into theconvergence point. As a result, a curve of �lter responses is obtained, which characterizesthe gray level structure around the convergence point.These curves are shown for the junctions 1, 2, and 3 in Fig. 12, Fig. 13, and Fig. 14respectively. The curve in Fig. 12 shows two local maxima (near to 0� respective 360� andnear to 200�) indicating a (#2)-junction. The curve in Fig. 13 shows three local maxima(near to 20�, 290�, and 360�) indicating a (#3)-junction. The curve in Fig. 14 shows twolocal maxima (near to 20� and 150�) indicating a (#2)-junction. The vertical dotted linesin each �gure indicate the orientation of the image lines (extracted by Hough transfor-mation), which converge at the three junctions respectively. We clearly observe that inFig. 12 and Fig. 13 the local maxima are located near to the orientations of the converg-ing lines. However, in Fig. 14 the positions of the curve maxima and of the dotted linesdi�er signi�cantly because junction 3 doesn't belong to the object boundary. By applyingthe formula in Eq. (10) we compute about 0:04; 0:03; 0:83 for the three junctions 1; 2; 3respectively. Based on a threshold we can easily conclude that the convergence/cornerjunction-consensus holds for junctions 1 and 2, but not for junction 3.17



FIG. 12: Response of a counter-clockwise rotating wedge �lter applied at junction 1. The two localmaxima indicate a (#2)-junction, i.e. two converging edge sequences. The orientations of the convergingedge sequences (maxima of the curve) are similar to the orientations of two converging lines (denoted bythe positions of the vertical lines). The convergence/corner junction-consensus holds for junction 1.
FIG. 13: Response of a counter-clockwise rotating wedge �lter applied at junction 2. The three localmaxima indicate a (#3)-junction, i.e. three converging edge sequences. The maxima of the curve arenear the positions of the vertical lines. The convergence/corner junction-consensus holds for junction 2.The line/edge orientation-consensus and the convergence/corner junction-consensus cangenerally be assumed for all scenes containing approximate polyhedral objects. In Sections3 and 4 the evaluation of the junction-consensus according to Eq. (8) is combined withthe evaluation of the orientation-consensus according to Eq. (5). This measure will be18



FIG. 14: Response of a counter-clockwise rotating wedge �lter applied at junction 3. The two localmaxima indicate a (#2)-junction. The orientations of the converging edge sequences are dissimilar tothose of the converging lines. The convergence/corner junction-consensus does not hold for junction 3.used in combination with regularity features of object shapes to de�ne the relevance ofcertain line segments for the boundary description.
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3 Consensus-based structural level groupingThe orientation-selective Hough transformation (OHT), the line/edge orientation-consen-sus (LEOC) and the convergence/corner junction-consensus (CCJC) are the basis fordetecting high-level geometric structures in the image. Additionally, we make dominantuse of certain regularity features, which are inherent in man-made 3D objects and arequasi-invariant under projective transformation. Approximate parallel or right-angledline segments, or approximate reection-symmetric or translation-symmetric polylinesare considered in a sophisticated search strategy for detecting organizations of line seg-ments. This section focuses on the extraction of polygons originating from the faces orthe silhouettes of approximate polyhedral 3D objects. Related to the aspect of extractingpolygons our approach is similar to Havaldar et al. [35], who also extract closed �gures,e.g. by discovering approximate reection-symmetric polylines (they call it skewed sym-metries between super segments). The principal distinction to our work is that we strivefor an integration of grouping cues from this structural level with cues from other levels,i.e. from signal level and assembly level.3.1 Con�guration of Hough peaks for approximate parallel linesIt is well-known for the projective transformation of an ideal pinhole camera that animage point (x1; x2) is computed from a 3D scene point (y1; y2; y3) byx1 := f � y1y3 ; x2 := f � y2y3 ; (12)where f is the distance between the lens center and the projection plane. Furthermore,according to Eq. (12) it is obvious that parallel 3D lines are no longer parallel afterprojective transformation to the image (except for lines parallel to the projection plane).Fortunately, for certain imaging conditions the parallelism is quasi-invariant under pro-jective transformation. To get an impression for that we describe the imaging conditionfor taking the picture in Fig. 15. The distance between the camera and the target ob-ject was about 1000mm, and the lens of the objective was of 12mm focal length. Inthat case the deviation from parallelism, which depends on object orientation, is at most15� angle degrees. We will formulate the parallelism quasi-invariant and relate it to thecon�guration of Hough peaks.De�nition 6 (Approximate parallel lines) Let �5 be the permissible deviation fromparallelism, i.e. maximal deviation from exact regularity. Two image lines with values �1and �2 of the angle parameter are approximate parallel, ifDO(�1; �2) � �5 (13)Assumption 4 (Quasi-invariance of parallelism)The parallelism is a quasi-invariant,if parallel lines in 3D are approximate parallel after projective transformation. For suchimaging conditions, parallel lines in 3D occur as peaks in the Hough image being locatedwithin a horizontal stripe of height �5. 20



FIG. 15: Arrangement of objects in a scene of electrical scrap. The black dummy box is our target objectfor the purpose of demonstration. It is located in a complex environment, is partially occluded, and hasa protrusing socket.The peaks in a Hough stripe correlate with approximate parallel lines in the gray valueimage. Fig. 16 shows the Hough image obtained from the gray value image in Fig. 15after binarization (edge detection) and application of the OHT.
FIG. 16: Hough image obtained after edge detection in the image of Fig. 15. A set 55 most maximalpeaks is marked by black dots. They have been organized in 10 clusters (horizontal stripes) using theISODATA clustering algorithm.The Hough image has been edited with black squares and horizontal lines, which mark aset of 55 local maxima organized in 10 horizontal stripes. The local maxima are obtainedusing the approach mentioned in section 2.2. For grouping the peak positions we justtake parameter � into account and use the distance function DO from Eq. (6). Accordingto that, angles near to 0� can be grouped with angles near to 180�. A procedure similarto the error{based ISODATA clustering algorithm can be applied but taking the modi�eddistance function into account (see Schalko� et al. [36], pp. 109{125). Initially, thealgorithm groups vectors (in this application, simply scalars) by using the standard K{means method. Then, clusters exhibiting large variances are split in two, and clusters21



