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Abstract: Recently Freeman and Adelson (1991) published an approach to steer �l-ters in their orientation by Fourier decompositions with respect to the angular coordinateof a polar representation. Simoncelli et al. (1992) generalized this method to steer otherparameters than the orientation. In this paper we formulate the problem of steerabilityusing the Lie group that performs the deformation of the �lters. Within the presentedtheoretical framework we especially discuss the following points: (1) The possible scopeand (2) the optimality of steerability by Fourier decompositions, (3) approximate steer-ability using a limited number of basis functions, (4) the nature of the singularity thatoccurs when steering the scale.
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1 IntroductionThe analysis of local image structure in many early vision tasks can be improved byusing the responses of the analysing �lters in a continuum of orientations, scales and otherparameters as was shown by several authors (Freeman and Adelson (1991), Perona (1991),Simoncelli et al. (1992), Michaelis and Sommer (1994)). To calculate the responses of�lters in a continuum of orientations steerability was introduced by Freeman and Adelson(1991) recently. Even though the principles of steerability have been used by others beforeit was only Freeman and Adelson who addressed this problem explicitly and brought it tothe attention of the computer vision community. Nevertheless, steerability is still far frombeing a standard tool in early vision.Now we introduce formally what is understood as steerability. In this report the term'steering' is applied to all deformations and not just to rotations. Let F�(~x) denote a �lterwith ~x 2 IRN and � 2 IR a parameter that deforms (translates, rotates, dilates) the �lter.Steering means continuously varying the parameter � by an interpolation formula:F�(~x) = MXk=1 bk(�)Ak(~x) (1)The whole in�nite range of functions for varying � is represented by linear superpo-sitions of a �nite number M of some basis functions Ak that are independent of �.The parameter � is contained only in the weights bk that we call interpolation func-tions. Note that if � is viewed as a variable too, steerability means an �; ~x-separabledecomposition of F (�; ~x).This allows us to calculate the response of an image to F� in a (quasi) continuum of theparameter � with the computational burden of only M projections hAkjIi; k = 1 : : : M .With I we denote the image and h�j�i is the usual scalar product.In general the basis functions do not have to be rotated, scaled, or otherwise deformedcopies of the original �lter for some �xed values of the parameter, i.e. Ak 6= F�k . If thereis no exact decomposition of F� to a �nite number M of basis functions or if M is toolarge we are interested in the minimal number of basis functions to obtain an acceptableapproximation to F� for all � simultaneously.Freeman and Adelson (1991) steer orientation by rotated copies of F as basis functions.The interpolation functions are derived by a Fourier decomposition of F with respect tothe angular coordinate of a polar representation. Simoncelli et al. (1992) generalizedthis approach to steerability by Fourier decompositions to other deformations, especiallydilating and contracting the �lter but there remain some open questions: (1) The Fourierbasis is chosen arbitrarily. (2) How do we get approximate steerability with a limitednumber of basis functions? (3) How is the singularity adequately treated that occurs inthe case of scale? (4) What about other basis functions than deformed copies of the original�lter? The latter question concerns also two points that are stressed by Simoncelli at al.,the self-invertibility and the interpolation by varying only one parameter while leavingothers constant in the case of simultaneously steering several deformations. For theserequirements to be meaningful the basis functions have to be deformed copies of the �lter.From our point of view both things are not necessary for signal analysis purposes. Ingeneral the basis functions are not deformed copies of the �lter and they have no meaningby themselves but only their superpositions.Perona (1991) found an optimal solution to approximately steer arbitrary (continu-ous) deformations for arbitrary �lters. He achieves this by a singular value decomposition(SVD) of the linear operator L that has images I as its input and the deformation parame-ter dependent response function R(�) = L(I) := hF�jIi as its output. The basis functions1



