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Abstract: It is commonly agreed on that the first step in early vision consists of
projections of the image to a set of basis functions. Usually the spatial distribution of
the basis functions is homogeneous and the projection is a convolution but in general this
will not be the case. In the literature there is a wealth of different basis functions, each
of them optimal with respect to certain criteria. On the other hand, there seems to be a
convergence towards derivatives of Gaussians or harmonic modulations of Gaussians (Ga-
bor functions). In this report we discuss the principles and analysing methods underlying
the choice of these functions. One of these methods that recently became of exceptional
importance is the energy /phase representation. We investigate in detail the quality of suc-
cessive orders of derivatives of Gaussians as odd/even pairs for the energy/phase concept.
In addition we work out to which extent derivatives of Gaussians can be approximated by
Gabor functions.

'"Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft unter den Aktenzeichen So 320/1-1
und Ei 322/1-1 gefordert.



Contents

1

2

7

Introduction

Basic principles in early vision
2.1 Uncertainty principle . . . . . . . . .. .. L oo
2.1.1 Basicform . .. ... ... ...

2.2 Hilbert transform . . . . . . . .. L
2.3 Scale-space . . . . . ...
2.4 Regularization and noise . . . . . . ... Lo Lo
2.5 Discrete case . . . . ... .o e e
2.6 Wavelets . . . . . . . L
2.7 Biological vision systems . . . . . .. .. Lo Lo
2.8 Applications . . . . . ...

Basis functions

3.1 Gabor functions. . . . . . ... e
3.2 Derivatives of Gaussians . . . . . . . . . . ...
3.3 Hermite functions . . . . . . . . . . . .. o
3.4 Other functions . . . . . . . . . . .o

Derivatives of Gaussians

4.1 Definition . . . . . . . .. L
4.2 Fourier transform . . . . . . .. .. e
4.3 Normalization . . . . . . . . . . ..

Optimal odd/even pairs with Gaussian derivatives

51 Same L?or L' morm . . . . . . . ... ...
5.2 Minimal Fourier energy at negative frequencies . . . . . . .. ... .. ...
5.3 Monomodal energy . . . . . ... oL
5.4 Fit of the energy to a Gaussian . . . . . . . ... . ... L.
5.5 Linear phase . . . . . .. . . . e
5.6 Conclusion . . . . . . . . .. e

Relationship between derivatives of Gaussians and Gabor functions

6.1 Definition and normalization of Gabor functions . . . . ... ... .. ...
6.2 Asymptotic behavior of the derivatives of Gaussians . . . . . .. ... ...
6.3 Fit of Gabor functions to derivatives of Gaussians . . . . . . ... .. ...
6.4 Conclusion . . . .. . .. . . .. e

Summary

Appendix A: Scale-space and the diffusion equation

Appendix B: Hermite transform

Appendix C: Integrals of the Gaussian

Appendix D: Hermite polynomials

13
13
13
13
14

15
15
16
16

18
19
19
21
23
25
27

28
28
29
30
33

33

34

35

36

36



1 Introduction

In many computational early vision methods the first processing step can be modeled as
the projection of the image to a set of basis functions and it is believed that biological
visual systems can be modeled in the same manner. In technical systems this step usually
is performed by convolution, i.e. by one function that is translated on a homogeneous
grid. In general, this restriction is not desirable. Therefore, we use the term 'projection’.
The term ’basis function’ is chosen because the projection can be seen as a change of the
representation of the image from a Dirac (pixel) basis to another basis in the sense of
linear algebra. In our case the new basis can be overcomplete or even be incomplete. An
overcomplete basis will be necessary in general if the representation has to be invariant
with respect to a certain transformation (spatial shift, rotation, scaling). An incomplete
basis can be necessary for complexity reasons or to get rid of irrelevant information by
projecting the image to a subspace.

However, before answering questions about the optimal sampling of the parameters
for translating, rotating, and scaling a function, the type of function (its shape) that is
optimal for a given task must be found. There are many different tasks in computer
and biological vision and even for one task (e.g. edge detection) there are many different
optimization criteria, each of which results in a different optimal function. Accordingly, in
the computer vision literature a vast number of 'optimal’ functions can be found. On the
other hand, the receptive field profiles of simple cells in the visual cortex are frequently
matched to Gabor functions or derivatives of Gaussians in the neuroscience literature.

Motivated by biological vision systems and independently by theoretical insights there
has been a growing interest in these functions in computer vision. It seems that they are
optimal with respect to the most generic criteria, i.e. for systems that are not committed
to special tasks or input signals. Whether this is the case or not is hard to decide because
the answer depends on the following processing steps. But the design of complete vision
systems that are optimal for general vision tasks is unknown. Nevertheless, there are basic
principles that are highly distinguished by theoretical considerations as for example the
uncertainty principle or the energy/phase concept.

The content of this report is (1) a presentation of the relevant literature, (2) a discussion
of the principles underlying the design of basis functions, and (3) an investigation of the
relevant basis functions. In this report we concentrate on 1D functions or on 1D cross
sections respectively. Most of the literature is not discussed in detail. The purpose is not
a complete review of the articles but to show the background of previous work that has to
be considered to realize the importance of the mentioned functions in computer vision and
the knowledge about them. In section 2 the most relevant principles underlying the design
of basis functions are discussed. In some papers only one of these principles (uncertainty,
scale-space, energy/phase etc.) is particularly emphasised and the basis functions have
to be chosen accordingly. In contrast, our point of view is that all the principles
are important but there is not one special principle that has to be satisfied
under all circumstances. As a result of this discussion we point out the importance of
derivatives of Gaussians and Gabor functions.

The problem is that for weakly oscillating Gabor functions and lower derivatives of
Gaussians not all principles can be satisfied at the same time. To understand the limita-
tions we investigate in detail some properties of the derivatives of Gaussians and Gabor
functions. In particular we emphasize the question of odd/even (quadrature) pairs and
the comparison of the different functions. Even though we deal with lower percentage
effects, we think that it is worth the effort because of the exceptional importance of the
investigated functions and principles. For weakly oscillating functions there are a num-



ber of associated functions that satisfy some of the required principles, e.g. true Hilbert
transforms, DC-, and ramp-corrected versions of the Gabor functions.

2 Basic principles in early vision

In this section we discuss in some detail the uncertainty principle, the Hilbert transform
which is closely related to the energy/phase concept, scale-space, regularization and noise,
the discrete case, wavelets, and biological vision systems. Besides these items there are
other points that have to be considered for the design of basis functions:

e Separability: The analysis in this report is essentially 1D. In 2D there are new
degrees of freedom. The functions are usually cartesian or polar separable in position
or frequency space [3, 34, 62, 35].

e For theoretical analysis, functions that have simple analytical expressions are prefer-
able.

e A small spatial extent is preferable to save computation time. This restriction might
not be valid if hardware is cheap as in biological vision systems.

e Another important question concerns the sampling scheme that is necessary for
a given function. This is closely connected to steerability, a topic that we will
investigate in a following report.

e A main criterion is the optimality for following processing steps. But these steps
depend on the application. A step towards evaluating them with respect to the
application is to investigate the responses to certain signals, e.g. single event, mul-
tiple event, and texture responses. In this report, however, we concentrate on the
functions themselves.

2.1 Uncertainty principle

The uncertainty principle in its most cited form states that a function cannot be localized
both in the spatial and in the frequency domain. The mathematical foundations for this
principle are well understood. On the other hand, there are more general forms of the
principle and the deeper meaning behind it and its relevance and consequences in signal
and image processing are still vague. The uncertainty principle became more recognized
in recent years because it is closely connected to the popular bivariate representations [65]
and the question of appropriate basis functions.

2.1.1 Basic form

The uncertainty principle first appeared in quantum mechanics in the 20th and was applied
to the field of signal processing by Denis Gabor in his famous article in 1946 [25]. Its
mathematical form is given by:

AzAw > 1/2 (1)

with the variances (the metric) defined by:
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f(w) = (2n) Y2 [ f(x)e™7dx is the Fourier transform, Z and & are the expectation
values. The complex function that minimizes the inequality (1) is the Gabor function:
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Goe(z) = e 207 i°F (3)
oe(T) =

The relevance of the uncertainty principle for vision was pointed out by Marcelja and
Daugman [47, 17]. Daugman extended the uncertainty principle to two dimensions. The
optimal functions in 2D are Gaussians with any aspect ratio and a complex harmonic mod-
ulation in any orientation. As in the 1D case the cross-sections parallel to the modulation
are given by (3). In practice the modulation is always chosen parallel to one of the axes
of the Gaussian. Depending on the parameter o, the Gabor functions are better localized
in position or frequency space but they always exhibit the best possible joint localization.
For the majority of the papers that use Gabor functions the above is the justification for
using them. But the subject has some more facets that we will discuss in the following.

2.1.2 Some extensions

The uncertainty principle is not restricted to position and spatial frequency. In quantum
mechanics it is stated for all eigenbases of hermitian operators that do not commute.
Another point is the definition of the variance as the 2nd moment in (2). In quantum
mechanics this choice is motivated by the probability interpretation of the wave function
but in general there are other metrics possible. Some of them might even be preferable
in computer vision. Other metrics are discussed by Stork et al. [66]. This paper has
been rightly criticized by Yang [76], Daugman [19], and Klein and Beutter [31] because
it contains some errors concerning the metrics and the optimal functions for real instead
of complex function spaces. Nevertheless, the criticism of Stork et al. of the unreflected
use of the 2nd moment as the variance is justified. However, Klein and Beutter point out
that for reasonable metrics the optimal functions will be more or less Gabor like shaped.
The eigenfunctions of the harmonic oscillator (Hermite functions) that were erroneously
suggested (and confused with the derivatives of Gaussians) by Stork et al. maximize rather
than minimize the uncertainty.