that are too close together are merged. Next, K{means is reiterated taking the newclusters into account. This sequence is repeated until no more clusters are split or merged.The merging/splitting parameters are taken in agreement with the pre-speci�ed �5 fromAssumption 4.For example, Fig. 17 shows the set of approximate parallel lines speci�ed by the Houghpeaks in the fourth stripe, and Fig. 18 shows it for the eighth stripe of Hough peaks.Under these lines we �nd candidates for describing the boundary of the dummy box.In the next subsections the horizontal clusters of Hough peaks are used in combinationwith the LEOC and CCJC principles for extracting the faces or silhouettes of objects (ormerely approximate faces or silhouettes) from the images.
FIG. 17: The set of approximate parallel lines speci�ed by the Hough peaks in the fourth stripe of Fig. 16.3.2 Extraction of regular quadranglesIn a multitude of man-made objects the faces or the silhouettes can be approximatedby squares, rectangles, or trapezoids. The projective transformation of these shapesyields approximations of squares, rhombuses, rectangles, parallelograms, or trapezoids.A generic procedure will be presented for extracting from the image these speci�c quad-rangles (The next subsection, after this one, presents a procedure for extracting moregeneral polygons). Under the constraint of clustered Hough peaks we exhaustively lookfor quadruples of Hough peaks, extract the four line segments by line intersection respec-tively, evaluate the LEOC and CCJC principles, and determine deviations from a certainstandard form. Finally, for each quadrangle all evaluations are combined, which resultsin a saliency value including both photometric and geometric aspects.We have introduced the orientation-deviation DLE related to a line segment in Eq. (5)and the junction-deviation DCC related to a convergence of line segments in Eq. (8). Inorder to extend the LEOC and CCJC principles to quadrangles we simply average these22



FIG. 18: The set of approximate parallel lines speci�ed by the Hough peaks in the eighth stripe of Fig. 16.values for the four segments respective for the four convergences.DLE QD := 4Xi=1DLE i ; DCC QD := 4Xi=1DCC i (14)For convenience we have omitted the parameters and simply have introduced an index forthe line segments involved in a quadrangle. The resulting functions DLE QD and DCC QDcan be used in combination to de�ne a geometric/photometric consensus for quadrangles.Assumption 5 (Geometric/photometric consensus for a quadrangle) The neces-sary geometric/photometric consensus for a quadrangle is speci�ed by parameter �6. Thegeometric/photometric consensus for a quadrangle holds, if(DLE QD +DCC QD) � �6 (15)To consider the pure geometric aspect we de�ne the deviation of a quadrangle fromcertain standard forms. For the sequence of four line segments of a quadrangle, letS := (s1; s2; s3; s4) be the lengths, G := (1; 2; 3; 4) be the inner angles of two suc-cessive segments, and F := (�1; �2; �3; �4) be the orientation angles of the polar formrepresentations.De�nition 7 (Rectangle-deviation, parallelogram-deviation, square-deviation,rhombus-deviation, trapezoid-deviation)The rectangle-deviation of a quadrangle is de�ned byDRC(G) := 14 � 360� � 4Xi=1 ji � 90�j (16)23



The parallelogram-deviation of a quadrangle is de�ned byDPA(G) := 12 � 360� � (j1 � 3j+ j2 � 4j) (17)The square-deviation of a quadrangle is de�ned byDSQ(G;S) := 12 � (DRC(G) + VSL(S)) (18)with the normalized length variance VSL(S) of the four line segments.The rhombus-deviation of a quadrangle is de�ned byDRH(G;S) := 12 � (DPA(G) + VSL(S)) (19)The trapezoid-deviation of a quadrangle is de�ned byDTR(F) := minfDO(�1; �3);DO(�2; �4)g (20)Normalization factors are chosen such that the possible values of each function fall inthe unit interval respectively. For the rectangle-deviation the mean deviation from right-angles is computed for the inner angles of the quadrangle. For the parallelogram-deviationthe mean di�erence between diagonally opposite inner angles is computed. The square-deviation and rhombus-deviation are based on the �rst two respectively and additionallyinclude the variance of the lengths of line segments. The trapezoid-deviation is based onEq. (6) and computes for the two pairs of diagonally opposite line segments the minimumof deviation from parallelism.The features related to the geometric/photometric consensus for quadrangles, and thefeature related to the geometric deviation of quadrangles from speci�c shapes must becombined to give measures of conspicuity of certain shapes in an image.De�nition 8 (Saliency of speci�c quadrangles) The saliency of a speci�c quadrangleis de�ned by SSP QD := 1� (�1 �DLE QD + �2 �DCC QD + �3 �DSP QD) (21)The speci�c quadrangle can be an approximate rectangle, parallelogram, square, rhombus,or trapezoid, and for these cases the generic function symbol DSP QD must be replacedby DRC , DPA, DSQ, DRH , or DTR.
24



Generic procedure for the extraction of speci�c quadrangles:1. For each pair of cluster stripes in the set of Hough peaks:1.1. For each pair of Hough peaks in the �rst stripe of the pair:1.1.1. For each pair of Hough peaks in the second stripe of the pair:1.1.1.1. Intersect the lines speci�ed by the four Hough peaks and construct thequadrangle.1.1.1.2. Compute the mean line/edge orientation-deviation using functionDLE QD.1.1.1.3. Compute the mean convergence/corner junction-deviation using func-tion DCC QD.1.1.1.4. Compute the deviation from the speci�c quadrangle using functionDSP QD.1.1.1.5. Compute the saliency value by combining the above results accordingto Eq. (21).2. Bring the speci�c quadrangles into order according to decreasing saliencyvalues.The generic procedure works for all types of speci�c quadrangles, mentioned above, exceptfor trapezoids. For the extraction of trapezoids the algorithm is modi�ed, such that ititerates over single cluster stripes, and selects all combinations of two Hough peaks in eachstripe respectively, and takes the third and fourth Hough peaks from any other clusterstripes. Thus it will be considered that a trapezoid just consists of one pair of parallelline segments, instead of two such pairs of the other speci�c quadrangles.These procedures have been applied to complicated scenes of electrical scrap in orderto draw conclusions concerning the usefulness of the principles introduced above. Thegoal of the following experiments was to extract from the images speci�c quadrangles,which describe the faces or silhouettes of objects. First, we have applied the procedureto the image in Fig. 15 with the intention of extracting approximate parallelograms. Inthe saliency measure the weighting factors �1; �2; �3 are set equal to 0:33. Fig. 19 showsexemplary a set of 65 parallelograms, which are best related to the saliency measure. Thesilhouette boundary of the dummy box (see Fig. 20) is included as number nine. Thedecreasing course of saliency values for the parallelograms is depicted in Fig. 21. Second,the procedure is used to extract approximate rectangles with the intention of extractingthe electronic board of a computer interior in Fig. 22. The best set of 10 approximaterectangles are outlined in black color, including the relevant one of the board. Third, theprocedure has been applied to extract approximate rhombuses with the goal of locatingthe electronic board in the image of Fig. 23. The best set of 4 approximate rhombuses areoutlined in white color, including the relevant one. Finally, the extraction of approximatetrapezoids is shown in Fig. 24. 25



