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Abstract

This article is concerned with the design and implementation of a system for real
time monocular tracking of a moving object using the two degrees of freedom of a
camera platform. Figure-ground segregation is based on motion without making
any a priori assumptions about the object form. Using only the first spatiotemporal
image derivatives subtraction of the normal optical flow induced by camera motion
yields the object image motion. Closed-loop control is achieved by combining a
stationary Kalman estimator with an optimal Linear Quadratic Regulator. The
implementation on a pipeline architecture enables a servo rate of 25 Hz. We study
the effects of time-recursive filtering and fixed-point arithmetic in image processing
and we test the performance of the control algorithm on controlled motion of objects.



1 Introduction

Traditional computer vision methodology regarded the visual system as a passive observer
whose goal is the recovery of a complete description of the world. This approach led to
systems unable to interact in a fast and stable way with a dynamically changing environ-
ment. Several variations of a new paradigm appearing under the names active, attentive,
purposive, behavior-based, animate, qualitative vision were introduced in the last decade
in order to overcome the efficiency and stability caveats of conventional computer vision
systems. Common principle of the new theories is the behavior dependent selectivity in
the way that visual data are acquired and processed. To cite one of the first definitions
[1]: “Active Sensing can be stated as a problem of controlling strategies applied to the
data acquisition process which will depend on the current state of the data interpretation
and the goal or the task of the process”.

Selection involves the ability to control the mechanical and optical degrees of freedom
during image acquisition. Already in the early steps of active vision it was proven that
controlling the degrees of freedom simplifies many reconstruction problems [2]. Selection
encompasses the processing of the retinal stimuli at varying resolution what we call space
variant sensing [3]. This means the ability to process only critical regions in detail while
the rest of the field of view is coarsely analyzed. Last and most important, selection means
the choice of the signal representation appropriate for a specific task to be accomplished
taking also into account the physiology of the observer [4, Introduction]. Brown [3]
resumes that a “a selective system should depending on the task decide which information
to gather, which operators to use at which resolution, and where to apply them”.

The subject of this paper is the accomplishment of one of the fundamental capabilities
of an active visual system, that of pursuing a moving object. Since the moving object
is detected at the beginning our system encompasses also the capability of saccadic eye
movements. Here the only cue for the “where to look next” problem is motion. It is the
first step towards a repertoire of oculomotor behaviors which will run in parallel. These
involve fixating a stationary point or stabilizing the entire field of view if the observer is
moving as well as binocular vergence movements. We will first describe the usefulness of
pursuing a moving object.

The most evident reason for object pursuing is the limited field of view available by
CCD cameras. The two degrees of freedom of panning and tilting enable keeping a moving
object of interest in view for a longer time interval. Even if we had a sensor with 180
degrees field of view it would not be computationally possible to process every part of
the field of view in the same detail. We would be enforced to apply foveal sensing, hence
we should move the camera in order to keep the object inside the fovea. As already was
proved in [6] and [7] tracking facilitates the estimation of the heading direction by reducing
the number of unknowns restricting the position of the focus of expansion. It allows the
use of an object-centered coordinate system and the simpler model of scaled orthographic
projection. Object pursuing is necessary in cooperation with vergence control to keep the
disparity inside an interval facilitating, thus, binocular fusion and a relative depth map.

As almost every visual system is engaged in a behavior of an animal or a robot that
involves action vision becomes coupled with feedback control in order to enable a closed-
loop between perception and action. Such a cycle is also the task of pursuing a moving
object with an active camera described here. The most crucial matter is the accomplish-
ment of this task in real time given the limited resources of our architecture. Under



these conditions, Marr’s conception of an implementation step succeeding the algorithmic
stage becomes obsolete. Here, the choice of the low-level signal processing depends on
the given pipeline-architecture: we use two-dimensional non-separable FIR kernels for
spatial filtering because our pipeline machine includes such a dedicated module but we
apply recursive filtering in time. Normal flow can be computed inside the pipeline image
processor, therefore it is the basis of our motion detection algorithm. This does not mean
that we apply ad hoc techniques. We believe that real time design should be based on the
detailed performance study of algorithms satisfying the real time constraints. Hardware
components become faster so that mathematically sound image processing methods can
replace the Sobel operator for spatial derivatives or the time differences for temporal ones.
The contribution of the work presented here can be summarized as following:

o A system that can detect and track moving objects independent of form and motion

in 25 Hz.

o A study for the choice of the individual algorithms - which we do not claim to have
invented — regarding

— fixed-point arithmetic accuracy
— space and time complexity of the filters given a specific architecture

— and performance of the closed-loop control algorithm.
e Experiments with several object forms and motions.

Concerning biological findings eye movements of primates are classified in saccades,
smooth pursuit, optokinetic reflex, vestibulo-ocular reflex, and vergence movements [8].
Optokinetic and vestibular reflexes try to stabilize the entire field of view in order to
eliminate motion blur. Saccades are fast ballistic movements which direct gaze to a new
focus of attention whereas smooth pursuit are slow closed-loop movements that keep
an object fixated. Fixation enables the analysis of objects in the high-resolution foveal
region. Vergence movements minimize the stereo disparity facilitating thus binocular
fusion. Tracking of objects consists of both smooth pursuit movements that move the eye
at the same velocity as the target and corrective saccades that shift a lost target again
into the fovea. In this sense, our system accomplishes tracking with corrective saccades
which, however, are smoothed by the closed-loop control.