2.1.3 Information theoretical point of view

The basic question in this subsection is: How much information is contained in
a function f? The answer depends of course on the way the information is coded in
the function. We assume that the coding is linear, i.e. the information is coded in the
coefficients aj with respect to some basis functions g, ({-|-) is the scalar product):

f=>"apgr
k

ap = (flge) with  (gx|g1) = ou

(4)

The g, constitute the dual basis. This equation implies that a physically possible sensor
exists that corresponds to g;. The measurement of the coefficients should be independent
of each other what means that the basis functions are more or less orthogonal. It is
helpful to associate to f the abstract function |f) as in quantum mechanics. f(z) = (z|f)
or f(w) = (w|f) are just different representations of the same function with (x|z¢) =
Sz, (T|wo) = €97 (w|wy) = d,,. Hence we leave the symbol f unchanged.

If the resolution for the amplitude of the coefficients is finite, the amount of information
depends on the number of coefficients. How many basis functions contribute to f?
How big is the alphabet? For example the information content of one letter, say o’



depends on the alphabet. If it is a member of the latin alphabet it is about 5 to 7 Bit. If it
is a 600 dpi PostScript bitmap it is several kBit. If in our example the basis consists only of
f itself, just one coefficient is needed. On the other hand, if there are no restrictions to
the sensors (basis functions) the number of basis functions clearly can be infinite. Hence,
without fixing the restrictions of the sensors there is no sensible answer to the posed
question.

From the theory of signal processing we know an answer. For a signal of length Az =
Tmax — Tmin and sensors with a bandwidth of Aw = wpax — Wmin the number of coeflicients
that can be transmitted is 2AzAw. We now want to derive a deeper understanding of this
formula. The most obvious physical restriction is with respect to the position (respective
time). The signal is only measurable in a period Az and there will be a maximal spatial
resolution dx. Hence, we could assume Az/dz basis functions, each of which has e.g. a
rectangular profile (Fig.1).

f(x)

and
ag \/

Xmin k=1 k=2 k=3 k=4 X X

Figure 1: Rectangular basis functions

An example for such a sensor is a CCD-camera where the number of pixels gives the
number of basis functions that sample the original signal (illuminance distribution). In
the next step we try to improve the sensor to obtain more information from the signal.
Therefore, in Fig.2 the rectangular function and the Gaussian function are compared as
Sensors.

(a) (b)

Figure 2: Comparison of rectangular and Gaussian function as sensor

Both functions have approximately the same spatial width, i.e. they have to be shifted
by the same amount for the next basis function to be orthogonal. Clearly the Gaussian
function will never be exactly orthogonal to shifted copies. But a small dependence be-
tween the coefficients is tolerable, at least if it is below the resolution of the amplitude
of the coefficients. We will now establish the connection to the uncertainty principle: In
practice the resolution often is not given by a spatial shift dz but by the bandwidth Aw
of the sensor. Fig.2b shows that the spread of the rectangle in frequency space is much



larger than for the Gaussian. Because the Fourier basis is orthogonal, shifting the Gaus-
sian in the frequency space by the width of its support results in an orthogonal function.
Hence, for the Gaussian more (quasi) orthogonal basis functions are possible. It can be
proofed that for the metric (2) the function with the best joint localization is the Gaus-
sian. Shifting the Gaussian in frequency space leads to complex Gabor functions. The
shift leaves the variances unchanged and hence the Gabor functions have the same optimal
joint localization as the Gaussian.

Our question can now be answered as follows. If the restrictions are given by sensors
that respond in a certain time or spatial interval and a certain frequency band and no
other possibilities or restrictions exist the largest vector space in which the signal can
be embedded is given by the span of Gabor functions paving the time-frequency area of
the sensor. This implies that Gabor functions are the finest probes that are possible to
investigate the signal or, in other words, to maximally decorrelate the information in the
signal.

The improved performance of Gabor functions with respect to rectangular functions
is achieved by opening the frequency channel. With this new degree of freedom the
construction of orthogonal basis functions is not only possible by spatial shifts but also by
frequency shifts.

Why not open more channels? In a strict sense the new channel is no new degree
of freedom because the Dirac (position) base is already complete for all reasonable (and
unreasonable) functions. This is expressed in the uncertainty principle. It is not possible
to pave the z,w-plane with Diracs. If z is already sampled with Diracs there is no more
freedom through the w-channel. Opening the new channel is just a possibility to fully
exploit the capabilities of the sensor. That means if there exists a sensor for another
orthogonal basis this channel can be opened too and will result in more information that
can be retrieved. There will be also a corresponding uncertainty principle. It simply
means that we have finer sensors not by improved sampling in position but with respect
to some other basis. On the other hand, in practice signals are almost always investigated
in position and frequency space. The exceptional role of the Fourier base results from the
following facts, that are closely related to each other:

e Frequency and position are best suited to describe the restrictions for common sen-
SOrs.

e The Fourier base is complementary to the position base, i.e. |(z|w)| = 1 with linear

phase. ¢ is maximaly spread with respect to  and contains no position informa-
tion.
e €% are the eigenfunctions for the spatial shift operator i0,.

e ¢/“" are the eigenfunctions of linear shift invariant operators, i.e. spatially non

adaptive (constant) operators that do not single out one position.

Now that we have a deeper understanding about the what and why of Gabor and
Fourier bases we conclude the following;:

If the base (sensors, features, alphabet) is given by the problem in hand it
should be used. The uncertainty principle then reveals the consequences for
the inference process as it is explained in section 2.1.4. If no alphabet is
given, Gabor functions are for natural restrictions (position and bandwidth)
the finest possible generic sensors.



For example in applications like texture segmentation or compression the methods are often
motivated by maximal information decorrelation and not by the detection of features. On
the other hand, in many recognition tasks the question is not to pack as much information
as possible in a signal or to decorrelate it maximally but to recognize the natural alphabet
(e.g. edges, lines etc.). The performance of Gabor functions in this case is not too bad
as well [12, 46, 51]. Some more comments about Gabor functions can be found in section
3.1.

Gabors ’proof’: Gabor proofs in his paper [25] that the Gabor functions have the
best joint localization with respect to the metric of equation (2). But concerning the more
general question of how much information can be coded in a signal it is rather a motivation
than a strict proof. The metric is given ad hoc from an example. It is the same as in
quantum mechanics but there we have different physical foundations and other questions in
mind. Following a comment in [31] the influence of other reasonable metrics should not be
too severe and the optimal functions are more or less Gabor shaped but to our knowledge
this topic has not been investigated in depth. Another point is that Gabor functions
are not orthogonal. Hence, the coefficients are correlated and there is less information in
their amplitudes than for orthogonal functions. The exact consequences of this fact have
not been investigated too. Orthogonal bases have been developed for subband coders as
quadrature mirror filters or orthogonal wavelets. But for these functions the uncertainty
principle is ignored even though their task is to decorrelate the information in the signal.
Finally, we want to remind that in Gabor’s paper as well as in this section only linear
coding schemes as in equation (4) were considered.

2.1.4 What is where?

One of the basic tasks in image analysis is to localize and classify the objects in an
image. This is expressed by the question 'what is where’. There are many approaches to
this question. In this subsection we comment on one approach that relates this question
closely to the quantum mechanical inference process.

Wilson together with Granlund [72] and Knutsson [73] drew up another consequence
of the uncertainty principle for the inference from pixels to symbols (features)(see also
Sommer [65]). We give a very concise summary of their inference mechanism. According
to them the basic features 's’ are characterized by invariances and are represented in images
by the invariant subspaces of corresponding operators (corresponding to the invariances).
The subspaces are spanned by the eigenfunctions ®; of the operators. E.g. in the case of
shifts the operator is i0, and the eigenfunctions are e’“. The inference to the features is
done by probabilities. The probability P of the feature s that is related to the eigenfunction
@ (denoted s(®y)) to be present in the signal f

fl@) =" ap®y (5)
k

is given by

Pls(@u) ) = 2 (6)

Also serial inferences are possible by introducing in addition to the @, a second eigen-
basis W; to another operator. The possibility P(s(®)|f) of the symbol s to be present in
the signal f can be estimated by:



P(s(®x)|f) = D P(s(T)|f) (Ti]@k)|* (7)
l

For an illustration one should think of infering to textures directly as in (6) or by first
infering to edges via (6) and then to textures by (7).

This ’subspace structure of inference’ as it is called by the authors is a one-to-one
translation from quantum mechanics to image processing. The well known effects of the
uncertainty principle, e.g. interferences and the non commutativity are derived. For non
commuting operators the features cannot be simultaneously sharp. ’Sharp’ means that
f consists of only one eigenfunction of the corresponding operator. For serial inferences
the order in which the bases are applied changes the result. The most popular example is
again that between position (operator z, eigenvector d,) and spatial frequency (operator
i0,, eigenvector e™?)