are the right singular vectors, whereas the interpolation functions are the left singularvectors. A drawback of this approach is that in general (e.g. for dilations/contractions)every �lter has di�erent basis functions which have to be calculated numerically.Recently Beil (1994) published another approach to steerability by using the invariancetheory of tensor calculus. Steerable �lters are constructed by basic invariant elementswhich are given by the theory of invariance. In fact, from its practical implications this isclose to the Fourier decomposition method.In this paper we use the Lie group that corresponds to the deformation of the �lter asthe basis for a deeper understanding of the Fourier decomposition approach of Freemanand Adelson (1991) and Simoncelli et al. (1992). The eigenfunctions of the generatingoperator of the Lie group are the basis functions and the eigenvalues are the interpolationfunctions. These functions depend only on the type of the deformation but not on the �lter.The basis functions are orthogonal and no deformed copies of the �lter. However, it iseasy to calculate the interpolation functions for the latter. We also achieve an approximatesolution to steerability if the number of basis functions is limited and we show how to treatthe singularity that occurs when steering the scale.2 Steering translationsTo give a motivation for the following abstract formalism we start by steering translationsin 1D. This is even more helpful as it will turn out that all other continuous one-parameterdeformations are isomorphic to translations by appropriate transformations of the coordi-nates and the deformation parameter. For more details about Lie group theory we referto the textbook of Hall (1967).2.1 The translational Lie groupBy fL�j� 2 IRg we denote the Lie group that performs translations in x-direction. Theoriginal �lter is F (x) � F0(x) and the deformation is de�ned by:L�F (x) = F�(x) := F (x+ �) (2)The identity operator is L0 = 1l. The group multiplication table is given by thefollowing function f : L�L�F (x) =: Lf(�;�) ; withf(�; �) = � + � (3)For very small deformations "! 0 the following expansion is possible that de�nes thegenerating operator L̂ of the Lie group:L" � 1l + "L̂ (4)We calculate the generating operator for translations by a �rst order Taylor expansionof the translated function:F (x+ ") = F (x) + "@xF (x) =) L̂ = @x (5)The �nite operator L� can be derived from L̂ by repeating many small deformationsby " = �=n: 2



L� = limn!1(1 + �L̂=n)n = e�L̂ (6)The eigenfunctions of L̂ are exponentials ezx with z 2 C. We can restrict to thefunctions ejkx with k 2 IR because they are a complete basis for all square integrablefunctions. The completeness is easily obtained by noting that j@x is hermitean. Hermiteanoperators have complete sets of eigenfunctions with real eigenvalues. An eigenfunction ofthe generating operator L̂ is also an eigenfunction of L� but for another eigenvalue. From(6) we see that: L̂ejkx = jk ejkx =) L�ejkx = ejk�ejkx (7)2.2 Steering by Fourier decompositionWe already mentioned that steerability means an �; x-separable decomposition of the �lterF�(x). This is achieved by a decomposition of F into the eigenfunctions (7), i.e. a Fourierdecomposition. F (x) = 1Xk=�1ckejkx ; with ck = 12� Z F (x)e�jkxdxF�(x) = 1Xk=�1ckejk�ejkx =: 1Xk=�1bk(�)Ak(x) (8)If (8) is compared with the de�nition of steerability in (1) we see that the basis functionsare Ak(x) = ejkx, whereas the interpolation functions are bk(�) = ejk�. The weight ckcan be absorbed in either of both functions. In (8) we wrote a sum instead of an integral.That hints to the fact that in practice we have to restrict the functions to a boundedinterval (respectively make them periodic). Then � becomes a periodic parameter, theLie group becomes compact and the eigenfunctions are square integrable. More preciselythe basis functions are Ak(x) = ej2�kx=L, with L the length of the interval. But withoutloss of generality we assume L = 2� in the following.This application of the Fourier basis is well known and used e.g. in the steerabilityapproach of Freeman and Adelson (1991). With the theoretical framework that is givenin this paper we provide the basis for better understanding the scope of this ansatz.2.3 Optimality of the basis functionsCompared to other sets of basis functions there are two properties of the Fourier base thatmake it exceptionally suited for steering translations. First, we do not have to calculatethe �-dependence of the interpolation functions because it is given by the eigenvalues.Second, the Fourier base is optimal in the sense that it allows the best L2 approximationswith the fewest basis functions, as we will show now.A proof of the optimality was given by Perona (1991) by investigating the operatorL := hF�j�i. We want to give here another proof that might be more familiar in the signalprocessing community and that in fact is a �nite dimensional representation of Perona'sproof. We investigate the set of all deformed �lters fF�(x)j�g where � is running throughall possible values. All these functions can be reconstructed by superpositions from a setof functions that has the same linear span as fF�(x)j�g. To �nd such a set we sample �and x and obtain the matrix C with the following elements:Ckl = F�k(xl) (9)3