Potential applications for the presented system are in the field of surveillance in indoor
or outdoor scenes. The advantages are not only in the motion detection but mainly in
the capability of keeping an intruder inside the field of view. Another application is in
automatic video recording and video teleconferencing. The camera automatically tracks
the acting or speaking person so that it always remains in the center of the field of view.
In manufacturing or recycling environments, an active camera can track objects on the
conveyor-belt so that they are recognized and grasped without stopping the belt.

New directions are opened if such an active camera platform is mounted on an au-
tonomous vehicle. As already mentioned in the introduction fixation on an object has
computational advantages in navigational tasks. Keeping objects of interest in the center
reduces the complexity of processing the dynamic imagery by allowing fine-scale analysis
in the center and a coarse resolution level for the periphery. Shifting and holding gaze
facilitates also scene exploration and the building of an environmental map.



We start the paper with a description of the related approaches in the next section.
In section 3 we describe the kinematics of the binocular head and in section 4 we give
the solution to the object detection problem. In section 5 we study the spatiotemporal
filtering and in section 6 the estimation and control. We finish with the architecture
(section 7) and the presentation of the experimental results (section 8).

2 Related Work

As pursuing is one of the basic capabilities of an active vision system most of the research
groups possessing a camera platform have reported results. We divide the approaches in
two groups. The first group consists of algorithms that use only motion cues for gaze
shifting and holding and this is the group our systems belongs to. Computational basis of
this approach group is the difference between measured optical flow and the optical flow
induced by camera motion.

The Oxford surveillance system [9, 10] uses data from the motor encoders to compute
and subtract the camera motion induced flow. It runs in 25 Hz with processing latency of
about 110 ms. Camera behavior is modeled as either saccadic or pursuit motion. Saccadic
motion is based on the detection of motion in the coarse scale periphery. Pursuit motion
is based only on the optical flow of the foveal region. This is also the difference to our
system which can also smoothly pursue but with repeated motion detection. A finite state
automaton controls the switching between the two reactions.

The KTH-Stockholm system [11] computes the ego motion of the camera by fitting an
affine flow model in the entire image. It is the only approach claiming pursuit in presence
of arbitrary observer motion and not only pure rotation as assumed by the rest of the
algorithms. However, this global affinity assumption is valid only if the object occupies a
minor fraction of the field of view which is not a realistic assumption. Furthermore, the
real time (25 Hz) implementation assumes a constant flow model over the entire image.
Such a constant flow model is approximately realistic only if the observer’s translation is
much smaller than the rotation. We experimentally show in the last sequence in Sec. 8 that
if flow components induced by slow forward translation are so negligible in comparison to
the tracking rotation then they have no effect on the detection task using our approach,
either. However, an advantage of the global fitting is that it deliberates the motion
detection from the encoder readings.

Elimination of the flow due to known camera rotation is also applied by Murray and
Basu [12]. The background motion is compensated by shifting the images. Then large
image differences are combined with high image gradients to give a binary image. This
binary image is processed with morphological operators and its centroid is extracted. No
real time implementation results are reported.

The Bochum system [13] is able to pursue moving objects with a control rate of 2-3 Hz.
The full optical flow is computed and then segmented to detect regions of coherent motion
signaling an object. The known camera rotation is subtracted only in order to compute
the object velocity. Tracking is carried out by a sequence of saccadic and smooth gaze
shifts.

Neither of the above approaches involves a study of the appropriate real-time image
processing techniques or the control performance. The second group of approaches in
object pursuit is based on other cues and a priori knowledge about the object form.
Coombs and Brown [14] demonstrated binocular smooth pursuing on objects with vertical



edges with a control rate of 7.5 Hz. Vergence movements are computed using zero-disparity
filtering. The authors studied thoroughly the latency problem and the behavior of the
a-f3-~-filter. Du and Brady [15] use temporal correlation to track an object that has been
detected during the camera was stationary. They achieved a sample rate of 25 Hz with 45
ms latency. Dias et al. [16] present a mobile robot that follows other moving objects which
are tracked at approximately human walking rate. Only horizontally moving objects are
detected based on very high image differences without ego-motion subtraction. There are
further many systems that use very simple image processing to detect and track well-
defined targets like white blobs [17, 18] putting emphasis on the control aspect of the
problem.

The problem of moving object detection by a moving observer has been intensively
studied using passive cameras. However, without the need of a reactive behavior real-time
constraints were not considered. The approaches involve global affine flow models [19],
temporal coherency models [20], frequency domain methods [21], and variational methods
[22], to mention only few of them.

3 Head kinematics

The binocular camera mount ! has four mechanical degrees of freedom: the pan angle
x of the neck, the tilt angle ¢, and two vergence angle ; und 8, for left and right,
respectively (Fig. 1). The stereo basis is denoted by b.