To our opinion the usefulness of the details of the inference process are doubtful mainly
because real symbols/features (even edges) are too complex to be linked directly to the
subspaces. The linear structure of the subspace concept is not rich enough to render the
complexity of the subdivision of a signal into features. The projection to a set of basis
functions will only be the first of several layers in an approach to feature detection.

Some of the effects (interferences) are shared by the energy concept instead of prob-
abilities. The effect whether one or two events are seen is more related to scale ([55]) or
context than to the inference process even though the uncertainty principle is necessary
for the understanding. Anyway, a linear modul is necessary in all methods and the point
concerning the incompatibility of different features is undoubtedly true.

We will not go further into the details because our concern is: What can we learn
about basis functions from this formalism?

The goal is to get from pixels to symbols. According to Wilson et al. the symbols are
connected directly to the basis functions and the (invariant) subspace structure. Especially
three bases are mentioned: The Dirac base d,, the Fourier base e*?, and the Gabor base.
The motivation for these bases in [73] is as follows. The Fourier base is invariant to shifts
and therefore spans the invariant subspaces for the object classification. The Dirac base
is invariant to the Fourier base (classification) and is therefore related to position. The
Gabor functions are the best trade off between both domains and allow a desired degree
of invariance in one of them.

This motivation is not wrong but misleading. Of course Fourier coefficients are used
for position invariant object recognition. But beside the position invariance the connection
to the objects is as close or as far and as obvious (or not obvious) as for the Dirac base
or other bases. Accordingly, the role of the Gabor base in object classification is not
cleared up. We already mentioned that real features are not related in a simple way to
the invariant subspaces. On the other hand, the Dirac base and the Fourier base are in
general used to analyse all other functions and the Gabor base is known to have many
applications in computer vision. Some motivation for these functions was given in section
2.1.

The final conclusion is the following: The uncertainty principle does not indicate one
special basis that is preferable for object recognition. If the features and appropriate
basis functions are given, the uncertainty principle shows the consequences of this basis
for the inference process. The formalism of the inference process of [72, 73] should not
be overemphasized because in general, features are not given by simple projections but in
following (nonlinear) processing layers.

but it is true for all other features too.



2.2 Hilbert transform

During the last decade complex quadrature filters, with the real and imaginary part con-
nected by a Hilbert transform, became an important tool in image processing. A good
introduction to the Hilbert transform can be found in the textbook of Bracewell [8]. In
the following paragraphs we distinguish three lines leading to the use of quadrature filters.

Gabor functions and analytical signals

In Gabor’s paper [25] the signal is extended to an analytical signal to allow an elegant
mathematical formalism. Gabor’s ’elementary signals’ or Gabor functions as they were
called later are therefore complex analytical signals. One benefit compared to real signals
concerns the metric of equation (2) that is used in the paper. The spread of the Gabor
function in Fourier space Aw corresponds to the shift that is necessary to obtain an (quasi)
orthogonal function only in the case of the complex function but not for the real one (see
Fig.3), because the latter has two lobes.

| N
| \/

(a) (b) (c)

Figure 3: Fourier transform for the real and analytical signal. (a) signal, (b) Im of FFT
of (a) (Re is zero), (c) Re of FFT of analytical signal of (a) (Im is zero). The FFT in (b)
has two lobes. Hence, the metric from equation (2) is not very meaningful to describe the
width of the signal (b).

Feature detection

To detect features independently of their profile (line, edge, mixed) quadrature pairs of
filters are used [3, 26, 29, 36, 53, 55, 59, 62]. The most profound analysis is the paper
of Perona and Malik [59]. Usually the quadrature pair consists of a real even part and
an imaginary odd part. The response is transformed to an energy/phase representation
where the energy detects the features and the phase recognizes their symmetry type.

Australian feature detection

An australian group (Owens, Venkatesh, Morrone, Burr ..) [56, 57, 58, 70, 71] founded a
new school of feature detection. Based on comprehensive psychophysical experiments and
some mathematics they state that features that are perceived by humans are connected
to the energy maxima of the analytic signal of the image. The method is in principle the
same as in the last paragraph. The difference is that the former starts by defining features
and then designs optimal filters for them whereas the latter (in its basic form) uses always
broad band filters and defines as features what is detected in the energy.

Comments

The sine and cosine Gabor functions are not true Hilbert pairs. This is easy to see as the
cosine functions do not integrate to zero. Therefore, in some applications modified versions
are used. E.g in Lades et al. [40], Ronse [61], and Michaelis et al. [53] the following DC
corrected cosine function:

1.2

x?
Goc(zr) =€ 207 (e"0 —e 29) (8)

For large ¢ the correction is neglectible, and therefore one usually chooses ¢ > 5.
But large ¢ are not always possible (e.g. [53]). Some authors even require an imaginary



component that is insensitive to linear ramps [59, 61]. A ramp-corrected complex Gabor
function is:
_ ﬁ icL _ 1.2 . 1.2
Goco(x) =€ 207 ("0 —e 29 — (%e2”) 9)
Other corrected Gabor functions are also used, e.g. in [29]. Figure 4 compares the
Gabor cosine function with some related functions. For demonstration purposes the oscil-
lation parameter is ¢ = 0.1, much smaller than any reasonable value. The imaginary part
in fig.4 is always a Gabor sine function.

Gabor sine function (Im)

| o || VIV |

Gabor cosine function Gabor cosine DC corrected Hilbert transform of Im

Energy of the complex function

NANNA WA AN —
/NS VTV VLY VI

Phase of the complex function

s ! sl \ I' . !

Fourier transform of the complex function (Re only; Im of FFT is zero)

Figure 4: Comparison of different odd/even pairs for Gabor functions. All three even
(Re) variants have the same odd (Im) partner that is depicted in the first row. For further
explanations see text.

e The first column is the Gabor cosine function that obviously does not integrates to
zero. The energy in position space (i.e. the response for a line) is the unmodulated
Gaussian of the Gabor function. The phase is perfectly linear. The Fourier transform
is Gaussian shaped too.

e The second column is the DC corrected version from equation (8). The energy is
not single peaked and the Fourier transform is not single lobed (but remember that



¢ is unreasonable small). The phase is not linear. Especially there’s not much shift
between the phases —m/2, 0, and 7/2 and hence, the phase estimation is not very
robust.

e The last column is the true Hilbert transform of the Gabor sine function. The DC
component is zero and the phase is approximately linear. The drawback of this
function is its width. The slow decay results from a convolution of the Gabor sine
function with 1/z by the Hilbert transform. As a consequence the energy is not the
unmodulated Gaussian but a broad function with a support much larger than that
of the Gabor sine function. In practice this means that the response is much larger
than the feature and might be influenced by other features in the neighborhood
(interferences). The Hilbert transforms of the Gabor sine functions and many other
functions of interest do not have simple analytical forms.

In this extreme case none of the functions is very satisfactory and for larger ¢ all
become the same. In between the trade offs have to be considered carefully. Especially we
want to make the point that the energy of the Hilbert transform pair is not what might
be expected naively as the envelope of the Gabor sine function. The details of the trade
offs of the Hilbert transform and other odd/even pairs should be better investigated.

These trade offs exist for others than Gabor functions too. The Hilbert transform is a
very good candidate to design odd/even pairs but there are also alternative possibilities.
For example Perona and Malik [59] use a Gaussian derivative and its true Hilbert transform
whereas in Michaelis and Sommer [54, 55] a pseudo quadrature pair of two Gaussian
derivatives is used and the merits and drawbacks are discussed.

2.3 Scale-space

In a narrow sense scale-space means the continuous scale LoG analysis of Witkin [75] that
was a seminal work for hundreds of following papers. This and all other work related to the
LoG underlines the importance of the derivatives of Gaussians. Babaud et. al [4] proofed
that the Gaussian is the unique kernel for smoothing 1D signals without producing new
zero-crossings. Yuille and Poggio [78] and Koenderink [32] investigated the 2D case. In 2D
the zero-crossings can split and merge but nevertheless the authors show the exceptional
role of the Gaussian even in the 2D case (zero-crossings never vanish at finer). More details
about scale-space behavior can be found in appendix A.

But the importance of scale-space violations depend on the information that is retrieved
from the image. E.g. Kube and Perona [39] point to vanishing zero crossings in the case
of energy filters for edge detection. On the other hand, Ronse [61] shows that for the
Morrone/Owens edge detection scheme [56, 57] the only requirement for a smoothing filter
not to change the edge information is zero Fourier phase. Hence, the scale-space behavior
should be treated in the same way as the uncertainty principle or the true quadrature
pairs: important but not undisputable.

The Gaussian has two other fundamental and unique benefits as a smoothing kernel.
First it has minimal uncertainty and second it is isotropic and cartesian separable.
Therefore, we would like to derive scaled signals by Gaussian smoothing. To satisfy the
wavelet like scaling (f(z) — f(sz)) as well as the Gaussian scaling, functions are preferred
that satisfy (D is a Gaussian):

Do () * f(x) o f(sz) s =s(0) (10)

This type of scaling is investigated in depth by Koenderink and van Doorn [34] and is
refered to as relative invariance. If f has free parameters, denoted with 7, a weaker form

10



is possible where the smoothed function has changed parameters 7':

D, () * fr(x) < frr(sx) s = s(o) (11)

This behavior is exhibited by Gabor functions (equation (3)) that have the free oscil-
lation parameter c.