FIG. 19: Based on a saliency measure a subset of most conspicuous, approximate parallelogramms havebeen extracted.

FIG. 20: The silhouette boundary of the dummy box is included in the set of most conspicuous, approx-imate parallelogramms. 26



FIG. 21: Decreasing course of saliency values for the subset of extracted parallelograms in the image inFig. 19.

FIG. 22: Electronic board of a computer interior and an extracted subset of approximate rectangles. Oneof these rectangles represents the boundary of the board.27



FIG. 23: Computer interior containing an electronic board. One of the extracted approximate rhombusesrepresents the boundary of the board.

FIG. 24: Image of a loudspeaker and a subset of extracted approximate trapezoids. One of these representsa side-face of the loudspeaker. 28



3.3 Extraction of regular polygonsThe measures DLE and DCC involved in the geometric/photometric consensus of singleline segments can easily be extended to polygons of K line segments.DLE PG := KXi=1DLE i ; DCC PG := KXi=1DCC i (22)Assumption 6 (Geometric/photometric consensus for a polygon) The neces-sary geometric/ photometric consensus for a polygon is speci�ed by parameter �7. Thegeometric/photometric consensus for a polygon holds, if(DLE PG +DCC PG) � �7 (23)These consensus features must be combined with pure geometric features of the polygon.By considering speci�c polygon regularities a measurement of conspicuity is obtained,i.e. a saliency value for the polygon. More complex regularities are interesting thanthe simple ones involved in speci�c quadrangles. For polygons with arbitrary segmentnumber we de�ne three types of regularities, which are general in the sense that theytypically appear in scenes of man-made objects. Two types of regularities are based onsymmetries between polylines, i.e. the reection-symmetry and the translation-symmetry(de�ned later on). These appear exemplary in the image of a computer monitor as sideand top face (see in Fig. 25 the two polygons outlined with white color). The third typeof regularity is a right-angle, in which two successive line segments of a polygon are right-angled respectively. For example, Fig. 26 shows an electronic board with approximateright-angled shape.
FIG. 25: Computer monitor with two types of regularities of the polygonal faces. The side face isapproximate reection-symmetric, and the top face is approximate translation-symmetric.29



FIG. 26: Computer interior containing an electronic board, whose boundary is represented by a hexagon.The line convergences of the board hexagon are approximate right-angles.A polyline, involved in the de�nition of symmetries, is a non-closed and non-branchingsequence of connected line segments. We construct for each polygon a pair of non-overlapping polylines with equal numbers of line segments. A polygon with an odd numberof line segments is the union of two polylines and one single line segment (see in Fig. 27,top left and right). For a polygon with an even number of line segments we distinguishtwo cases. First, the polygon can be the union of two polylines, i.e. they meet at twopolygon junctions (see in Fig. 27, middle). Second, the polygon can be the union of twopolylines and of two single line segments located at the end of each polyline respectively(see Fig. 27, bottom).Let G := (1; � � � ; K) be the ordered sequence of inner angles of the polygon. A candidatepair of polylines is represented by G1 := (11; � � � ; 1k), i.e. the sequence of inner anglesrelated to the �rst polyline, and by G2 := (21 ; � � � ; 2k), i.e. the opposite (corresponding)inner angles related to the second polyline. Each 1i or 2i is contained in G. Included inG1 and G2 are the inner angles at the end of the polylines, where one polyline meets theother one or meets a single line segment. The set of all pairs (G1;G2) of angle sequences,which describe all candidate pairs of polylines of a polygon, is designated by G�. Forexample, Fig. 27 (bottom) shows for a candidate pair of polylines the two correspondingsequences of inner polygon angles.De�nition 9 (Reection-symmetric polygon) A polygon is reection-symmetric, ifa pair of polylines exists with sequences G1 and G2 of inner angles such that drs(1i ; 2i ) = 0�for each tuple (1i ; 2i ); i 2 f1; � � � ; kg,drs(1i ; 2i ) := j1i � 2i j (24)Fig. 27 shows three reection-symmetric polygons (left column) and the relevant con-�guration of polylines and single line segments (right column). Obviously, for all three30
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approximate reection-symmetry. For the top face of the computer monitor we computeDTS � 0:015, which indicates an approximate translation-symmetry.De�nition 12 (Approximate reection-symmetric or approximate translation-symmetric polygons) Let �8 and �9 be the permissible deviations from exact reection-respective translation-symmetry. A polygon is approximate reection-symmetric, if DRS ��8. A polygon is approximate translation-symmetric, if DTS � �9.Finally, we consider the right-angled polygon as a third type of typical regularity in man-made objects. In the special case of convex, right-angled polygons the shape is a rectangle.In general, the polygon can include concavities with the inner polygon angle 270�.De�nition 13 (Right-angled polygon, right-angle deviation) A polygon is right-angled, if for every convergence of two line segments the inner polygon angle is constrainedby dra(i) = 0�, dra(i) := minfji � 90�j; ji � 270�jg (28)The right-angle deviation of a polygon with M convergences is de�ned byDRA(G) := 1M � 360� � MXi=1 dra(i) (29)De�nition 14 (Approximate right-angled polygon) Let �10 be the permissible devi-ation from right-angled polygons. A polygon is approximate right-angled, if DRA � �10.Based on these de�nitions we introduce three quasi-invariants under projective transfor-mation. For the imaging conditions in our experiments a threshold value �8 = �9 = �10 =0:1 proved as appropriate. The quasi-invariants will be used later on for extracting regularpolygons from the image.Assumption 7 (Quasi-invariance of reection{symmetry) The reection-symme-try is a quasi-invariant, if a reection-symmetric 3D polygon is approximate reection-symmetric after projective transformation.Assumption 8 (Quasi-invariance of translation{symmetry) The translation-sym-metry is a quasi-invariant, if a translation-symmetric 3D polygon is approximate transla-tion-symmetric after projective transformation.Assumption 9 (Quasi-invariance of right-angles) The right-angle is a quasi-invari-ant, if a right-angled 3D polygon is approximate right-angled after projective transforma-tion.The projective transformation of 3D object faces, which are reection-symmetric, transla-tion-symmetric or right-angled polygons, yields approximations of these speci�c polygonsin the image. The features related to the geometric deviation of polygons from thesespeci�c shapes must be combined with features related to the geometric/photometricconsensus for polygons. This gives a measure of conspicuity of speci�c polygons in animage. 33