Figure 1. The four degrees of freedom of the camera platform (top) and how it looks
like (bottom).

We denote by P, the 4 x 1 vector of homogeneous coordinates with respect to the
world coordinate system having origin at the intersection of the pan and the tilt axes. Let

!Consisting of the TRC BiSight Vergence Head and the TRC UniSight Pan/Tilt Base



Py, be the vectors with respect to the left and right effector coordinate systems located
at the intersection of the tilt and the vergence axes. The transformation between world
and effector reads

P, = TXT¢T91/TP1/7’7 (1)
with
cosy 0 —siny 0 1 0 0 0
T 0 1 0 0 T 0 cos¢p —sing 0
X7 siny 0 cosy O | 2|0 sing cose 0 |
0 0 0 1 0 0 0 1
and
cosfy, 0 =Lsinby, Fb/2
T 0 1 0 0
bur = Fsin 0y 0 costy, 0
0 0 0 1

Regarding monocular tracking we need only the tilt and the vergence angle of a cam-
era, therefore we omit the subscript in 6;/,. Furthermore, we assume that the effector
coordinate system coincides with the camera coordinate system having origin at the op-
tical center. We introduce a reference coordinate system with origin at the intersection
of the tilt and the vergence axis. The orientation of the reference coordinate system is
identical to the resting pose ¢ = 0 and § = 0. As monocular visual information gives only
the direction of viewing rays we introduce a plane Z = 1 whose points are in 1:1 mapping
with the rays and are denoted by p = (x,y,1). The transformation of the viewing ray
between reference and camera coordinate system reads

)‘pr = R(bRé’pc (2)

with p. the coordinates after rotations Ry and Ry about the x and y axis, respectively. The
mapping is a projective collineation in P2 As opposed to translation a pure rotation of
the camera induces a projective transformation independent of the depths of the projected
points. If a translation existed - like in the mapping between left and right camera - then
a point is mapped to a line - the well-known epipolar line - and the corresponding position
on this line depends on the depth. After elimination of A in the above equation we obtain

B r.cosf +sinf 3)
= —2.cos @sinf + y.sin ¢ + cos ¢ cos §

x.8in ¢ sin @ + y. cos ¢ — sin ¢ cos

b= —2,c0s ¢sinf + y.sin ¢ + cos pcos O’
These equations fully describe the forward kinematics problem.

The inverse kinematics problem is given a camera point (z.,y., 1) to find the appro-
priate angles so that the optical axis (0,0, 1) after the rotation is aligned with this point.
From (3) we obtain the ray in the reference coordinate system and applying again (3)

with (z.,y.) = (0,0) yields

T,

tan ¢ = —y, tanf =



We proceed with the computation of the instantaneous angular velocity w of the
camera coordinate system necessary later for the optical flow representation. Let R(t) =
Ry)Ro(r) be the time varying rotation of the camera coordinate system and ) the skew-
symmetric tensor of the angular velocity. Then we have R(t) = R(1)Q and the angular
velocity with respect to the moving coordinate system reads

w:(q'ﬁcosﬁ 0 ¢sind )T. (5)

To complete the geometric description we need the transformation from pixel coordi-
nates (x;,y;) in the image to viewing rays in the camera coordinate system. This is an
affine transformation given by

T; = g, + xg Y; = ay¥Y. + Yo.

The scaling factors «,, o, depend on the focal length, the cell size on the CCD-chip, and
the sampling rate of the A/D converter. The principal point (xg,yo) is the intersection of
the optical axis with the image plane. For the computation of this transformation -called
intrinsic calibration- we applied conventional [23] as well as active techniques similar to

24, 25].
4 Pursuing a moving object

Pursuing is accomplished by a series of correcting saccades to the positions of the detected
object which yield a trajectory as smooth as possible due to our control scheme and the
under-cascaded axis-control of the mount. A moving object in the image is defined as the
locus of points with high image gradient whose image motion is substantially different
from the camera induced image motion. We exploit the fact that the camera induced
optical flow is pure rotational

v — ( ( reye  —(1+22) ?Jcc )w (6)

1 + yf) —LeYe —Z

where w can be computed from (5) using the angle readings of the motion encoder. If
u = (u,v) is the observed optical flow then w — w. is the optical flow induced only from
object motion. We assume the Brightness Change Constraint Equation

g+ g+ 9, =0

with ¢, g, and ¢, the spatiotemporal derivatives of the grayvalue function. From this
equation we can compute only the normal flow - the projection of optical flow in the
direction of the image gradient (g¢,,g,). The difference between the normal flow wu,,
induced by camera motion and the observed normal flow wu,

o GzlUe —I' gyvc gt
Vet it

is the normal flow induced by the object motion. It turns out that we can test the

Ue, — Up

n

existence of object image motion without the computation of optical flow. The sufficient
conditions are that the object motion has a component parallel to the image gradient and



the image gradient is sufficiently large. We can thus avoid the computation of full optical
flow which would require the solution of at least a linear system for every pixel. Three
thresholds are applied: the first for the difference between observed and camera normal
flow, the second for the magnitude of the image gradient, and the third for the area of
the points satisfying the first two conditions. The object position is given as the centroid
of the detected area.