We assume this matrix to be square and of size N � N . By de�nition of F� as atranslation of F0 this matrix is circulant and hence, it can be diagonalized by a Fouriertransform (for a proof see Hall (1979, Appendix B), � is diagonal).C = W�W�1 ; with Wkl = N�1ej2�kl=N (10)For a diagonalizable matrix diagonalization is equivalent to an SVD. From the proper-ties of the SVD we know that there is no sum of n dyadic products of two vectors (whichis an �; x-separable decomposition) that approximates the original matrix better in the L2sense than the �rst n components of the SVD of the matrix. Approximating the matrixmeans approximating all steered �lters simultaneously. By making the size of the matrixN very large we can approximate the continuous case to an arbitrary precision. The dis-tance measure for the approximation is d(F;G) = jjF �Gjjx;�, where the L2 norm is withrespect to x and � (see Perona (1991)).2.4 Approximate steerabilityTo steer a �lter F approximately with a limited numberM of basis functions we take onlythe �rst M eigenvectors of the matrix C as basis functions. The vectors are orthogonaland hence, their L2 norms, that are given by the elements of � (10), sum up to the normof F�. From (10) the norms can be calculated. We have � = W�1CW and hence (weswitch now back to the continuous case):�k0k = 12� Z e�jk0� Z F�(x)ejkxdxd� =(t = x+ �)= 12� Z ej(k�k0)�d� Z F (t)ejktdt = 2��(k � k0) ck (11)where ck is the k'th Fourier coe�cient from equation (8). We want to give also anotherderivation of the relative importance of the basis functions that yields an interesting result.The basis functions Ak from (8) can be obtained by Ak(x) = 12� R F (x + �)e�jk�d� =ckejkx. The weight ck is now absorbed in the basis function. The L2 norm of Ak rendersits relative importance to approximate F�. Clearly the norm is given by ck but we canalso write it in the following way :jjAkjj2 = 14�2 Z Z F (x+ �)e�jk�d� Z F �(x+ �0)ejk�0d�0 dx =(a)= 14�2 Z d� Z Z F (z)F �(z + �)dz ejk�d� = 12� Z hF� jF0iejk�d� (12)In (a) we changed the order of integration and we applied the substitutions z = x+ �and � = �0 � �. The integrand does only depend on �0 � � and hence, we can factor outthe � integration that merely gives a factor of 2�. Again, at this point we have to assumethe Lie group to be compact.As the result, the L2 norm of Ak is given by the k'th Fourier coe�cient of the function:h(�) := hF�jF0i = Z F �(x+ �)F (x)dx (13)h(�) is the autocorrelation function of F . In wavelet theory it is called the reproducingkernel which governs the sampling scheme for complete wavelet bases (Antoine et al.(1993)). 4



3 Steering other parametersThe steering scheme for translations becomes powerful by the fact that all one-parameterLie groups are isomorphic to the translation group by appropriate transformations of thecoordinates and the parameter (Hall (1967)). A general one-parameter Lie group is givenby its elements L� and the group multiplication table f(�; �) with L�L� = Lf(�;�). Thereexists a special value �0 of the parameter � with L�0 = 1l. �0 is the neutral element withf(�0; �) = f(�; �0) = �. The generating operator L̂ is de�ned byL̂ := dL�d� ����0 (14)where j�0 means that the expression to the left is evaluated at �0. For the in�nitesimaltransformation at other values of the parameter we havedL�d� ���� = L̂L� �@f(�; �)@� ����0��1 (15)The coordinates (x; y) (e.g. in 2D) are transformed under the group to x0 = x0(x; y; �) =L�x and y0 = y0(x; y; �) = L�y. The in�nitesimal transformations are described by thefollowing derivatives: dx = �d� dy = �d� ; with�(x; y) := @x0@� j�0 �(x; y) := @y0@� j�0@x0@� j� = �(x0; y0)�@f(�;�)@� � j�0 @y0@� j� = �(x0; y0)�@f(�;�)@� � j�0 (16)Equations (15) and (16) are simpli�ed if we change to the canonical parameter � .The group table for the � parametrization f(�a; �b) must have the property@f(�a; �b)@�a ����0 = 1 (17)This is especially true for the canonical choicef(�a; �b) = �a + �b ; �0 = 1 (18)For the canonical parametrization we have simple representations of the generatingoperator L̂ and the group elements L� :L̂ = �(x; y) @x + �(x; y) @y (19)L� = e� L̂ (20)In addition we can always �nd curvilinear canonical coordinates u; v that makethe representation of the group especially simple and equivalent to a translation. For thecanonical coordinates we have:u0 = L�u = u+ � v0 = L�v = vL̂ = @u (21)Hence, if we have any continuous one-parameter transformation we can achieve steer-ability by transforming the problem to canonical parametrization and canonical coordi-nates and apply the same formalism as in section 2.5