De�nition 15 (Saliency of speci�c polygons) The saliency of a speci�c polygon isde�ned by SSP PG := 1 � (�1 �DLE PG + �2 �DCC PG + �3 �DSP PG) (30)The function symbol DSP PG must be replaced by DRS , DTS, or DCO, depending on oneis interested in approximate reection-symmetric, translation-symmetric or right-angledpolygons.Generic procedure for the extraction of speci�c polygons:1. From the whole set of combinations of three Hough peaks:1.1. Select just the combinations under the constraint that �rst and third Houghpeak don't belong to the same cluster as the second peak.1.2. Determine for each combination a line segment by intersecting �rst andthird line with the second one (speci�ed by the Hough peaks respectively).1.3. Select the line segments, which are completely contained in the image, andare not isolated.1.4. Compute the line/edge orientation-deviation using function DLE, and theconvergence/corner junction-deviation using functionDCC , and select thoseline segments, for which both the LEOC and CCJC principles hold.2. Compute a graph representing the neighborhood of line segments, i.e. createa knot for each intersection point and an arc for each line segment.3. Compute the set of minimal, planar cycles in the graph, i.e. minimal numbersof knots and no arc in the graph is intersecting the cycles. This gives acandidate set of polygons representing faces of an object.4. For each polygon:4.1. Compute the mean line/edge orientation-deviation using function DLE PG.4.2. Compute the mean convergence/corner junction-deviation using functionDCC PG.4.3. Compute the deviation from a speci�c regularity using generic functionDSP PG.4.4. Compute the saliency value by combining the above results according toEq. (30).5. Bring the speci�c polygons into order according to decreasing saliency values.This generic procedure has been applied successfully for localizing regular polygons, whichoriginate from the surfaces of man-made objects. For example, the side and top face of the34



computer monitor in Fig. 25 have been extracted. They were determined most salientlyas approximate reection-symmetric and approximate translation-symmetric octagons,respectively. As a second example, the boundary of the electronic board in Fig. 26 hasbeen extracted. It was determined most saliently as approximate right-angled hexagon.Further examples are presented in the next section in the framework of extracting ar-rangements of polygons. E.g. the complete arrangement of polygons for the computermonitor will be determined by extracting and slightly adjusting the polygons of the side,top, and front faces under the consideration of certain assembly level constraints.
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4 Consensus-based assembly level groupingThe extraction of regular polygons can be considered as a �rst step of the higher goalof localizing certain objects and describing their boundaries in more detail. Geomet-ric/photometric consensus features have been combined with geometric regularity featuresfor de�ning a saliency measure of speci�c polygons in the image. A salient polygon mayarise from the boundary of a single object face or of a whole object silhouette. In general,it is assumed that the surface of a man-made 3D object can be subdivided in several facesand from these only a subset will be observed, e.g. in the case of a parallelepiped just3 plane faces are observed from a non-degenerate view point. The projective transfor-mation of that kind of object surface should yield an arrangement of several polygons.We introduce two assembly level grouping criteria, i.e. the vanishing point constraintand the convergence invariance constraint, which impose imperative restrictions on theshape of an arrangement of polygons. These constraints are directly correlated to thethree-dimensional (regular) nature of the object surface. The principles are demonstratedfor objects of roughly polyhedral shape, i.e. local protrusion, local deepening, or roundcorners are accepted.4.1 Focusing image processing on polygonal windowsThe consensus and regularity features, used so far, just take basic principles of image for-mation and qualitative aspects of the shape of man-made objects into account. Thoughonly general assumptions are involved various experiments have shown that the extractedpolygons are a useful basis for applying techniques of detailled object detection and bound-ary extraction. For example, Fig. 26 showed an electronic board, which has been extractedin a cluttered environment as an approximate right-angled hexagon. Subsequent imageprocessing can focus on the hexagon image window for detecting speci�c electronic com-ponents on the board. As another example, Fig. 19 showed electrical objects and a setof extracted approximate parallelograms, in which the rough silhouette boundary of thedummy box was included (see Fig. 20). Subsequent image processing can focus on thisparallelogram image window for extracting a detailled boundary description.This section concentrates on detailled boundary extraction and in this context the ex-tracted polygons serve a further purpose. We need to examine, which type of geometricshape a polygon surrounds in order to apply a relevant approach for detailled bound-ary extraction. The task of roughly characterizing the object shape (e.g. polyhedral orcurvilinear) can be solved by taking a further constraints into account. According to theprinciples underlying the procedure of extracting polygons (in Section 3), it is reasonableto assume that there are polygons included, which approximately describe the silhouetteof interesting objects. This has also been con�rmed by the polygons extracted from theimages in Fig. 20 and Fig. 26.Assumption 10 (Silhouette approximation by salient polygons) For the set ofinteresting objects, depicted in an image, there are salient polygons, which approximatethe silhouettes with a necessary accuracy �11.Based on this assumption it will be expected that a large part of the polygon closely36