5 Real time spatiotemporal filtering

Special effort was given to the choice of filters suitable for the used pipeline-processor *

so that the frequency domain specifications are satisfied without violating the real time
requirements. Whereas up to 8 x 8 FIR-kernels can be convolved with the image with
processing rate of 20 MHz the temporal filtering must be carried out by delaying the
images in the visual memory. We chose IIR filtering for the computation of the temporal
derivatives since its computation requires less memory than temporal FIR filtering for the
same effective time lag.

The temporal lowpass filter chosen is the discrete version of the exponential [26]

Te” >0
E(t):{ 0 t<o.

If £,(t) is the n-th order exponential filter (n > 2) its derivative reads

dE, (1)
dt

= T(Ena(t) = En(1)).

After applying the bilinear mapping s = 2(1 — z7')/(1 4+ z7!) to the Laplace transform
7/(s 4+ 7) of the exponential filter from the s-plane to the z-plane we obtain the transfer
function of the discrete lowpass filter

14 271 T T —2

ql—l—rz_17 1= "=

H(z)= )
T+ 2 T+ 2

If H(z)™is the n-th order low pass filter its derivative is equal to the difference 7(H(z)"~!—
H(z)™) of two lowpass filters of subsequent order. The recursive implementation for the
second order filter reads

hi(k) +rhi(k = 1) = q(g(k) + g(k — 1))
holk) +rho(k — 1) = q(ha(k) + hy(k — 1))
gi(k) = 7(hi(k) = ha(k)),

where ¢(k) is the input image, hi(k) and hy(k) are the lowpass responses of first and
second order, respectively, and ¢;(k) is the derivative response. We note, that the lowpass
response is used to smooth temporally the spatial derivatives.

The spatial FIR-kernels are binomial approximations to the first derivatives of the
Gaussian function [27]. The spatial convolutions are carried out in fixed-point 32 bit
arithmetic with the result stored in 8 bit word length. The inverse of the magnitude

2Datacube MaxVideo 200 board



of the spatial gradient needed for the computation of normal flow is computed using a
LUT table. Fixed-point arithmetic affects primarily the IIR filtering since the binomial
coefficient can be represented by the quotient of powers of two. We use the Diverging
Tree sequence [28] as a testbed for our accuracy investigations. The ground truth optical
flow field is known and we test the filtering effects on the computation of the optical flow
field. We use a conventional method [29] that assumes local constancy of the optical flow
field. In Fig. 2 we show the 20th image of the sequence as well as the optical flow field
based on the spatiotemporal derivatives computed with fixed-point arithmetic. In Fig. 2
(bottom) we compare the average relative error between fixed-point and floating-point
filtering as a function of the flow vector length which increases with the distance from the
focus of expansion. In the central area of £30 pixels the relative errors vary from 200%
down to 10%. After this distance we note a constant bias in the fixed-point case of 2.5%
error relative to the floating-point case. The fixed-point effects are severe only for lengths
between 0.2 and 0.4 pixels.
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Figure 2. The 20th image of the Diverging Tree sequence (above left), the optical flow
field computed with the fixed point implementation of the FIR and IIR filters (above
right), and the relative error in the estimation of optical flow of fixed- vs. floating-point
arithmetic. The relative error as well as the flow vector length are plotted as functions of
the distance from the focus of expansion, here the center of the image (below).



We proceed with studying the differences between temporal FIR and IIR filtering in
order to justify the choice of the recursive 1IR filter described above. The delay of the
temporal FIR first gaussian derivative (and its binomial approximation) is equal to half
of the kernel size. The delay for the second order exponential filter is between the mode
1/7 and the mean 2/7. We show in Fig. 3 (top) the continuous impulse responses for
a Gaussian derivative with standard deviation o = 1 and the second order exponential
filter with 7 = 1. The zero-crossings of both filters coincide but the IIR filter is highly
asymmetric. For these settings we show the spectra of the two filters in the middle of Fig. 3
as well as the goodness of differentiation in Fig. 3 (bottom). The latter is obtained by
dividing the frequency response of the derivative filters with the frequency response of the
involved low-pass filters: a low-pass binomial mask in the FIR case and the exponential
in the IR case. We observe that FIR outperforms IIR for frequencies in the transition
band and both are similar for low frequencies.
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Figure 3. Continuous impulse response comparison of the shifted first derivative of a
Gaussian (o = 1) and the IIR second order derivative filter (1 = 1) (above). In the
middle we show the frequency responses of the 5-points binomial approximation of the
first Gaussian derivative and the IIR second order derivative filter (T = 1). Below we show
the pure differentiation effects, i.e. the same spectra divided by the frequency responses
of the low-pass prefilters.

We compare the behavior of both filters in the computation of optical flow in the
same sequence as above. We tested several settings for the parameters of both filters.
The average relative errors for about the same densities® of computed vectors are shown
in Table 1. The IIR filters were computed with a delay of one frame. The best results are

3Density is the ratio of image positions where the flow computation satisfies a confidence measure
divided by the image area
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obtained for an FIR kernel of length 7 and for a recursive I[IR with = = 1.0.