3.1 Deformations in two dimensionsHo�man (1966) points out six generators of a basic 2D Lie algebra of visual perception.The six transformations together with their canonical parametrizations are:L̂x = @x ( x0 = x+ �y0 = y TranslationL̂y = @y ( x0 = xy0 = y + � TranslationL̂r = �y@x + x@y ( x0 = x cos � � y sin �y0 = x sin � + y cos � RotationL̂s = x@x + y@y ( x0 = xe�y0 = ye� Dilation/ContractionL̂b = x@x � y@y ( x0 = xe�y0 = ye�� Hyperbolic RotationL̂B = y@x + x@y ( x0 = x cosh � + y sinh �y0 = x sinh � + y cosh � Hyperbolic Rotation
(22)

Lx and Ly are by de�nition in canonical form and x; y are the canonical variables. ForLr and Ls the canonical coordinates are log-polar (' = arctan(y=x); t = lnpx2 + y2).This is known to be a conformal mapping. Steering rotations follows straight forward thestandard scheme of section 2 if it is expressed in canonical coordinates. In this case thegroup is already compact (periodic) and no arbitrary restriction to �nite intervals for thecoordinate and the parameter is necessary. In so far it is the simplest case of all. The caseof steering dilations and contractions is treated in some detail in section 4. Finally, for thehyperbolic deformations usually the transformed coordinates u = px2 � y2; v = p2xy areused. Note, that these are not the canonical coordinates because the generating operatorsdo not have the canonical form of (21).L̂b = r2u @u 6= @u L̂B = r2v @v 6= @v (23)However, the deformations are along the lines v=const; u=const but with deformation'speedterms' of r2=u and r2=v.3.2 Steering multiple parametersIf several deformations have to be steered simultaneously the generating operators ingeneral do not commute and the canonical coordinate axes of the involved one-parametergroups will not be mutually locally orthogonal. This is for example the case for the 3Drotation group SO(3), where we can not follow the full scheme of section 2. However, itis possible to use the canonical basis functions of the irreducible representations of thegroup to derive a steering equation. In case of SO(3) these are the spherical harmonicsY ml , which are used by Freeman and Adelson (1991) to steer 3D functions. The sphericalharmonics and the canonical basis functions in general (for unitary representations) areorthogonal and hence it is easy to calculate the interpolation functions. If Ak are theorthogonal basis functions the interpolation functions bk are given bybk(�) = hF�jAki (24)6