touches the object silhouette. Therefore, the gray value structure of the interior of apolygon, mainly belonging to the appearance of one object, can be taken into accountin various approaches of object or shape classi�cation. For example, in a histogram-based approach an object is represented by taking several views from it, and computinghistograms of gray values, edge directions, corner properties, cooccurrence features, orfurther �lter responses. In an o�ine phase a set of objects with relevant shapes is processedand the histograms stored in a database. In the online phase histograms are computedfrom the interior of a polygon, and matched with the database histograms. Based on thecriterion of highest matching score the type of object shape must be concluded in orderto apply the relevant approach of boundary extraction, e.g. extraction of arrangements ofpolygons or alternatively curvilinear shapes. For example, from the gray value structurein the quadrangle image window in Fig. 20 it has been concluded that the extraction ofa detailled arrangement of polygons is reasonable. We have mentioned (just briey) ourapproach of classi�cation using histograms. It was inspired by the work of Swain andBallard [37]. A detailled description is beyond the scope of this paper.The Fig. 20 will serve to demonstrate the principles underlying a generic procedure forextracting arrangements of polygons. Though the dummy object is located in a clutteredscene, the silhouette quadrangle is acting as a window and the procedure of boundary ex-traction is hardly detracted from the environment or background of the object. Accordingto that, we introduce the windowed orientation-selective Hough transformation (WOHT),which just considers the image in a polygonal window. The de�nition is quite similar tothat of OHT (see De�nition 3), except that the votes are only collected from a subset PSof coordinate tuples, taken from the interior of the extracted polygon and extended by asmall band at the border. The WOHT contributes to overcome the problem of confusingprofusion of Hough peaks. For example, we can apply the WOHT to the quadranglewindow in Fig. 20 containing the approximate parallelepiped object. The boundary linecon�guration for three visible faces should consist of nine line segments to be organized inthree sets of three approximate parallel lines respectively. In the Hough image of WOHTnine peaks must be organized in three stripes with three peaks in it respectively. Thisconstraint has to be considered in an approach for searching the relevant Hough peaks.However, a con�guration like this is just a necessary characteristic but not a su�cientone for constructing the correct object boundary. Further principles and invariants ofprojective transformation will be considered for the purpose of extracting the relevantarrangement of polygons.A basic procedure for extracting con�gurations of Hough peaks has already been men-tioned in Section 3.1. It extracts a certain number of Hough peaks and groups them byconsidering only the line parameter �. Related to the necessary characteristic the pro-cedure must be repeated experimentally until at least three clusters occur, which consistof at least three Hough peaks respectively. Another alternative procedure more carefullydirects the search. It is looking for the global maximumpeak and thus determines the �rstrelevant horizontal stripe. Within the stripe a certain number of other maximum peaksmust be localized. Then the stripe is erased completely and in this modi�ed Hough imagethe next global maximum is looked for. The new maximum de�nes the second relevantstripe, in which once again the speci�ed number of other maximum peaks are detected.Repeating the procedure a certain number of times gives the �nal con�guration of Hough37



peaks. For demonstration, this procedure has been applied to the window in Fig. 20. Acon�guration of nine Hough peaks organized in three stripes of respective three peaksyields the set of image lines in Fig. 30. Though the necessary characteristic of the peakcon�guration holds, it is impossible to construct the complete object boundary becauseimportant boundary lines are missing. Fortunately, a con�guration of 12 Hough peaksorganized in four stripes (see Fig. 31) yields a more complete list of relevant boundarylines (see Fig. 32). The next two subsections take consensus principles and assembly levelgrouping criteria into account for evaluating or adjusting image lines for object boundaryconstruction.
FIG. 30: Candidate set of nine boundary lines for the dummy box organized in three sets of threeapproximate parallel lines respectively. Result of applying the windowed OHT to the quadrangle imagewindow in Fig. 20 and selecting nine Hough peaks organized in three stripes.
FIG. 31: Result of applying the windowed OHT to the quadrangle image window in Fig. 20 and selecting12 Hough peaks organized in four stripes of respective three Hough peaks.38



FIG. 32: Candidate set of 12 boundary lines for the dummy box speci�ed by the 12 Hough peaks inFig. 31. More relevant relevant boundary lines are included than in Fig. 30.4.2 Vanishing point constraint of parallel boundary linesThe projective transformation of parallel boundary lines generates approximate parallelimage lines with the speci�c constraint that they meet in one vanishing point pv. Thisvanishing point constraint imposes certain qualitative constraints on the courses of Houghpeaks within a horizontal stripe (specifying approximate parallel lines). Figure 33 shows aprojected parallelepiped and two vanishing points pv1 and pv2 for two sets fL11;L12;L13gand fL21;L22;L23g of three approximate parallel line segments respectively. Let (rij; �ij)be the polar form parameters of the lines respectively. We realize for the monotonouslyincreasing distance parameter r11 < r12 < r13 of the �rst set of lines a monotonouslyincreasing angle parameter �11 < �12 < �13, and for the monotonously increasing distanceparameter r21 < r22 < r23 of the second set of lines a monotonously decreasing angleparameter �21 > �22 > �23.This speci�c observation is generalized to the following geometric regularity constraint.Assumption 11 (Vanishing point constraint) Let fL1; � � � ;LHg be a set of approxi-mate parallel line segments in the image, which originate from projective transformationof parallel line segments of the 3D object boundary. The extended lines related to theimage line segments meet at a common vanishing point pv and can be ordered accordingto the strong monotony r1 < � � � < ri < � � � < rH of the distance parameter. For thisarrangement there is a weak monotony of the angle parameter,�1 � � � � �i � � � � � �H or �1 � � � ��i � � � � � �H (31)We have to be careful with approximate vertical lines, whose angle parameter � is near to0� or near to 180�. In a cluster of Hough peaks with that characterization all lines with� near to 0� will be rede�ned by: r̂ := �r, and �̂ := �+ 180�. This is permitted because39
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FIG. 33: Projected parallelepiped and two vanishing points pv1 and pv2. Monotonously increasing angleparameter �11 < �12 < �13, and monotonously decreasing angle parameter �21 > �22 > �23 for two setsof three approximate parallel line segments respectively.the equations L(p; (r; �)) = 0 and L(p; (�r; �+180�)) = 0 of Eq. (1) de�ne the same line(which is easily proven). Under this consideration the Assumption 11 must hold for anyset of approximate parallel lines meeting at a common point. Consequently, the course ofHough peaks in a horizontal stripe must increase or decrease weak monotonously.For demonstration, this constraint is examined in the Hough image of clustered peaksin Figure 31. Assumption 11 holds for the third and fourth stripe but not for the �rstand second stripe. Actually, the Hough peaks in the �rst stripe specify lines, whichare candidates for the short boundary lines of the object (approximate vertical lines inFig. 32). The problem arises for the middle line due to small gray value contrast betweenneighboring faces. The Hough peaks of the second stripe originate from neighboringobjects at the border of the quadrangle image window.The vanishing point constraint is useful for slightly modifying the parameters r and �of extracted image lines. A simple procedure is applied, which assumes that in a set ofapproximate parallel lines at least two lines are reliable and need not be adjusted. Candi-dates for this pair of seed lines are outer silhouette lines, which can be extracted robustlyin case of high contrast between the gray values of object and background. Otherwise,two inner boundary lines of the silhouette could be seed lines as well, e.g. boundary linesof object faces in case of high gray value contrast due to lighting conditions or di�erentface colors. The reliablility of a line is computed on the basis of line/edge orientation-deviation in De�nition 4. However, thus far the lines in Fig. 32 are not restricted to therelevant line segment of the object border. Therefore, we specify for each candidate line40