2.4 Regularization and noise

Torre and Poggio [68] show the ill-posed nature of edge detection due to noise. In their
paper, edge detection is seen as differentiation. The authors show that an optimal regular-
ization can be done by filtering with a spline that is close to a Gaussian. Canny [14] asked
for the optimal filter that maximizes the product of a localization measure and the SNR.
He obtained a function close to the first derivative of a Gaussian. Mehrotra et al. [51]
calculated the same criterion for Gabor sine functions. These functions do not perform
too bad if ¢ (see equation (3)) is chosen to be approximately 1 (but see the comment
in section 6.3). This is not too surprisingly as the Gabor sine function resembles very
much the first derivative of a Gaussian (section 6.3). Larger ¢ result in multiple responses,
whereas for smaller ¢ the detection becomes hampered because of noise maxima. Manju-
nath and Chellappa [46] discuss the same for complex Gabor filters used as energy feature
detectors. For some reason they only use ¢ = m, a value that is not very reasonable for
edge detection.

2.5 Discrete case

For theoretical considerations, the basis functions most often are supposed to be con-
tinuous. We assume that future vision systems need spatial resolutions such that this
continuous point of view is justified. On the other hand, there always will be some dis-
cretization and in past systems discretization often played a dominant role. Therefore, we
hint to some papers that take into account the effect of discretization.

Usually for discretization the unmodified continuous basis functions are sampled. It
can be calculated which sampling rate is necessary to limit the discretization effects. This
is done for example in [7] for the Gabor functions. If the sampling of the basis functions
has to be sparse because of speed requirements or a sparse sampling of the signal, it is
not possible just to sample the continuous basis functions. Discrete modifications have
to be used instead. Examples can be found in Davies [20], Wilson and Bhalerao [74],
and Hashimoto and Sklansky [27] for the Gaussian, in Lindeberg [41] for the scale space
analysis, in Martens [49] for the Hermite transform that includes derivatives of Gaussians
and Hermite functions. For discrete derivatives see also Lindeberg [42] and Hummel and
Lowe [30].

2.6 Wavelets

Wavelets are bases that consist of translated and scaled copies of one mother wavelet:

frs(@) = Vsf(sz —7) (12)

Among the most popular wavelets are Gabor functions [37] even though for small ¢ (eq.
(3)) Gabor cosine functions do not integrate to zero and hence are not admissible. In the
case of Gabor functions the term ’'wavelets’ refers to the scaling (12) and to the analysis
of the response in a combined position scale space. The theory of wavelets brought new
insights about sampling schemes for complete bases, regularity and other things.
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There is a class of wavelets, the orthogonal wavelets, that is of special interest. We
have already mentioned that Gabor functions are not orthogonal. In the case of orthogonal
wavelets, where specific mother wavelets and sampling schemes have to be used, all scaled
and translated functions are orthogonal to each other. The basis is therefore minimal and
complete and the coefficients are uncorrelated. With these wavelets orthogonal, discrete
multiresolution pyramids can be built where the information in the different scales is
uncorrelated [44, 45]. On the other hand, the uncertainty principle is ignored in the
design of orthogonal wavelets and they are not always plausible as feature detectors, e.g.
the orthogonal Gabors of Daubechies et al. [15]. If the goal is the analysis and not the
coding of the data the orthogonal sampling schemes with its minimal number of coefficients
are unattractive anyway [52, 64].

2.7 Biological vision systems

Strong motivations for the design of early vision methods stem from findings in biological
vision systems. In the early 80th the famous LoG filter had its counterpart in the ganglion
cells of the retina. However, today it is believed that the first interesting processing steps
take place only in the visual cortex. Especially the interpretation of the first layer (V1) is
usually based on the work of Hubel and Wiesel. According to them the neurons in V1 act
as feature detectors and can be classified in simple cells, complex cells, and hypercomplex
cells. The simple cells are believed to be the first processing units and they are modeled by
linear projections to basis functions. Complex cells might be modeled by energy feature
detectors as in [60]. Energy feature detectors are widely used in computer vision, signal
processing, and simulations of biological vision systems [29, 38, 46, 53, 55, 59, 70]. The
simple cells are mostly matched to Gabor functions [16, 17, 47, 60]. But derivatives of
Gaussians are also suggested by other authors [77, 33, 34, 49, 66].

2.8 Applications

Of course the final justification for using projections to basis functions in general and Gabor
functions, derivatives of Gaussians, and related functions in particular is the usefulness for
the problems in early vision. We list the most important early vision tasks and cite papers
that use basis functions in general and Gabor functions and derivatives of Gaussians in
particular to underline their relevance.

e Compression and Coding

LoG coding by Burt and Adelson [13] and Hermite transform coding by Martens [50].
In case of the non orthogonal Gabor functions the calculation of the coefficients is
a non trivial problem. Many solutions have been suggested, e.g. by Bastiaans [6] or
by Daugman [18] who uses neural networks for the computation. Coders that use
orthogonal wavelets have less coefficients [44, 45]. On the other hand, this might
not be the decisive argument if other bases are more adapted to the visual relevant
features or if they are ’finer probes’ because of optimal uncertainty (may be less
entropy and better vector quantization possible).

e Texture segmentation
Frequently Gabor functions are used where the energy, phase or both informations
are used for texture segmentation [10, 11, 7, 69].

e Edge and line detection
First derivative [14] or second derivative [48] edge detectors (see also [68]). Energy
detectors for edges and lines [38, 46, 59, 70, 56].
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e Junction detection and classification
Andersson [3], Rosenthaler et al. [62], Michaelis and Sommer [55].

e Stereo
Sanger [63].

e Optical flow
Adelson and Bergen [2], Fleet [21], Heeger [28].

e Shape from X
Freeman and Adelson [24].

e Restoration and Enhancement
Knutsson et al. [36].

Besides these applications there are methods as the jets or differential geometry that
cover a wide range of applications and that are based on derivatives of Gaussians. Jets were
introduced by Koenderink and van Doorn [33, 34]. Applications of differential geometry
can be found e.g. in papers of Barth et al. [5] and Florack [23].

3 Basis functions

In this section we list the basis functions that are of interest for early vision tasks. In
section 2.5 we mentioned functions for the discrete case. These functions and all other
functions that are purely technical optimizations for special tasks without any generic
value will not be considered. The derivatives of Gaussians and the Gabor functions are
investigated in detail in sections 4, 5 and 6.

3.1 Gabor functions

Gabor functions are optimal with respect to the uncertainty principle and hence they are
the finest possible sensors. In addition they prove to be good feature detectors [46, 51] such
that du Buf [12] states that the justification for the Gabor functions in the visual cortex
might not be the uncertainty principle but their optimal preprocessing for the following
layers. A drawback of the Gabor functions is that the real part does not integrates to zero,
especially for small ¢ that are used for edge detection. Different solutions are possible as
explained in section 2.2.

3.2 Derivatives of Gaussians

Derivatives of Gaussians are motivated by their optimal feature detection properties [14,
48, 59], their connection to scale-space [32, 75], and their close connection to differential
geometrical methods [23] and Taylor expansions [33, 34]. They have a simple analytical
structure what makes them easy to handle and they need no DC correction even though
the spatial extent has to be quite large for even orders. Odd/even pairs for the derivatives
of Gaussians can be constructed by taking the true Hilbert transform [59] or successive
derivatives [33, 54, 55].

3.3 Hermite functions

The importance of the Hermite functions in image processing is due to their connection
to the derivatives of Gaussians. With the latter they are often confused because of their
similar analytical form:
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P,(z) = Nef%Hn(x) (13)
D, (z) = NeiIan(:v)

H,, denotes the n’th order Hermite polynomial, N is a normalization factor. P, and
D,, are the Hermite function and the derivative of Gaussian of n’th order. The difference
between both is the scale of the Gaussian in relation to the scale of the Hermite polynomial.
In case of the Hermite functions the Hermite polynomials grow as fast as the exponential
decays and hence the maxima of the Hermite functions have all about the same height

(Fig.5), giving them the shape of a truncated sine/cosine wave.

Nﬂ/\ . |
VAL qv

Figure 5: P5(z) (left) and Ds(z) (right): Hermite function and derivative of Gaussian of
order 5

The connections of the Hermite functions to the derivatives of Gaussians is as follows:
In case of the Hermite transform (Martens [49]) the filter functions (analysing) are the
derivatives of Gaussians, whereas the pattern functions (reconstruction) are the Hermite
functions. This unsymmetry is necessary because the derivatives of Gaussians are not
orthogonal. Instead the Hermite transform can be viewed as the transform of a Gaussian
windowed image. With respect to the Gaussian weighted window the derivatives are
orthogonal. Some more details about the Hermite transform can be found in appendix B.

A second point of view connecting both functions is that of Koenderink and van Doorn
[34]. They call the derivatives of Gaussians neighborhood operators and the Hermite func-
tions ripples. The basic question for them is a taxonomy of all functions satisfying a relative
invariance scaling equation ((10), section 2.3). This question leads to the diffusion equa-
tion. The derivatives of Gaussians are solutions to this equation. They can be decomposed
into the product of an invariant part (the ripple) and a scaling window (a Gaussian). The
ripples (Hermite functions) themselves satisfy the quantum mechanical equation of the
harmonic oscillator. Hence, they are orthogonal.

The Hermite functions have two interesting properties. First they maximize the
uncertainty principle (with respect to a certain class of functions, [31]) and second, as for
the Gaussian, their Fourier transform has the same functional form as the function itself.