We applied the same tests in one more sequence with known ground truth, the
Yosemite sequence. The results (Tab. 2) are worse in this sequence - but comparable
to the reported in the survey [28] - and qualitatively the same as in the Diverging Tree
sequence with the exception of the FIR filter which shows the best accuracy with a kernel
length of 5.

‘ filter ‘ aver. rel. error (%) ‘ vector density (%) ‘
[IR (7 = 0.5) 10.55 52.33
[IR (7 = 1.0) 9.88 52.29
[IR (7 = 1.25) 10.26 52.21
[IR (7 = 2.0) 11.96 52.84
FIR (3p) 11.62 52.83
FIR (5p) 10.01 52.23
FIR (7p) 9.89 52.21

Table 1 The average relative error in the Diverging Tree sequence for different 7’s and
kernel lengths.

‘ filter ‘ aver. rel. error (%) ‘ vector density (%) ‘
[IR (7 =0.75) 28.47 50.74
[IR (7 = 1.0) 19.96 50.62
[IR (7 = 1.25) 20.04 50.60
[IR (7 = 2.0) 22.09 50.28
FIR (3p) 25.21 50.56
FIR (5p) 19.61 50.38
FIR (7p) 22.42 50.86

Table 2 The average relative error in the Yosemite sequence for different 7’s and kernel
lengths.

Considering the used architecture (MaxVideo200) a temporal FIR filter needs as many
image memories as the kernel length N. The computational cost is N multiplications and
N —1 additions and the delay (N—1)/2 frames. Our second order IIR filter implementation
uses four image memories with the complexity of two multiplications and three additions.
The delay for 7 = 1 is between one and two frames. Taking into account the almost
negligible difference in the flow computation performance the IIR filter guarantees the
same motion behavior with much lower space and time complexity.
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6 Estimation and Control

The control goal of pursuing is to hold the gaze as close as possible to the projection of
a moving object. Actuator input signals are the pan angle ¢ and the vergence angle 6.
Since the angles can be uniquely obtained from the position (z,,y,) through (4) we use
the reference coordinates (x,,y,) as input vector. The intersection of the optical axis with
the plane Z = 1 of the reference coordinate system is denoted by e¢. Output measurements
are the position of the object in the reference coordinate system denoted by o obtained
from the centroid in the image and (3). Let v and a be the velocity and acceleration
of the object and Awu(k) the incremental correction in the camera position. The state is
described by the vector

T
S:(CT OT ’UT CI,T) .

A motion model of constant acceleration yields the plant

I, Oy 0O, O,
Oy I, Atly, At*)21,
Oy Oy I Atl,
Oy Oy O I

s(k+1)=®s(k)+TAu(k) with &=

and

r=(11000000)

where Iy and O, are 2 x 2 identity and null matrix, respectively. Assuming a linear control
function Au(k) = —Ks(k) with § an estimate of the state we make use of the separa-
tion principle stating that optimal control can be obtained by combining the optimum
deterministic control with the optimal stochastic observer [30].

The minimization of the difference ||o — ¢|| between object and camera position in the
reference coordinate system can be modeled as a Linear Quadratic Regulator problem
with the minimizing cost function S0, s7 (k)@ s(k) where Q is a symmetric matrix

1 =1 0 0
-1 1 0 0
Q= o 0 0 0
o 0 0 0

In steady state modus a constant control gain K is assumed resulting in an algebraic
Ricatti equation with the simple solution

K=(1 -1 —At —At2). (7)

The meaning of the solution is that input camera position should be equal the predicted
position of the object. One of the crucial problems in vision based closed loop control
is how to tackle the delays introduced by a processing time longer than a cycle time.
We emphasize here that the delay in our system is an estimator delay. The normal flow
detected after frame k concerns the instantaneous velocity at frame k£ —1 due to the mode
of the IIR temporal filter. At time k —1 the encoder is also asked to give the angle values
of the motors. To the delay amount of one frame we must add the processing time so that
we have the complete latency between motion event and onset of steered motion. The

12



prediction (7) enables a compensation for the delayed estimation by appropriate settings
for At in the gain equation.

Concerning optimal estimation we also assume steady state modus obtaining a sta-
tionary Kalman Filter with constant gains. The special case of a second order plant yields
the well known a-3-v-Filter [31] with update equation

sT(k+1) =5 (k)+(a p/AL y/AP ) (m(k+1) —m~(k+1)),

where s is the state after updating and m~ is the predicted measurement. The gain
coefficients «, # and ~ are functions of the target maneuvering index A. This maneuvering
index is equal to the ratio of plant noise covariance and measurement noise covariance.
The lower is the maneuvering index the higher is our confidence in the motion model
resulting to a smoother trajectory. The higher is the maneuvering index the higher is the
reliability of our measurement resulting to a close tracking of the measurements which
may be very jaggy. This behavior will be experimentally illustrated in the following.