(e.g. in Fig. 32) a virtual line segment, which is of the same orientation respectively. Forthe virtual segments a unique length is speci�ed, which is assumed to be a lower bound ofthe lengths of all relevant boundary line segments in the image. Each virtual line segmentwill be moved in discrete steps along the a�liated candidate line from border to borderof the polygonal window. Step by step the orientation-consensus is evaluated by applyingEq. (5). The minimum is taken as the reliability value of the line.The most reliable two lines are selected as seed lines and their point of intersection com-puted, which is taken as the vanishing point. Next, the other approximate parallel lines(which are less reliable) are rede�ned such that they intersect at the vanishing point. Therede�ned lines are slightly rotated around the vanishing point in order to optimize thereliability value under the constraint that the weak monotony constraint must hold in thecourse of Hough peaks of all approximate parallel lines. Exception handling is necessary,if the two seed lines are exact parallel, because there is no �nite vanishing point. In thiscase the unique orientation from the seed lines is adopted for the less reliable lines and aslight translation is carried out (if necessary) to optimize their reliability values. In orderto take the geometric/photometric consensus into account the seed lines and/or the rede-�ned lines are only accepted if the line/edge orientation-consensus holds (see Assumption2), otherwise they are discarded.For example, this procedure can be applied to the set of three approximate vertical linesin Fig. 32, represented by three non-monotonous Hough peaks in the �rst stripe of Fig. 31.As a result, the two outer lines have been determind as seed lines, and the inner line isslightly rotated to meet the vanishing point constraint. The next subsection introduces afurther constraint inherent in the projection of polyhedral objects, which will be appliedin combination with the vanishing point constraint later on.4.3 Convergence invariance of meeting boundary linesIn man-made objects the most prominent type of junction is a convergence of threelines ((#3)-junction) respectively, e.g. a parallelepiped includes eight (#3)-junctions.By means of projective transformation some parts of an opaque object boundary willbe occluded, which makes certain junctions just partly visible or even unvisible. Forexample, under general view conditions we realize in the image of a parallelepiped four(#3)-junctions and three (#2)-junctions (see Figure 33). I.e. in four junctions all threeconverging lines are visible, in three junctions only two lines are visible respectively, andone junction is completely occluded. A thorough analysis of visibility aspects of polyhedralobjects was presented by D. Waltz for the purpose of interpreting line drawings (see[38], pp. 249-281). We introduce a geometric invariance constraint related to the (#3)-junctions, for which three converging lines are visible in the image.Assumption 12 (Convergence invariance constraint) Let a 3D convergence pointbe de�ned by the intersection of three meeting border lines of an approximate polyhedral3D object. The projective transformation of the 3D convergence point should yield justone 2D convergence point in the image.For demonstration we select from the image in Fig. 32 a subset of three boundary linesand compute the intersection points as shown in Fig. 34. Obviously, Assumption 12 does41



not yet hold because just one common intersection point is expected instead of three. Thereason is that line extraction via Hough transformation is more or less inaccurate (like anyother approach to line extraction). Actually, correctness and accuracy of lines can onlybe evaluated with regard to the higher goal of extracting the whole object boundary. Thepreviously introduced vanishing point constraint has been a �rst opportunity of includinghigh level goals to line extraction, and the constraint of convergence invariance is a secondone.
FIG. 34: Subset of three boundary lines taken from Fig. 32 and three di�erent intersection points. Oneunique intersection point is requested to ful�ll the convergence invariance constraint.In order to make Assumption 12 valid we apply a simple procedure, which only adjuststhe position parameter r of image lines. The idea is to select from a (#3)-junction themost reliable two lines (using the procedure mentioned above), compute the intersectionpoint, and translate the third line into this point. The approach proved to be reasonablebecause of our frequent observation, that two lines of a (#3)-junction are acceptableaccurate and sometimes just the third line is deviating to a larger extent. For example,the most reliable two lines in Fig. 34 are the slanted ones, and therefore the intersectionpoint is computed and the approximate vertical line is parallel translated into this point.More sophisticated procedures are conceivable, which exibly �ne-tune the parameters ofseveral relevant lines in combination (not treated in this work).4.4 Boundary extraction for approximate polyhedraThe geometric/photometric consensus constraints and the geometric grouping criteriaat the primitive, the structural, and the assembly level can be combined in a genericprocedure for extracting the arrangement of polygons for a polyhedral object boundary.A precondition for the success of this procedure is that all relevant line segments, whichare included in the arrangement of polygons can be detected as peaks in the Hough image.42