3.4 Other functions

Koenderink suggests also solutions of the polar separable harmonic oscillator (times Gaus-
sian window) as basis functions [34]. This basis can easily be converted to the cartesian
separable derivatives of Gaussians.

The Linkoping school suggests functions that are polar separable in Fourier space
[35, 36, 3, 26, 62]. The angular component is usually given by a power of the cosine
function whereas the radial component is based on Gabor functions. One benefit of the
polar separability is that the response to an edge separates in a term that depends on the
profile of the edge and a term that depends on the orientation.

Finally, the orthogonal wavelets are another interesting class even though they are not
always optimal if focus is on the analysis of the image content. The restrictions for the
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design of the functions (and the sampling scheme) hamper their use for feature detection.

4 Derivatives of Gaussians

In this section we collect some definitions, conventions, and calculations that are necessary
for the following and that are often a source of trouble because of different sign conventions
and constants.

4.1 Definition

The Gaussian has the general form:

Dy(z) = N(a)e (14)

N is a normalization constant that depends on a but not on z. There are several
possibilities for the coefficient a in the exponent: (1) The standard form is a = (202) !
where ¢ is the standard deviation. (2) In the Hermite transform a Gaussian window as
well as the squared window are used (see appendix B) and hence a can be a = o 2.
(3) In scale-space theory the natural scale parameter s is given by a = (4s)~! because
this Gaussian is the Green’s function of the simplest diffusion equation (see appendix A).
In general we assume the Gaussian to have the standard form. If not otherwise stated,
expressions containing o refer to this form.

The normalization constant can be such that L'(Dg) = 1 (N;) or L?(Dg) = 1 (Ny).
L? is especially interesting if a reconstruction is required as in the Hermite transform
(appendix B). But we will also consider the L' norm because sometimes it is preferable
for the interpretation of the responses. Using the integrals of appendix C we can calculate
the normalization constants:

(L2 (_D ))2 _ 2 /OO N2 72a12d _ N2 ﬁ _ N2 \/_
0 = 2€ €L = 27— = 20V T
0 V2a (15)

= Ny = (2a)%7r7% — o iq i

o0 .
LYDy) = 2| Ne™dz = MYE — Novar
(16)

The derivatives of the Gaussian are (H,, are the Hermite polynomials, appendix D):

Dy = Ne @
Dy, = ~ N 2az e~
Dy, = N2a(2az? —1)e 9
2 (17)
Ds3, = —N4a?(2az3 — 3z)e
Dy, = N4a?(4a2z* — 12a22 + 3) e
Dy, = %P = (—1)"Na¥ H,(yaz)e

The formula for the general expression D,,, is derived with (56) of appendix D. Fig.6
shows the first four derivatives.
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Figure 6: First four derivatives of a Gaussian (N =0 = 1).

4.2 Fourier transform

We use the following convention for the Fourier transform and its inverse (it is the same
as in [9, 43] and Mathematica):

R 1 o W
fw = o= [ f@edr

flz) = \/%/O:Of(w)ei”dw

To calculate the Fourier transform of the derivatives of Gaussians we use the derivative

(18)

theorem:
o d'f(x) , & ;
/ f(T)e“"zd:v = (—iw)" / f(x)e""dx (19)
—o0 dzm —0oQ
Using this theorem we get:
. . w? (ow)?
Dyy(w) = (—iw)" Dy = N (—iw)" \/%Z_aefﬂ = N (—iw)"ce = (20)

The Fourier transform of Dy is from [9]. Fig.7 shows the Fourier transform of the
Gaussian and its first three derivatives.

4.3 Normalization

If the convolution with derivatives of Gaussians is meant to be the true derivative of the
smoothed signal, the constant N in (17) is Ny of Dy from equation (16). However, if we
are interested in these functions as feature detectors and especially if we want to combine
successive orders to odd/even pairs this choice is not convenient. From equations (17) and
(54) in appendix C we see that L'(D,;) o 0™ (with N;) and likewise L?(Dy,;) o o
(with Ny) or L2(D,;) < o~ (2"+1D/2 (with Ny).

Hence, the amplitude of the responses for higher derivatives decreases fast with in-
creasing o and increasing order n. In order to use the Gaussian derivatives as feature
detectors, N has to be chosen such that all orders n are L' or L? normalized to unity.
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Figure 7: Fourier transform of the Gaussian and its first three derivatives (N = o = 1).
The zero’s order is identical in both domains (for o = 1). The first order is identical up to
an amplitude factor. The Fourier transforms are purely real for even orders and imaginary
for odd orders.

L? normalization

The calculation of the L? norm is most easily done in Fourier space. With the Fourier
transform convention of (18), the frequency basis is normalized and the L? norm is pre-
served. Using (53) from appendix C we calculate:

0o 1 W2 :
LQ(an) = N </ w2"2—eﬂdw> = Na 2

o a

(M
N
S—

8
&
N
S
ﬂ:‘
s
U
S
N——
|
Il

L' normalization

An analytical expression for the L' norm is difficult to derive. Even though there is an
analytical expression for the integrals of derivatives of Gaussians [43, section 5.6.2]

/UI efzan(z)dz =H, 1(0) — efszn,l(:v) (22)

there is no general expression for the zeros of Hermite polynomials [67]. Hence, it
is possible to calculate the norm analytically order by order but not to derive a general
expression for any order. For this reason we prefer to do the calculation numerically
(except for zero and first order).

oo -
LY(Dy) = N2/ iy = NYE — Nvoro (23)
0 Va
(0.@)
LY(D)) = NZ/ 2aze “dz = N2 (24)
0
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oo

L'(Dy) = N(ﬁ/ H,(Van) e dr —
—0oQ

(25)

2

. oo
_ Na,TI/ Hoy(2)]e "
oo

dz = No" 23" /OO |H. (Z)|6722d’r
r = n T

— 0o

The integral I(n) := [°0 |Hn(z)|e*22d:v is calculated numerically:

n 0 1 2 3 4 b}
I(n) | 1.77245 2 3.43106 7.57009 19.8557 59.2576

n 6 7 8 9 10
I(n) | 195.901 704.821 2725.68 11225.8 48890.4

Table 1: Numerically calculated Integrals of the L' norm of the derivatives of Gaussians

5 Optimal odd/even pairs with Gaussian derivatives

There is growing evidence that feature detection has to be done by energy detectors that
consist of complex filters of an even real part and an odd imaginary part. In section 2.1
we discussed the Hilbert transform as a natural method to construct a partner for a given
odd or even function. We have also mentioned that for weakly oscillating functions the
true Hilbert transform is not always the best choice because it results in functions with a
large support. Moreover, considering a framework that already uses all lower derivatives
of Gaussians (e.g. jets or differential geometry) we would like to save the computational
burden to calculate the projections to the Hilbert transforms. In addition the Hilbert
transforms have the drawback that they are not given analytically.

We would like to build complex odd/even filters F' from derivatives of Gaussians alone.
From (21) and (25) we see that the dependence on the order n of the L' norm as well as
the L? norm and the amplitude is given by o~". Hence, to make the relative strength of
the odd and even function independent of their scale the lower order function has to be
multiplied by a factor c~!. With k¥ we introduce a free parameter that controls
the relative weight of the odd and even part of the complex filter F'.

F = Doma Fik 0*' Dgypary, (26)

With D,,, we denote the derivatives from equation (17) and we assume both functions
to have the same normalization constant N. Note that k is always at the imaginary,
odd part. This apparently changes the formulas for & for the two cases that the odd part
has the higher or lower order. The relative sign of the odd and even part in (26) is such
that the Fourier energy at negative frequencies compensates as can be seen from fig.7. For
the opposite Fourier transform sign convention the sign of the imaginary part changes.

The free parameter k raises the question: What is the best relative amplitude of
the two functions? In this section we discuss several possible answers. As we will see, for
the lower derivatives there is no choice for k that optimizes all requirements. Depending
on the task we have to accept more or less satisfactory compromises. The optimization
criteria that are discussed in the following subsections are (1) same L? or L' norm of the
odd and even part, (2) minimal Fourier energy at negative frequencies of the complex
filter, (3) monomodal energy, (4) fit of the energy to a Gaussian, and (5) linear phase of
the complex filter.
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In principle the comparison of the different choices for the relative weight £ should
include an analysis of the responses to signals and noise. But this is beyond the scope
of this report, and even when considering signals and noise, a final decision is difficult
because there is no single generic signal or noise model. Hence, we restrict in this report
to the investigation of the filters themselves. Therefore, the implications of our results
are of a qualitative nature. Considering for example the monomodal energy criterion we
know that side maxima lead to false detections or that nonlinear phase leads to a worse
performance in classifying odd and even signals. The quantitative investigation of these
things needs signal and noise models. But even without this we get a qualitative feeling
for the performance of complex Gaussian derivative filters and we know qualitatively how
this performance is influenced by increasing or decreasing the relative weight k.

5.1 Same L? or L' norm

The L2 norm and the L' norm of D,,, are given by the equations (21) and (25). According
to (25) there is no simple analytical expression for the L' norm and therefore we show
numerical results for k1 in table 2. n denotes the higher order of the odd and even part.