We will not go further into the details of the general case in this paper. However, inthe special case of steering two parameters where the associated canonical coordinates u; vare locally orthogonal, the generating operators @u and @v commute and we can steer bothparameters simultaneously according to the scheme given in section 2. This is the case forthe three pairs (L̂x; L̂y); (L̂s; L̂r), and (L̂b; L̂B).In general a pair of locally orthogonal coordinates is given by a solution of the Cauchy-Riemann equations @xu = @yv @yu = �@xv (25)If u; v are di�erentiable these equations are equivalent to the complex di�erentiabilityof f := u + jv, i.e. every complex di�erentiable function de�nes a pair of orthogonalcoordinates.4 Steering scaleAs an example of steering �lters according to the method of section 3 we demonstrate howto steer the scale. Especially we show how to treat the singularity that occurs in this case.Let F (r; ~') be an N -dimensional (ND) function in polar representation. The variable~' denotes the angular components that are omitted if no use is made of them. We de�nethe scaling operator in ND to beL�(F (r)) := e��N2 F (e��r) (26)This de�nition di�ers from the deformation that is generated by L̂s from (22) bythe normalization factor e��N=2. The parameter � is the canonical scaling parameter:L�L� = L�+�;L0 = 1l. We obtain the generating operator L̂ by a �rst order Taylorapproximation of L�F :e��N2 F (e��r) = F (r)� �(N2 + r@r)F (r) + o(�2) (27)Hence, the generating operator for scaling (including the normalization e��N2 ) in polarcoordinates is: � L̂ = N2 + r@r (28)The eigenvalue equation (N2 + r@r)Ez(r) = zEz(r) with the complex eigenvalue z =a+ jk is a simple di�erential equation with separated variables and the solution Ez(r) =Crz�N2 = Cra�(N=2)ejk ln r with C as an integration constant.4.1 Construction of a complete and orthogonal eigenbasisIn this section we are concerned with the question how to choose the parameters a; k sothat the set of eigenfunctions is complete and orthogonal. We can use the property ofhermitean operators to have complete and orthogonal eigenbases with real eigenvalues toconstruct such a basis. The generating operator L̂ is not hermitean but we can constructthe following symmetrized hermitean operator L̂S (H denotes hermitean conjugation).L̂S := 12(jL̂+ (jL̂)H) = j2(r@r + r�N+1@rrN ) (29)where the hermitean conjugate operator (jL̂)H) = j(�N2 + r�N+1@rrN) is calculatedby 7



hF jjL̂Gi = Z 10 F � (j(N2 + r@r)G)rN�1dr == Z 10 (j(�N2 + r�N+1@rrN)F )�GrN�1dr = h(jL̂)HF jGi (30)The boundary term of the partial integration vanishes if F;G are not singular at theorigin. L̂S has the same eigenfunctions as L̂ but with the eigenvalues �k + ja:L̂Sra�N2 +jk = (�k + ja) ra�N2 +jk (31)For L̂S to have real eigenvalues we must choose a = 0 what results in the followingcomplete and orthogonal set of eigenfunctions:Ek(r) = Cr�N2 ejk ln r (32)C can be chosen to normalize the eigenfunctions. The eigenfunction for N = 1 andk = 5 is depicted in �g.1.
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Figure 1: Example of an eigenfunction of the scaling operator: < = r� 12 cos(5 ln r) (left)and = = r� 12 sin(5 ln r) (right).The orthogonality (33) and completeness (34) of the eigenfunctions is stated by thefollowing formulas (the angular integration merely gives a constant factor that is omitted):12� Z 10 r�Ne�jk ln re+jk0 ln rrN�1dr = �(k � k0) (33)12� Z 1�1(rr0)�N2 e�jk ln r0e+jk ln rdk = r�N+1�(r � r0) = e�Nt�(t� t0) ; r; r0 > 0 (34)t := ln r is the canonical scaling variable according to (21). In t-space the dila-tion/contraction becomes a simple shift (beside the normalization factor e��N=2): L�F (r) =e��N=2F (e��r) = e��N=2F (et��). With the substitution t = ln r (33) and (34) are theordinary orthogonality and completeness relations for complex exponentials. In (34) weapplied the formula �(ln r � ln r0) = r0�(r � r0). This formula is a special case of thegeneral formula �(f(x)) =Pn �(x� xn)=j@xf(xn)j, where f has only �rst order zeros xn:f(xn) = 0; f 0(xn) 6= 0. The factor r�N+1 at the r.h.s. of (34) compensates the factor rN�1of the ND integration measure. Concerning the optimality of the eigenfunctions (32) forsteering the scale, remember that according to section 2.3 they are optimal only in t-spacewhere scaling is a translation but not in the original r-space.From the eigenfunctions (32) the basis functions Ak for steering the scale of a �lterF according to (1) are most easily obtained by interpreting (1) as an �; ~x-separable de-composition of F (�; ~x) that is orthogonal in � and in ~x. Therefore, the basis functionsAk(~x) can be obtained as the coe�cients when F (�; ~x) is projected to the interpolationfunctions bk(�) = e�jk�: 8