In this experimental study we excluded the image processing effects by moving an
easily recognizable light-spot. We controlled the motion of the light-spot by mounting it
into the gripper of a robotic manipulator. The control frame rate is equal to the video
frame rate (30 Hz). The world trajectory of the light-spot is a circle with radius equal
20cm on a plane perpendicular to the optical axis in resting position. The center of the
circle was 145cm in front of and 80cm below the head.

We varied the angular velocity of the light-spot and for every velocity we observed the
tracking behavior for different maneuvering indices. We first tested the tracking error for
the high velocity of 1 target revolution per 823 ms (1.2 Hz, Fig. 4). The maneuvering
index A was set equal to 1. The motors reached an angular velocity of about 45 deg/s
in both tilt and vergence angles. In order to decrease time complexity we first tested
the possible application of first order motion model with an afg-filter. We applied both
filters for a target velocity of 0.52 Hz (Fig. 5). The behavior of the first order filter is
satisfactory with the additional advantage that it is not as jaggy as the a-f3-~-filter. We
applied, therefore, in all following tests the a3 filter.

We, then, tested the controller for two different maneuvering index values A = 0.1,1
and four different velocities of the target starting from 0.17 Hz up to 0.70 Hz (Fig. 6). The
pixel error increases with the velocity of the target. It is higher for the low maneuvering
index as expected but with smoother image orbit.

Then we let the maneuvering index vary by keeping constant the velocity (Fig. 7).
The decreasing smoothness with increasing A can be observed in the image orbit as well
as in the trace of the vergence angle along time.

To resume, we do not expect a pixel error better than £10 pixels for the highest
maneuvering index if we assume that the object motion trajectory is as smooth as a
circle.

7 Integration and system architecture

The image processing and control modules above were implemented on an architecture
consisting of several commercial components (Fig. 8).
We summarize here all processing steps of the loop:

1. The current tilt and vergence angle values are read out from the encoders.
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Figure 4. The tilt ¢ and vergence 6 angles (left) and the image orbit of the target (right)
with the large error due to the high velocity (1.2 Hz) of the target.
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Figure 5. Image orbit (left) and vergence angle vs.

a-f-y-filter.

time (right) for the af- and the

2. The video signal is transmitted from the camera? to the MaxVideo 200 board where
it is digitized, lowpass filtered and subsampled to a resolution of 128x128. The
video signal should have the same time stamp as the angle readings which will be
guaranteed as soon as we use a real time operating system.

3. The spatial derivatives are computed by convolving with 7x7 binomial masks.

4. The spatial derivatives are lowpass filtered with an IIR filter. The temporal deriva-
tives are computed with an IIR filter and then spatially smoothed with a 7x7 bino-
mial kernel.

4We use Sony XC-77RR with a frame rate of 30 Hz.
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5. The normal flow difference is computed using the LUT table of the inverse of the
gradient magnitude.

6. The difference image and the gradient magnitude image are thresholded and com-
bined with a logical AND. On the resulting binary image b(x,y) are computed the
sums Y. xb(x,y) and Y yb(x,y) as well as the area. The resulting vectors are trans-

mitted to the SparcStation.

7. The centroid of the detected area is computed and then transformed to the reference

15



Figure 8. Hardware architecture of the closed-loop.

coordinate system using the intrinsic parameters and the angle readings.
8. The state is updated with the «a-pg-~-filter.

9. The state is predicted considering the time delay and the input camera position is
obtained in the reference coordinate system.

10. The desired camera position is transformed to the tilt and vergence angles.

11. The angles are transmitted to the motion controller. This is the second point where
we need a real time operating system so that we guarantee a constant time interval
between this and the first step.

12. The motion controller runs its own axis control with rate 2kHz, computes the in-
trapoint trajectory, and sends the analog control signals to the amplifier.

The steps 2-6 are performed in the MaxVideo 200 board with a processing time of
37 ms. The steps 7-10 are processed in the SparcStation in 3 ms®. The processing time
of the motion controller is under 1 ms. Considering the effective delay of the temporal
derivatives calculations of one frame we obtain an effective latency of 80 ms between event
and onset of motion. The motion duration is equal to the processing cycle time so that
the camera reaches the desired position 120 ms after the event detected. The prediction
for the control signal is computed with respect to this lag.

8 Experiments

We show here the performance of the active tracking system in four different object
motions. The images in the figures are chosen out of 20 frames saved “on the fly” during

SUnfortunately all given processing times are statistically estimates since the operating system was
not in real time until submission of the paper
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a time of 8s. The images are overlaid with those points on the images where both the
normal flow difference and the gradient magnitudes exceed two thresholds which are the
same for all four experiments. The centroid of the detected motion area is marked with a
cross. We show the tracking error by drawing the trajectory of the centroid in the image
as well as the control values for the tilt and the vergence angle, ¢ and 6 for the entire
time interval of 8s.