L2(Dy) - \/n—1 n even
B o~ Vil = ke = (27)
(n—1)z 1/y/n—3 n odd
Ll(Dnm) I(n) —1

T Do) V2l 1) o % see table (28)

The integrals I(n) are given by table 1.

n 1 2 3 4 S
kpoo| 1.25332  1.21306 0.64097 1.85469 0.47386

n 6 7 8 9 10
ko) 23376 03931 2.7345 0.34338  3.0796

Table 2: Numerically calculated weight factor k71 for the odd and even part to have the
same L' norm

The following table shows that k is approximately the same for both norms, i.e. k;1 =
kr» (n = 11is not very interesting). To be precise, we listed kr2/kr1 for n even and kr1 /kr2
for n odd in the table to better demonstrate the convergence.

n 1 2 3 4 )
kr2/krr | 0.886 1.0096 1.0135 1.0087 1.0052

n 6 7 8 9 10
krz/kpr | 1.0032  1.0021 1.0015 1.0011 1.0008

Table 3: The table shows the relative magnitude of k72 and k;1. The difference between
both weights is small and vanishes with increasing order n.

5.2 Minimal Fourier energy at negative frequencies

A complex function with the odd and even part in quadrature has vanishing Fourier
energy at negative frequencies. Therefore, we calculate the optimal relative amplitude &
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that minimizes the relative amount of Fourier energy at negative frequencies. By A(k) we

denote the energy at positive frequencies divided by the energy at negative frequencies.
This expression has to be maximized.

[ee] oo
/ (W2 4 ko1 p2mE1)? o9 g, / (W2 4 kot p2mE1)? 009 g
Alk) = 2% = o5 -
/ (W™ 4 fol2mEN)2 -0t g, / (W2 — fo 22 ot g
0
oo

o 2 2
/ (W' 4 2o WATE 4 2R tmE2) o0 g
0

(e.0)
2
/ (W' — 2o W AmE | 22 i) —0%? g
0

We now split into the two cases that the odd function has higher or lower order than the
even function. Using formula (53) yields ({2m — 1} denotes the product 1-3... (2m —1)):

Case 2m — 1:

(m U7 @m D, {4m - 3}VE

22m+1 4dm—+1 20_4m+1 22m 4dm—+1
Ak) = _
B = G 0vr L e D L im 3Va
22m+10,4m+1 — 2k 20_4m+1 +k 22m T o2m _4m+1

{4m — 1}/m + k22" (2m — 1)1 4+ k*{4m — 3}2y/m (k)
{4m — 1}/7 — k 22m+1(2m — D)+ k2{4m — 3}2y/7 " w(k)

The maxima of A(k) are found by taking the derivative with respect to k. If the
numerator of A(k) is called v and the denominator v we have:

0A (1)
=0 = dJv—2vu =0 =

Ok
22m+2 /w{dm — 3}(2m —1)! (2kp —4m +1) =0

1

— krp =1/2m — — 29
2
Case 2m + 1:
{tm —1}ya o @m)L o, {4m + L
22m+1 dm—+1 2 4m+1 22m+2 4dm—+1
Ak) = —
(k) {4m — 1}/7 (2m)! o {4m + 1}/m
22m+10_4m+1 — 2k 20_4m+1 + k 22m+2 dm—+1

 {am - 132m + K222 2m) 4+ B2 {Am + 13T u(k)
 {dm - 132y/7 — k22mT2(2m) + k2{dm + 1}m v(k)

=

wv—v'u = 0 = 27"30m){4m — 1}7r (k% (4m +1) — 2)
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2
o V dm +1 (30)

Taking into account that kr in this case weights the higher order derivative it is the
same result as in the case 2m — 1. Changing the factor kpo from the odd to the lower

order even function gives (kro)~!) and denoting the higher order by n (i.e. 2m +1 =: n)

gives k' = /(@m +1)/2 = \/2m + 1) — 2. This is the same expression as in the case

2m — 1 where n = 2m. It turns out that:

kF — kLQ

Quality of the odd/even pair

Table 4 shows the ratio of the energy at negative frequencies to the total energy
(v/(u + v) in the notation of (29),(30)).

order | 2/1 2/3 4/3 4/5 6/5 6/7
0.0393411 0.0242336 0.0174848 0.0136703 0.0112203 0.0095142

u
|
Table 4: Energy at negative frequencies divided by the total energy for derivatives of
Gaussian odd/even pairs

Figure 8 gives a qualitative impression of the performance of the complex filter using
the relative weight kp of the imaginary part. For Do, + ikpo~' Dy, the result is quite
reasonable. In contrast, the energy for the functions where the odd part has the higher
order (Dgy — ikpo D3y and Dy, — ikpoDs,) is double peaked. This very likely causes false
detections and localizations. We will investigate this in more detail in the next section.
The phase of all functions is slightly dominated by the real part (flat slope at 0, 7). The
phase is investigated in section 5.5.

5.3 Monomodal energy

The energy for odd/even pairs of derivatives of Gaussians tends to be non-monomodal.
The energies that are depicted in figs 8 and 9 are the responses for a Dirac signal. Feature
detection is done by evaluating the maxima in the energy of the response to a signal.
Maxima that are caused by the function and not by the signal lead to false detections and
localizations. In practice things are not as critical as they might seem from the figures
because real signals usually are smooth and not Diracs and hence, the responses are
smoothed too. Nevertheless, the detection and localization performance of a monomodal
energy filter will be better than for a non-monomodal filter (e.g. with noise that consists
of Dirac peaks). To investigate this quality criterion we calculate the derivative of the
energy E.

E = \/D%I+k20*2D(2nfl)x

We are interested in the extrema of E that are indicated by the zeros of the first
derivative of £ with respect to . We can examine E? as well, because (E?) = 2EE’
and E has no zeros or poles (the prime denotes the derivative). We choose N = 1 and
a=1,0 =1/y/2 in (17) for convenience.

B = e (H2(z) + k*2H2 ()
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Figure 8: From top to bottom: Do, +ikpo ' Diy, Doy —ikpoDsy, Dag +ikpo~ "Dy, Dyg —
ikpoDsy. Dy is from (4) with N = 0 = 1. From left to right: energy (E) and phase (P)
in position space, and energy in Fourier space.

dFE?

= = e % (~4gH? — 8zk*H? | + 2H,H! + 4k*H, \H', )

Using the recurrence relations (58) for H) and (59) for H], _, we obtain

dE?

dr

For k? = n the second term vanishes and the derivative of the energy has only double

zeros and for n odd a triple zero at z = 0. Note that according to our definition in (26)

we actually dealt with k="' in the case that n — 1 is even. Having this in mind the optimal
choice is:

— ¢ % (—4gH? +4H,H, |(n —k?)) (31)

kp = (32)

{ Vn n even
1/v/n  n odd

Then, except for z = 0, the energy has only saddle points but no extrema. From (31)
we see that at z = 0 we have for n even a first order maximum and for n odd a third order
maximum. The third order maximum implies, that the peak is broad as can be seen in
the middle of the second and fourth row of fig.9. For k? # n there are only maxima and
minima and no saddle points (remember that H, ; has maxima or minima at the zeros
of H,). But the extrema at the slope of the energy are weak if k£ is not very different from
kr. The relative weight k = kg is also suggested by Koenderink and van Doorn [33] but
without giving a motivation for this choice.
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Looking at fig.9, that shows the energy for different weights k, we derive the following
preliminary conclusion: Giving the even part less weight than for kg results in very poor
energy shapes that have local minima at the center instead of maxima. This is the case if
the higher order is odd and kr = kr2 is taken as the weight. It is even preferable to
give more weight to the even part than for kz. This pronounces the middle peak.
If the higher order is odd the third order central maximum becomes a sharper first order
maximum. The trade off is that the more the even part is emphasized the more the saddle
points at the slope of the energy split in increasingly pronounced maxima and minima.
If the higher order is even, k;» might be a good compromise. In the other case the even
part should be more pronounced or at least equal than for k. Figure 9 shows the energy

for different weights of the odd part.
| K | N
2 4 2 4

A
R bN

o o ole
N A O O

R\
2 4 X
. 2.5
2.5
E 2 Sl E
. 1.5 1.5
1 1
. 0.5 0.5
2 4 X -4 2 2 4 X -4 2 2 4 X
6
5
6 5
4 E 4
a4 3 3
2
> 2
1 1
-4 -2 2 4 X -4 -2 2 4 X -4 -2 2 4 X

Figure 9: From top to bottom: energy for Doy, + kD1, Do, — ikD3sy, Dyy + 1k D3y, Dy, —
ikDsy. Dpy is from (4) with N = o = 1. From left to right: £ = 0.8kp,k = kg, k = 1.2k
if the odd part has lower order (upper and third row) and reverse otherwise.

5.4 Fit of the energy to a Gaussian

The Gaussian function has optimal properties with respect to regularization and uncer-
tainty as we explained earlier in sections 2.1 and 2.4. It therefore seems to be a natural
requirement to fit the energy of the complex filter F' from equation (26) as well as possible
to a Gaussian. The energy is defined in (33) where we fixed the scale of the Gaussian
derivatives to o = 1//2.

= N /D2, +2k2D},_,,
(33)

—

N = (\/T{Qn—1}+\/ﬂk2{2n—3}) 2

{2n — 1} denotes the product 1-3...(2n — 1). The derivatives Dy, D(,,_1), are taken
from equation (17). Both functions have the same normalization constant N, such that the
energy is L? normalized to unity. We restrict the fit to normalized Gaussians L?(Dy) = 1
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but the results are pretty much the same if the norm of the Gaussian is varied too. The
normalized Gaussians and the L?-error are given by:

1 z?