2�Ak(r; ~') = Z e��N2 F (e��r; ~')ejk�d� =(t = ln r; z = t� �)= e� tN2 ejkt Z e zN2 F (ez; ~')e�jkzdz =: r�N2 ejk ln r Ck(~') (35)This shows that the basis functions are r; ~'-separable. This is a general result thatis valid for other deformations too because it simply uses the fact that the deformationis a translation in the canonical coordinate and that the interpolation function is anexponential. The translation is transfered to the interpolation function by the substitutionz = t� � where the shift is separable: ejk(t�z) = ejkte�jkz.If we would steer also the orientation of the �lter, only the functions Ck(~') are a�ected.We could also start by steering the orientation to obtain again r; ~'-separable basis functionswith r dependent coe�cients Ck(r) that can be steered in scale by the above procedure.Hence, scale and orientation are treated in the same manner. In the steering scheme ofPerona (1992) the orientation is steered �rst and it is not straight forward to start bysteering the scale. This is because he uses optimal basis functions from an SVD that areof di�erent (and unknown) analytical form for every �lter and every Fourier componentCk(r).Finally we apply the general result of section 2.4 to �nd the most important basisfunctions (in the L2 sense) to steer the scale approximately using only a limited numberof basis functions. With Ak(r; ~') = 12� R e��N2 F (e��r; ~')ejk�d� we can apply exactly thesame calculation as in (12) if we �rst substitute the canonical variable t = ln r. It is againthe autocorrelation function hF�jF0i that governs the importance of the basis functions:4�2jjAkjj2 = Z Z e��N2 F (e��r; ~')ejk�d� Z e��0N2 F �(e��0r; ~')e�jk�0d�0rN�1drd~'= Z Z Z F (e��r; ~')F �(e��0r; ~')rN�1drd~'ejk(���0)e� (�+�0)N2 d�d�0 =(t = ln r)= Z Z Z F (et��; ~')F �(et��0 ; ~')eNtdtd~'ejk(���0)e� (�+�0)N2 d�d�0 =(z = t� �)= Z Z Z F (ez; ~')F �(ez+���0 ; ~')eN(z+�)dzd~'ejk(���0)e� (�+�0)N2 d�d�0 =(� = �0 � �)= Z d� Z Z F (ez; ~')F �(ez��; ~')eNzdzd~'e�jk�e��N2 d� =(r = ez)= 2� Z Z F (r; ~')e��N2 F �(e��r; ~')rN�1dzd~'e�jk�d� == 2� Z hF� jF0ie�jk�d� (36)4.2 Treating the singularityThe eigenfunctions Ek from equation (32) are singular at the origin (�g.1). First, they arein�nite as r�N=2 and second, they oscillate in�nitely fast at the origin. In this section weanalyse this singularity and we show how to deal with it.In fact the eigenfunctions Ek (or the basis functions Ak (35) respectively) themselvesare not of interest but only their projections to the �lters hF�jEki. This regularizes the9



singularity what is evident when the projection is transformed to the canonical coordinatet = ln r (the ~' integration is omitted).hF�jEki = Z 10 e��N2 F (e��r) r�N2 ejk ln r rN�1dr == Z 1�1 F (et��) eN(t��)2 ejktdt = Z 1�1 ~F (t� �) ejktdtwith ~F (t) := eNt2 F (et) (37)The function ~F contains the transformed �lter as well as the powers of r from theeigenfunction and the integration measure. We call ~F for short the warped �lter. Thewarped eigenfunctions become the Fourier base, i.e. if F = Ek then ~F (t) = ejkt. Forgeneral F the projection hF�jEki becomes an ordinary Fourier transform of the warped�lter. This means that the singularity of the eigenfunctions is not worse thanthe singularity of ordinary complex exponentials. The unbounded support and thein�nite number of oscillations of the latter are logarithmically compressed. Scaling theoriginal function means translating the warped function: to the right for larger functions,to the left for smaller functions. The singularity is treated as usually by restricting tobounded support functions and �nite shifts (scalings) in t-space. The warped �lter for a2D isotropic Gaussian is depicted in �gure 2.
0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