In all the experiments the motion tracking error is much higher than the light-spot
tracking error. This was expected since the object is modeled in the image by its cen-
troid. Although the target might move smoothly the orbit of the centroid depends on
the distribution of the detected points in the motion area. Therefore, it is corrupted
with an error of very high measurement variance. Allowing a high maneuvering index
which enables close tracking would result in a extreme jaggy motion of the camera. The
estimator would forget the motion model and yield an orbit as irregular as the centroid
motion. Therefore, we decrease the maneuvering index to 0.01 and obtain as expected a
much higher pixel error. Only a post processing of the binary images could improve the
position of the detected centroid.

In the first experiment (Fig. 9) the system is tracking a Tetrapak moving from right
to left. The small size of the target enables a relatively small pixel error (the target
is always observed left from the center). Because the centroid variation is only in the
vertical direction - due to the rod holding the target - the tilt angle changes irregularly.
The average angular velocity is 8.5 deg/s.

In the second experiment (Fig. 10) we moved a rotating target from right to left and
then again to right, first downwards and then upwards. The achieved angular velocity
is 10 deg/s. Due to the rotation of the target the normal flow due to object motion is
higher yielding, thus, many points above the set threshold. We should emphasize here
that algorithms like [11] based on a global ego-rotation fitting would fail since the object
covers a considerable part of the field of view.

The same fact characterizes the third experiment (Fig. 11). A box attached in the
gripper of a manipulator is moving in a circular trajectory with 0.35 Hz. Here, the target
is not distinctly defined because all joints after the elbow give rise to image motion. The
centroid is continuously jumping in the image. However, the system was able to keep the
object in an area of £130 pix or £10 deg visual angle.

In the last experiment, we asked the system to try again a target attached on the
manipulator (Fig. 12). However, we moved forward the vehicle where the head is mounted
on. This situation is not modeled by our ego motion assumed as pure rotation. With a
forward translation of 10cm /s nothing changed in the average pixel error. The approaching
of the camera is evident in the image as well as in the angle plots: Positive shift in the
vergence mean (indicating approaching the left side of the target) and negative shift in
the tilt mean (showing the viewing downwards). The reason of this surprisingly good
behavior is in the components of the optical flow. As soon as the camera rotates the
rotational component is much larger than the translational one so that the effects on the
normal flow difference are negligible.

9 Conclusion

We presented a system that is able to detect and pursue moving objects without knowledge
of their form or motion. The performance of the system with control rate of 25 Hz, a
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Figure 9. Six frames recorded while the camera is pursuing a Tetrapak moving from
right to left. The pixel error (bottom left) shows that the camera remains behind the
target and the vergence change (bottom right) shows the turning of the camera from
right to left with an average angular velocity of 8.5 deg/s.

latency of 80 ms, and achieved average angular velocities of about 10 deg/s is competitive
with respect to the state of the art. The system needs the minimal number of tuning
parameters: a threshold for normal flow difference, a threshold for the image gradient, a
minimal image area over the mentioned thresholds, and the maneuvering index.

We have shown that in order to achieve real-time reactive behavior we must apply the
appropriate image processing and control techniques. The main contribution of this paper
is not only in the achieved high performance of the system. Our work is different from
other presentations in the study of the individual components with respect to the given
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Figure 10. Six frames recorded while the camera is pursuing a rotating target moving
from right to left and then again to right, first downwards and then upwards. The average
angular velocities for both the vergence and the tilt are 10 deg/s.

hardware, time constraints, and desired tracking behavior. We experimentally studied
the responses of the image processing filters if fixed-point arithmetic is used. We studied
the trade-off between space-time complexity and response accuracy concerning the choice
of FIR or IIR filtering. We dwelled on the control and estimation problem by testing
the behavior of the applied estimator with different parameters. Last but not least, we
presented experimental results of the integrated system in four different scenarios with
varying form and motion of the object.

The system will be enhanced with foveal pursuing based on the full optical flow values
in a small central region. A top-down decision process is necessary for shifting atten-
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Figure 11. The camera is pursuing a target attached in the gripper of a manipulator.
The target is moving on a circle with frequency 0.35 Hz. The angular velocity is 8 deg/s
for vergence and 5 deg/s for tilt.

tion in case of multiple moving objects. The presented work is just the first step of a
long procedure. The goal is the building of a behavior-based active vision system. The
next reactive oculomotor behaviors in plan are the vergence control and the optokinetic
stabilization.
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programming the camera platform, of Jorg Ernst in the intrinsic calibration, and of Gerd
Diesner in Datacube programming. We gratefully acknowledge discussions with Ulf Cahn

von Seelen from GRASP Lab.
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Figure 12. The camera is pursuing a target mounted on the gripper of a manipulator
while the camera is itself translating forwards. The target is moving on a circle with
frequency 0.70 Hz. 'The translation of the camera is shown in the shift of the angle
oscillation center. As the camera is approaching on the left side of the manipulator it

must turn more to the right (positive shift in vergence) and more downwards (negative
shift in tilt).

References

[1] R. Bajcsy. Active Perception. Proceedings of the IEEE, 76:996-1005, 1988.

[2] Y. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active Vision. International Journal
of Computer Vision, 1:333-356, 1988.