Do(’I') = o’féw 1e 202
(34)

error(k,0) = L*(E — Dy) = (2 - 2/EDde> :

The error is minimized if the projection of E to Dy is maximized. For every order n
we calculate error(k, o) and search for the maximum. It turns out that this criterion is not
very decisive because the quality of the fit is almost independent of k. However, the best
fit is achieved for weights k that are approximately equal to k;2. In the case that the even
function has the higher order this choice is quite reasonable. On the other hand, if the
odd function has the higher order the energy function is double peaked with a minimum
at the center what does not seem to be an appropriate choice. Table 5 and figure 10 show
the results. With kg we denote the weight that optimizes the fit to a Gaussian. For the
case that the odd function has the higher order we also show the results of the best fit for
k = kp,. kp, will be introduced in the next section and avoids the double peaked energy.
The results show that the L? error is not very different for this choice, even though the two
weights are quite different. Notice that the scale of the optimal fitting Gaussian converges
to o = 1, what is the scale of the approximating Gabor functions for higher order Gaussian
derivatives (see section 6.3).

order k o L? error in %
2/1 | kg =127 o=1.13 11.4%
2/3 | kg =0.63 o=1.05 10.9%
2/3 | kp, =053 o =1.06 12.4%
4/3 | k¢ =187 o =1.03 9.3%
4/5 | kg =047 o =1.02 8.2%
45 | kp, =043 o =1.02 8.7%

Table 5: Results for optimal Gaussian fits to the energy. The weight k& with the best fit is
denoted k.

) -2 2 4 x -4 -2 2 T x -4 -2 2 4 x

Figure 10: Optimal Gaussian fits to the energy of complex derivative of Gaussian filters.
Depicted are the energy and the optimal fitting Gaussian for the following functions. The
upper row depicts from left to right: Doy +ikg D1y, Doy —ikgD3ss, Doy — ikp, D3g. In the
lower row are depicted: Dy + tkgD3sy, Dag — tkGDsy, Dagy — ikp, Dsy.
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5.5 Linear phase

The phase in position space should be approximately linear at the center of the function.
The phase is used for classifying the shape of the local signal structure (line, edge, etc.).
The motivation for linear phase is robustness against noise, shifts and small deformations
of the signal. It is defined by:

D2m

For linear phase, the phase is a direct measure of the shift between a delta-event and
the center of the basis function. In the extreme case nonlinear phase means flat plateaus
with jumps between the plateaus. This is depicted in Fig.11 that shows examples with
dominating real or imaginary part. A jumping phase contains almost no information,
because the slightest deformation of a signal causes it to be classified according to the
phase value at the plateaus.. In this section the phase is handled without wrap around at
47 because otherwise the derivative of the phase is meaningless at these points.

P = F arctan(

6l P 6t P 5 P
5 5
a 4 4
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2 2
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Figure 11: Phase of Dy, + ikD1, with k = 0.1kp,k = kp, and k = 10kp (from left to
right), 0 = 1. For small or large k there’s no robust classification possible because the
phase ‘jumps’ between flat plateaus.

The theoretically optimal linear phase can be defined as follows: The phase difference
between the first zero z; of the even part and z = 0 is 7/2 and the total phase difference
is nm if n is the higher order of the odd and even part. Hence, the optimal slope S,y of
the phase is m/(2z1) between —nz; and +nz;, and 0 outside. This is depicted in Fig.12.
This definition could be made also with the last zero instead of the first or some mean
value but we are interested first of all in an optimal phase near the center.

P

L)

R N

-4 -2 ' 2 4 X -4 2 4 X

Figure 12: Theoretically optimal phase for Do, + ikDq;, 0 = 1 (left) and its derivative
(right).

The figures 13-16 show the derivative of the phase of the lower order odd/even pairs
for some values of k. With increasing order the influence of the various normalizations
decreases rapidly. On the other hand, the main differences are at the center of the function,
where they are the most decisive.

There is no canonical measure for the linearity of the phase. Therefore, we investigated
several different measures to clear up their influence on the results. In the following
we show two of these measures to demonstrate the robustness of the qualitative results
against the different ad hoc criteria. The optimal relative weights kp, and kp, minimize
the following expressions I (k) and Iy(k):
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4 X

Figure 13: Derivative of the phase P’ of Dy, + ikDy, for kp = 1.22,ky = 1.41,kp, =
1.54,kp, = 1.7,k = 1.8 and the theoretically optimal phase for comparison (smaller k
have lower central minima).

-4 -2 2 4 pe

Figure 14: Derivative of the phase P’ of Dy, — ikDs, for kp = 0.63, kg = 0.58,kp, =
0.53,kp, = 0.48,k = 0.43 and the theoretically optimal phase for comparison (larger k
have larger central maxima).

00 oP _a?
L(k) = /700 |arctan (E) — arctan (Sopt)| e <2 dz (36)
z1 9P _ . _ 1 T QP

I, (k) tries to fit the phase to the optimal phase S, whereas I5(k) tries to keep the
derivative of the phase as flat as possible in the region between the first zeros x; of the
even part. S is the mean derivative in this interval. The arctan function is introduced
not to over emphasize large deviations of P’ from Sypy, i.e. the averaging is with respect
to the difference in angle and not in gradient because the latter is singular at 90°. The
exponential in I; weights the phase values with respect to their importance according to
the energy.

We want to mention also a third criterion that might seem reasonable at the first
sight. From figs. 13-16 we see that for a certain k the minimum of P’ at the centre turns
into a maximum. We choose kp, to be the one where P” has a third order zero at the
minimum and hence P’ is maximally flat. But it turns out that this linearity measure will
be disadvantageous for most purposes for the following two reasons: (1) The region where
the phase is linear is small and outside this region the linearity is worse than for kp, and
kp,. (2) The energy is unreasonable for this choice.

The linearity measures are rather ad hoc but it turns out that the exact choice of the
measure is not very critical. This gives more weight to the results than for the case that
they depend on the accidental choice of the measure. Especially, for all three linearity

26



2 X

Figure 15: Derivative of the phase P’ of Dy, + ikDs, for kp = 1.87,ky = 2.0,kp, =
2.08,kp, = 2.21,k = 2.3 and the theoretically optimal phase for comparison (smaller &
have lower central minima).

-4 -2 2 4 pe

Figure 16: Derivative of the phase P’ of Dy, — ikDs, for kp = 0.47, kg = 0.45,kp, =
0.43,kp, = 0.405,k = 0.38 and the theoretically optimal phase for comparison (larger k
have larger central maxima).

measures it confirms that optimal linear phase is derived with more weight on
the higher order part than for the previous criteria. Table 6 in the following
conclusion shows the optimal kp’s derived from (36) and (37).

5.6 Conclusion

In summary we achieved the following results: The weights from the L' normalization
do not differ much from those of the L? normalization. The criterion of minimal Fourier
energy at negative frequencies gives the same weights as the L? normalization. Hence,
there are essentially 3 different weights kr, kg, and kp,, where kg always is between the
other two. If the even function has the higher order kp gives more weight and kp, gives
less weight to the even part than kp. If the odd function has the higher order it is vice
versa. An overview of the different weights is given in table 6.

Now, what is altogether the best k7 Remember that we did no investigations including
signals and noise and surely the answer is task and signal dependent. But for a common
detection, localization, and classification task we would give the following advice: Mostly
the detection and localization is more important and moreover the quality of the phase is
relatively robust compared to the quality of the energy. Therefore, we exhaust the possible
detection and localization performance by optimizing the energy. For this we give more or
at least as much weight to the even part as for kg. If the higher order is even, kr might
be a good compromise at the cost of a poorer quality of the phase. If the higher order is
odd we choose kp, at the cost of more Fourier energy at negative frequencies and at the
cost of different L' and L? normalizations of the odd and even part. But in any case the
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order | 2/1 2/3 4/3 4/5
ki | 1.21 0.64 1.85 0.47

kp =k | 122 0.63 1.87 0.47
kg | 1.27 0.63 1.87 0.47

kp | 141 0.58 2.0 045

kp, | 152 053 2.06 0.43

kp, | 1.52 0.53 2.08 0.43

kp, | 1.7 048 2.21 0.405

Table 6: Optimal £ according to the different criteria. kp, is included to demonstrate the
small difference between the linearity measures.

deviation from kg can’t be very large because otherwise the energy gets undesired strong
side extrema.

6 Relationship between derivatives of Gaussians and Ga-
bor functions
6.1 Definition and normalization of Gabor functions

The Gabor functions are defined as:

2

Ge(z) = N.e 207 cos(2)
(39)
Gys(z) = Nse 27 sin(%)
N, and Ny are normalization constants. The Fourier transform is:
N (wo—c)? (wo+c)2
Gelw) = Ncg(e 7 | )
(39)

A _ (wo—c)? _ (wo+c)?
Gs(w) = NS%<6 7 —e 2 >
Usually the Gabor functions are applied without normalization or with a normalized
Gaussian. However, we are interested in L' or L? normalized Gabor functions.
L? normalization

The L? norm is calculated in Fourier space. Using (39) and the integrals from (54) we
obtain:

=

L2(G.) = (/O;éz(w)dw) _ Nc\/%aﬁ(l-l—eCQ)

1
2

ey = ([T ) = Nyfjovra-e)

L! normalization

The L' norm is calculated numerically:
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o 2

LY(Ge) = Nco/ le” 7 cos(cz)|dz =: NeoI(c)

o (41)
LGy = Nsa/ e 7 sin(cz)|dz = NyoIy(c)

Figure 17 shows I.(c), Is(c), and their quotients with the L? norm from (40) for o = 1
(\/ilc/s(c)/wi(l + 6*62)%. The quotient reveals the difference between the two normal-
izations. It turns out that both norms are approximately independent of ¢ above ¢ =~ 2.
Papers that are interested in local frequency analysis or texture classification usually don’t
use small ¢. In contrast we are interested also in values of ¢ below 2.