Assumption 13 (High gray value contrast between object faces) All transitionsbetween neighboring faces of a polyhedral object are characterized by high gray value con-trast of at least �12.Generic procedure for the extraction of arrangements of polygons:1. Apply the windowed OHT in a polygonal image window, detect a certainnumber of Hough peaks, and consider that they must be organized in stripes.2. For each stripe of Hough peaks, examine the vanishing point constraint, andif it does not hold, then apply the procedure mentioned previously.3. Compute intersection points for those pairs of image lines, which are speci�edby pairs of Hough peaks located in di�erent stripes.4. Determine all groups of three intersection points located in a small neighbor-hood respectively, and for each group examine the constraint of convergenceinvariance and if it does not hold then apply the procedure mentioned pre-viously.5. Based on the rede�ned lines determine a certain number of most salient poly-gons (see De�nition 15) by applying a procedure similar to the one presentedin Section 3.6. Group the polygons into arrangements, compute an assembly value for eacharrangement, and based on that select the most relevant arrangement ofpolygons.The pre-speci�ed number of peaks to be extracted in the �rst step of the procedure mustbe high enough such that all relevant peaks are included. Another critical parameter isinvolved in the �fth step, i.e. extracting a certain number of most salient polygons. Wemust be careful that all relevant polygons are included, which are needed for constructingthe complete arrangement of polygons of the object boundary. The �nal step of theprocedure will be implemented dependent on speci�c requirements and applications. Forexample, the grouping of polygons can be restricted to arrangements, which consist ofconnected, non-overlapping polygons of a certain number, e.g. arrangements of 3 polygonsfor describing three visible faces of an approximate parallelepiped. The assembly valueof an arrangement of polygons can be de�ned as the mean saliency value of all includedpolygons.With this speci�c realization the generic procedure has been applied to the quadrangleimage window in Fig. 20. The extracted boundary for the object of approximate par-allelepiped shape is shown in Fig. 35. Further, the procedure has been applied to moregeneral octagons, e.g. a loudspeaker, whose surface consists of rectangles and trapezoids(see Fig. 36). The procedure also succeeds for more complicated shapes like the com-puter monitor, which has already been treated in the previous section (see Fig. 25). Theextracted boundary in Fig. 37 demonstrates the usefulness of the convergence invariance43



constraint. There are four (#3)-junctions, which have a unique convergence point respec-tively (as opposed to the partial boundary in Fig. 25).
FIG. 35: Dummy box with approximate right-angled parallelepiped shape in a complex environment.Arrangement of polygons describing the visible boundary of the dummy box.
FIG. 36: Loudspeaker with approximate octagonal shape in a complex environment. Arrangement ofpolygons describing the visible boundary. 44



FIG. 37: Computer monitor with approximate polyhedral shape including non-convexities. Arrangementof polygons describing the visible boundary.Though the procedure for boundary extraction reveals impressive results for more or lesscomplicated objects, however it can fail in simple situations. This is due to the criticalassumption that all line segments of the boundary must be detected explicitely as peaksin the Hough image. For images of objects with nearly homogeneous surface color, likethe dummy box in Fig. 35, the contrast between faces is just based on lighting conditions,which is an unreasonable basis for boundary extraction. On the other hand, for objectswith texture or inscription on the surface spurious gray value edges exist, which are asdistinctive as certain relevant edges at the border of the object silhouette. However, alllinear edge sequences produce a Hough peak respectively. As a consequence, perhaps alarge number of Hough peak must be extracted such that all relevant boundary lines areincluded.4.5 Sophisticated geometric reasoning for boundary extractionThis section presents a modi�ed procedure for boundary extraction, which applies a so-phisticated strategy of geometric reasoning. It is more general in the sense that the criticalAssumption 13, involved in the procedure presented above, is weakened. However, bound-ary extraction is restricted to objects of approximate parallelepiped shape and thereforethe procedure is more speci�c concerning the object shape. The usability of the procedureis based on the following assumption.Assumption 14 (Parallelepiped approximation) The reasonable type of shape ap-proximation for the object in a quadrangle image window is the parallelepiped.45



Extraction of arrangements of polygons for parallelepipeds:1. Determine a quadrangle image window, which contains an object of approx-imate parallelepiped shape.2. Determine just the boundary of the object silhouette, which is assumed tobe the most salient hexagon.3. Propagate the silhouette lines (outer boundary lines) to the interior of thesilhouette to extract the inner lines. Apply the geometric/photometric con-sensus criteria and the assembly level grouping criteria to extract the mostrelevant arrangement of polygons.Fig. 38 shows the quadrangle image window containing the relevant target object, i.e. atransceiver box of approximate parallelepiped shape. The boundary line segments of theparallelepiped silhouette must form a hexagon (see Fig. 39). A saliency measure is de�nedfor hexagons, which takes into account the structural level grouping criterion of reection-symmetry and the aspect that the hexagon must touch a large part of the quadranglecontour. This reveals the boundary line segments in Fig. 39, which are organized asthree pairs of two approximate parallel line segments respectively. Additionally, threeinner line segments of the silhouette are needed to build the arrangement of polygonsfor the boundary of the parallelepiped. The vanishing point constraint is taken intoaccount to propagate the approximate parallelism of outer lines to the interior of thesilhouette. Furthermore, the convergence invariance constrains inner lines to go throughthe convergence points of the silhouette boundary lines and additionally to intersect inthe interior of the silhouette at just one unique point. The �nal arrangement of polygonsmust consist of just four (#3)-junctions and three (#2)-junctions. The combined use ofthe assembly level criteria guarantees that only two con�gurations of three inner linesare possible (one con�guration is shown in Fig. 40). The relevant set of three inner linesegments is determined based on the best geometric/photometric consensus. Fig. 41 showsthe �nal boundary line con�guration for the transceiver box.
FIG. 38: Transceiver box with approximate right-angled parallelepiped shape. The black quadranglesurrounding the object indicates the image window for detailled processing.46



FIG. 39: Extracted regular hexagon, which describes the approximate silhouette of the transceiver box.
FIG. 40: Relevant set of three inner lines of the silhouette of the transceiver box. They have beendetermined by propagation from outer lines using assembly level grouping criteria and the geomet-ric/photometric consensus.
FIG. 41: Transceiver box with �nal polygon arrangement for the parallelepiped boundary description.Further examples of relevant object boundaries are given below (see Fig. 42 and Fig. 43).They have been extracted from usual images of electrical scrap using the procedure justintroduced. 47



FIG. 42: Radio with approximate right-angled parallelepiped shape and extracted arrangement of poly-gons of the boundary.