21



3]

[10]

[11]

[12]

[13]

[14]

[15]

M. Tistarelli and G. Sandini. Dynamic aspects in active vision. CVGIP: Image
Understanding, 56:108-129, 1992.

Y. Aloimonos, editor. Active Perception. Lawrence Erlbaum Associates, Hillsdale,

NJ, 1993.

C.M. Brown. Issues in selective perception. In Proc. Int. Conf. on Pattern Recogni-

tion, pages 21-30. The Hague, The Netherlands, Aug. 30-Sep. 3, 1992.

A. Bandopadhay and D.H. Ballard. Egomotion perception using visual tracking.
Computational Intelligence, 7:39-47, 1990.

C. Fermiller and Y. Aloimonos. Tracking facilitates 3-D motion estimation. Biological

Cybernetics, 67:259-268, 1992.
R.H.S. Carpenter. Movements of the Eyes. Pion Press, London, 1988.

D.W. Murray, P.L.. McLauchlan, I.D. Reid, and P.M. Sharkey. Reactions to peripheral
image motion using a head/eye platform. In Proc. Int. Conf. on Computer Vision,
pages 403-411, Berlin, Germany, May 11-14, 1993.

K.J. Bradshaw, P.F. McLauchlan, [.D. Reid, and D.W. Murray. Saccade and pursuit
on an active head-eye platform. Image and Vision Computing, 12:155-163., 1994.

P. Nordlund and T. Uhlin. Closing the loop: Pursuing a moving object by a moving
observer. In V. Hlavac et al. (Ed.), Proc. Int. Conf. Computer Analysis of Images
and Patterns CAIP, Prag, Springer LNCS vol. 970, pages 400-407, 1995.

D. Murray and A. Basu. Motion tracking with an active camera. [EFE Trans.
Pattern Analysis and Machine Intelligence, 16:449-459, 1994.

S. Tolg. Gaze control for an active camera system by modeling human pursuit eye
movements. In Proc. SPIE Vol. 1825 on Intelligent Robots and Computer Vision,
pages 585-598, 1992.

D. Coombs and C. Brown. Real-time binocular smooth pursuit. International Journal

of Computer Vision, 11:147-164, 1993.

F. Du and M. Brady. A four degree-of-freedom robot head for active vision. In-
ternational Journal of Pattern Recognition and Artificial Intelligence, 8:1439-1470,
1994.

J. Dias, C. Paredes, I. Fonseca, H. Araujo, J. Batista, and A. de Almeida. Simulating
Pursuit with Machines. In Proc. IEFE Int. Conf. on Robotics and Automation.
Nagoya, Japan, May 21-27, 1995.

J.C. Fiala, R. Lumia, K.J. Roberts, and A.J. Wavering. TRICLOPS: A tool for
studying active vision. International Journal of Computer Vision, 12:231-250, 1994.

N. Ferrier and J. Clark. The Harvard binocular head. [International Journal of
Pattern Recognition and Artificial Intelligence, 7:9-31, 1993.

22



[19]

[20]

[21]

P.J. Burt, J.R. Bergen, R. Hingorani, R. Kolczynski, W.A. Lee, A. Leung, J. Lubin,
and H. Shvaytzer. Object tracking with a moving camera. In WVM, pages 2-12,
WVMS89, 1989.

M. Irani, B. Rousso, and S.Peleg. Detecting and tracking multiple moving objects
using temporal integration. In FCCV2, pages 282-287. ECCV92, 1992.

M. Shizawa and K. Mase. Principle of superposition: A common computational
framework for analysis of multiple motion. In Proc. IEEE Workshop on Visual Mo-
tion, pages 164-172. Princeton, NJ, Oct. 7-9, 1991.

P. Nesi. Variational approach to optical flow estimation managing discontinuities.
Image and Vision Computing, 11:419-439, 1993.

O. Faugeras. Three-dimensional Computer Vision. MIT-Press, Cambridge, MA,
1993.

T. Vieville. Auto-calibration of visual sensor parameters on a robotic head. Image
and Vision Computing, 12:227-237., 1994.

M. Li. Camera calibration of a head-eye system for active vision. In Proc. Third
FEuropean Conference on Computer Vision, pages 543-554, Stockholm, Sweden, May
2-6, J.O. Eklundh (Ed.), Springer LNCS 800, 1994.

D.J. Fleet and K. Langley. Recursive filters for optical flow. [EFEE Trans. Pattern
Analysis and Machine Intelligence, 17:61-67, 1995.

M. Hashimoto and J. Sklansky. Multiple-order derivatives for detecting local image
characteristics. Computer Vision, Graphics, and Image Processing, 39:28-55, 1987.

J.L. Barron, D.J. Fleet, and S.S. Beauchemin. Performance of optical flow techniques.
International Journal of Computer Vision, 12:43-78, 1994.

B. Lucas and T. Kanade. An iterative image registration technique with an appli-
cation to stereo vision. In DARPA Image Understandig Workshop, pages 121-130,
1981.

G.F. Franklin, J.D. Powell, and M.L. Workman. Digital Control of Dynamic Systems.
Addison—Wesley, 1992.

Y. Bar-Shalom and T.E. Fortmann. Tracking and Data Association. Academic Press,
New York, NY, 1988.

23