r -4 -3 -2 -1 1 2

0.1

0.2

0.3

0.4

tFigure 2: Original �lter F (r) = e�r2 (left) and warped �lter ~F (t) = exp(�e2t + t) (right)for an isotropic Gaussian in 2D.In t-space the example is easy to understand. The support of ~F is not bounded atnegative t if the original �lter F is not zero in a �nite neighborhood of the origin. But if Fis not in�nite at the origin (what is never the case for vision kernels), ~F has a strong decaytowards negative t from the factor eN(t�s)2 in (37). Hence, we can treat ~F as bounded byallowing a little error. In addition we must restrict to a bounded range of scales that issteered. Then, the t-axis has to be sampled in the interval [tmin; tmax] where tmin; tmaxare given by the support of the warped function ~F plus and minus the translations fromscaling the function.The sampling density �t in t-space is given by the sampling theorem. Translating thisback to r-space the sampling is rn := en�t+tmin . If a (suboptimal) homogeneous samplingis required in r-space the highest sampling rate of this logarithmic sampling has to betaken. Concerning the oscillatory singularity of the eigenfunctions the interpretation ofthis sampling is as follows: only frequencies below the Nyquist frequency of the smalleststeered �lter have to be considered what wipes out the in�nitely rapid oscillations at theorigin. According to this frequency we have in r-space the �rst sample some distanceaway from the origin and we don't have to consider anything closer to the origin than thissample. An exception is the origin itself for which we have trivially Fs(0) = e�Ns=2F0(0).Hence, for steering scale we don't need arbitrary linear distortions of the logarithm nearthe origin as in the frequency space approach of Simoncelli et al. (1992).10



As in (8) the integral of the steering equationF�(r; ~') = Z 1�1 ejk� r��N2 e�jk ln rCk(~')dk (38)can be substituted by a sum by making the warped �lter periodic in t-space. The samediscrete frequencies k that are derived there can be applied in r-space.5 DiscussionWe applied the Lie group formalism to the problem of steering �lters. This approachprovides a theoretical basis and a generalization of the steering schemes of Freeman andAdelson (1991) and Simoncelli et al. (1992). The generalization allows the same formalismto be applied to all one-parameter continuous deformations as well as to two-parameterdeformations for which the canonical coordinates are orthogonal.Our approach does not give the most parsimonious set of basis functions (except forrotations and translations) as the steering scheme of Perona (1991). But our approachhas the advantage that the basis functions and the interpolation functions are given ana-lytically and that they are the same for all �lters. Only their relative weights depend onthe �lter. In addition all deformations are treated in the same manner and compared toPerona's method it is straight forward to steer �rst the scale and then the orientation.Our approach does not use deformed copies of the steered �lter as basis functions.However, those deformed �lters can easily be obtained by superpositions of our basisfunctions. By the same superposition formulas the appropriate interpolation functions areeasily calculated. The fact that our basis functions are given analytically and that theyare the same for all �lters is advantageous compared to Perona's method for calculatingthese interpolation functions. This is not only of interest for calculating the interpolationfunctions for deformed copies of the �lter but also in general to make existing analysingschemes steerable that use more or less complete sets of �lters.The log-polar canonical coordinates that are used to steer the scale and orientationare well known from the Mellin transform and the conformal mappings that are used ininvariance theory. The Lie group formalism has been applied also by Lenz (1990) buthe focused on invariant pattern recognition and did not explicitly address the problem ofsteerability.AcknowledgmentsWe are grateful to Kostas Daniilidis, Udo Mahlmeister and Ulrike Garbe from the Institutf�ur Informatik at the Christian-Albrechts-Universit�at Kiel for helpful discussions. Thework is supported by DFG grants So 320/1-1 and Ei 322/1-1.References[1] J.-P. Antoine, P. Carrette, R. Murenzi, and B. Piette (1993). Image analysis withtwo-dimensional continuous wavelet transform. Signal Processing 31, 241-272.[2] W. Beil (1994). Steerable �lters and invariance theory. Pattern Recognition Letters15, 453-460.[3] W.T. Freeman and E.H. Adelson (1991). The design and use of steerable �lters forimage analysis. IEEE PAMI 13, 891-906.11
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