FIG. 43: Chip-carrier with approximate right-angled parallelepiped shape and extracted arrangement ofpolygons of the boundary. 48



5 Discussion and conclusionThe system for boundary extraction is organized in several generic procedures, for whichthe relevant de�nitions, assumptions, and realizations have been presented. In general,it works successful for man-made objects of approximate polyhedral shape. Interestingly,the various assumptions can be organized into three groups by considering the level ofgenerality.� The �rst group introduces general geometric/photometric consensus principles forpolyhedral objects.� The second group considers shape regularity features, which are quasi-invariants fora subset of viewpoints.� The third group incorporates more speci�c assumptions concerning object appear-ance and shape.Therefore, the three groups of assumptions are strati�ed according to decreasing general-ity, which imposes a certain level of speciality on the procedures.The �rst group consists of the Assumptions 1, 2, 3, 5, and 6. These are based on functionsfor evaluating the geometric/photometric consensus related to a line point, a line segment,a line convergence, a quadrangle or an arbitrary polygon. Threshold parameters �1, �2,�3, �4, �6, �7 are involved for specifying the necessary geometric/photometric consensus.These criteria can be used for accepting just the relevant line structures in order to in-crease the e�ciency of subsequent procedures for boundary extraction. According to ourexperience the parameters can be determined in a training phase prior to the actual appli-cation phase. They depend mainly on the characteristics of image processing techniquesinvolved and of the camera objectives used. For example, we must clarify in advance theaccuracy of the orientation of gray value edges and the accuracy of the localization of grayvalue corners, and related to the process of image formation, we are interested in the �eldof sharpness and the distortion e�ects on straight lines. Based on these measurementsthe threshold parameters are speci�ed. In principle, the assumptions of this �rst groupare valid for arbitrary polyhedral objects, from which images are taken with usual cameraobjectives.The second group consists of the Assumptions 4, 7, 8, 9, 11, 12. They impose con-straints on the projective transformation of geometric features of 3D object shapes. Toconsider the regularity aspect of man-made objects a set of collated regularity features isused, like parallel lines, right-angled lines, reection-symmetric polylines, or translation-symmetric polylines. The object shapes are detected in the image as salient polygons orarrangements of polygons. Several saliency measures have been de�ned on the basis ofgeometric/photometric consensus features and the collated regularity features (just men-tioned). Therefore, it is essential that the regularity features are invariant or at leastquasi-invariant under projective transformation. The degree of deviation from exact in-variance depends on the spectrum of permissible camera positions relative to the sceneobjects. Threshold parameters �5, �8, �9, �10 are involved in the assumptions for describ-ing the permissible degrees of deviation from exact invariance. For example, if we wouldlike to locate the right-angled silhouette of a at object (e.g. an electronic board), then49



the camera must be oriented approximately perpendicular to that object, and this willbe considered in the parameter �10 (see Assumption 9). In principle, the assumptions ofthis second group are valid for arbitrary polyhedral objects but restrict the possible viewconditions.The basic assumption that the scene consists of approximate polyhedral objects usuallyis too general for providing one and only one generic procedure for boundary extraction.Therefore, a third group of constraints is introduced consisting of the Assumptions 10, 13,14. They impose constraints on the gray value appearance and the shape of the depictedobjects. We must examine whether an extracted polygon is an approximate representationof the object silhouette, or examine whether the transistions between object faces havehigh gray value contrast, or examine whether the shape of an object in a quadrangle imagewindow is an approximate parallelepiped. Threshold parameters �11 and �12 are involvedfor quantifying these constraints. Though the assumptions of this third group are morespeci�c than those of the other two groups, they are somewhat general.Altogether, our system succeeds in locating and extracting the boundary line con�gura-tions for approximate polyhedral objects in cluttered scenes. Following Occam's minimal-istic philosophy, the system makes use of fundamental principles underlying the processof image formation, and makes use of general regularity constraints of man-made objects.Based on that the role of speci�c object models is reduced. This aspect is useful in manyrealistic applications, for which it is costly or even impossible to aquire speci�c objectmodels. For example, in the application area of robotic manipulation of electrical scrap(or car scrap, etc.), it is inconceivable and anyway unnecessary to explicitly model all pos-sible objects in detail. For robotic manipulation of the objects approximate polyhedraldescriptions are su�cient, which can be extracted on the basis of general assumptions.The novelty of our methodology is that we maximally apply general principles and min-imally use object-speci�c knowledge for extracting the necessary information from theimage to solve a certain task.Future work should discover more consensus features between geometry and photometryof image formation, more regularity features of objects, and more quasi-invariance con-straints. The combination of consensus, regularity, and quasi-invariance features mustbe treated thoroughly, e.g. solving the problem of combined constraint satisfaction. Anextension of the methodology beyond man-made objects, e.g. natural objects like faces,is desirable.Acknowledgement: The discussions with G. Sommer are greatly appreciated.
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List of symbolsi Indexx1; x2; y1; y2; y3 Image and scene coordinatesp; pi; pa; pb; � � � Image coordinate tuplesP;PS Set or subset of image coordinate tuplesr Distance of a line from image center� Orientation of a lineq Parameter tuple of a lineQ Set of parameter tuples of linesL Polar line representationIw; Ih; Id Width, height, diagonal of an imageB;O Binary image, and image of edge orientationsH;K;M;N Upper bounds of indicesf E�ective focal length�i Threshold parameters for various purposes�i Weighting factors4a Tolerance band for edge orientationL Sequence of discrete points describing a line segment(#M) -junction Junction with M converging lines�i; �i; i; �i Angles for lines and convergencessi Lengths of line segmentsA;B;F ;G Sequences of anglesS Sequence of lengthsDO Absolute distance between angles modulo 180DLE Orientation-deviation related to a line segmentDCC Junction-deviation related to a line convergenceDJP Euclidean distance between positionsDJO Deviation between two sequences of anglesDLE Orientation-deviation related to a quadrangleDCC Junction-deviation related to a quadrangleDRC Rectangle-deviation of a quadrangleDPA Parallelogram-deviation of a quadrangleDSQ Square-deviation of a quadrangleDRH Rhombus-deviation of a quadrangleDTR Trapezoid-deviation of a quadrangleDSP QD Generic measure for deviation from speci�c quadrangleSSP QD Saliency measure of a speci�c quadrangleDRS ; drs Deviation from reection-symmetryDTS; dts Deviation from translation-symmetryDRA; dra Deviation from a right-angled polygonVSL Normalized length variance of line segments51
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