2.4 1.85
5 2 1.8
1.75
0.5 1 1.5 2 2.5 3¢ 1.7
1.8 1. 65
1.6 f 0.5 N__—~1.5 2 2.5 3 c
1.5 2.1
1.25
1 0.5 1 1.5 2 2.5 3 c
0.75 1.9
0.5
0. 25 1.8
0.5 1 1.5 2 2.5 3¢ 1.7

Figure 17: I.(c) (upper left) and I.(c) divided by the L? norm (see text) (upper right).
Is(c) (lower left) and I (c) divided by the L? norm (lower right). Beside a constant factor
of about 1.695 the two norms differ by at most 7% for reasonable values of ¢ above 1.

6.2 Asymptotic behavior of the derivatives of Gaussians

The asymptotic behavior of the derivatives of Gaussians D,,, with growing order n is given
by the following equation. It is derived from the textbook of Magnus et al. [43, 5.6.3] by
changing from He, to H, by Hes,(2v/?2) = 27" Hoy, ().

2

Hon(s) = (-1)"2%(2n 1)’ [cos(VAn T 1a) + O(n )]

42
Hywpr(a) = (=1)"27' (20— 1! (2n + 1) e [sin(van +32) + On )] "
From (17) we see that:
n r o 22
Duule) = N(=1)"2 o i, (e
N(D™ 2™ (n—1)le ™ 6743_22 cos(v2n + 1 %) , n=2m
n:)oo { N (=1)™*122 n(n — 2)lo™™ 674957_22 sin(v/2n + 1 ﬁ) , n=2m+1
(43)

This means that for larger orders n the derivatives of Gaussians look like Gabor func-
tions. For n odd they look like Gabor sine functions, for n even they look like Gabor
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cosine functions. If the derivatives of Gaussians have the scale o, the Gabor functions
have the scale v/20 and an oscillation parameter ¢ = v/2n + 1. The error decreases rapidly
with O(n’l/‘l). Therefore, only for the lower orders we expect deviations between Gabor
functions and derivatives of Gaussians worth mentioning. In the following subsection we
investigate the quality of the fit for the orders n = 1,2, 3.

6.3 Fit of Gabor functions to derivatives of Gaussians

In this section we investigate the optimal L? fit for the lower orders, where the approxi-
mation of (43) does not hold.
The derivatives of Gaussians are normalized to L?(D,,) = 1 according to (21) with a

scale o = 1//2:
(CU" 21 Hy(z)e ™ (44)
V13...@n-1)ya

We restrict the fits to the case that the Gabor functions are normalized to L?(G) = 1
as well:

Dy (x)

2 _a? cr
et e — o2 J—
Ge oym(l+e <) e 2% cos( o )
(45)
2 _ 22 cx
— . o2 1 _
Gs oym(l—e <) e 2 sin( o )

Now we are looking for the parameters ¢, o that minimize L?(D,,, & G./s), where G is
used for n odd and G, for n even. The sign £+ is + + — — + + ... for the orders 1,2,3.. ..

L2(Dyy + G) — \/(L2(Dm))2 +(L2(G))? + 2/Dn$de —

= \/212/Dmde = /24 24,(c,0)

N[

2
\/ﬂ{Zn —1}o

3
- 21 ‘ /67(1+#)I2Hn($) sin(ﬁ)dm, n odd
\/ﬂ{Zn —1}o(1 —e%) o

{2n — 1} denotes the product 1-3...(2n — 1). The L? error is v/2 + 24, and for a
perfect fit A,, would be 1. Using Mathematica we obtain:

‘ /67(1+20L2)I2Hn($) cos(ﬁ)d:v, n even
(1 +e¢*) o

An(ca U) = { (46)

Casen =1

2

Ai(c,0) = 2% co? (1—e° )7% ¢ T (1+20%)"

3
2

Z0 = o0 = L2+ VA +9 (47)

o)
S
S
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According to (47) o depends approximately linear on ¢ if ¢ is not too small. Figure
18a shows L%(Di, + Gs(c,0)) with o = o(c) according to (47). The optimal fit is for
¢ — 0 and 0 — 1/4/2, where A; approaches 1. This can be understood by considering
the Taylor expansion of sin(cz /o). For very small ¢ the first term in the Taylor expansion
cz /o suffices and it has the same functional form than the first order Hermite polynomial.
Hence, for small ¢ the Gabor function perfectly fits Di,. On the other hand, for small ¢
the amplitude of the sine function goes to zero whereas the normalization constant in (45)
goes to infinity. This is quite unnatural and Fig. 18a shows that the fit is not much worse
for larger c. For ¢ = 1 and o = 0.833 the L? error is about 1.5%. Figure 18b shows the
remaining error of the fit.
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Figure 18: (a) shows L2(Dy, + G(c,0(c))) in the range of ¢ € [0,6]. For ¢ — 0 D, and
Gs become identical. The dependence on ¢ is not very strong. (b) shows Dy, + G for
Dy 0 = 0.707 and for G4: o0 = 0.833,¢ = 1. The amplitude of Dy, + Gy is just 1.3%
of the amplitude of D;,. Hence, there is no visible difference between D7, and Gs. The
function Dy, in (b) (dashed) is depicted only to illustrate the spatial scale. It has not
the true amplitude.

Comment to the paper of Mehrotra et al.

Mehrotra et al. [51] investigate the edge detection performance of Gabor sine func-
tions according to Canny’s criteria. The authors denote the Gabor function by G(z) =
exp(—z2/(20?) + iwz), what is not very convenient. Choosing the parameter in the oscil-
latory part ¢/o instead of w makes o a true scale parameter and ¢ a true shape parameter,
whereas w mixes both things. Hence, the finding in [51] that ow is the appropriate tuning
parameter is evident, because ow = c.

The authors then motivated as an optimal choice ¢ = 1. The above results provide
an easy understanding of the fact that the performance is close to Di,. On the other
hand, the low values of the quality parameter C' in [51] (spacing between noise maxima)
for small ¢ are hard to believe, because for an appropriate choice of ¢ and ¢ the results
should become the same as for D;,;. We did not check the calculations in [51] in detail.

Case n =2

2

As(e,0) = —21373 (1+e <) 2e i (14202 508 (1+ 202 + 2¢%02)
0Ay () 5 200" — 40? — 7+ /40008 + 16005 + 240* + 10402 + 41
5 — 0= ¢ = 27 (48)

This complex formula can be fited very well by the simple linear dependence ¢ =
—0.26+2.370 (see Fig. 19¢). Figure 19a shows L?(Dy, +G.(c, o)) with ¢ = ¢(o) according
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to (48). The optimal fit is for ¢ = 2.29 and o = 1.073, where the L? error is 10%. The
Taylor expansion of the cosine function is cos(cz/0o) ~ 1 — c?z%/(20%) what is the 2nd
order Hermite polynomial if ¢ = 20 (up to a factor 2). For o = 1/4/2, the scale we choose
in (44), this results in ¢ = v/2 what is indeed the solution of (48). But in contrast to the
case n = 1 this is not the overall optimal solution.

4.5 C
4
3.5
3
2.5
1.5
(o)
0.6 0.8 1.2 1.4 1.6 1.8 2

Figure 19: (a) shows L?(Dg; + G¢(c(0),0)) in the range of o € [0.5,2.0]. (b) shows Dy,
(0 =0.707), =G, (0 = 1.073, ¢ = 2.29), and Dy, + G,. (c) shows the approximate linearity
of ¢(o).

Case n =3

The analytical calculations become rapidly more involved with higher orders. Hence, we
present only numerical results in Fig. 20. Figure 20a shows L?(Ds, — Gs(c,0)). First
we see that the dependence between ¢ and ¢ is approximately linear. Second, the figure
shows that the quality of the fit does not change much for variations of ¢ and o along
the optimal curve, in contrast to variations orthogonal to this curve. The optimal fit is
depicted in fig. 20b. The values for the optimal fit are: ¢ = 1.03,¢ = 2.62 and the L?
error is about 6%.

(a) c (b)

Figure 20: (a) shows L?(D3; —G(c, o)) in the range of ¢ € [2, 3] (small ¢ left), o € [0.5,1.5]
(small o bottom). The dotted line marks the ridge that corresponds to optimal o for given
c. (b) shows D3, (0 =0.707), G5 (0 = 1.03, ¢ = 2.62), and Dy, — G.
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Casen >4

For larger orders n the asymptotic behavior (o0 = 1, ¢ = /2n + 1) gives a very good
approximation of the optimal fit.

6.4 Conclusion

For higher orders the derivatives of Gaussians can be approximated almost perfectly by
Gabor functions. From the lower order functions Dy, can be approximated perfectly too.
The worst fit is for Ds, where the L? error is 10%. For Ds, the error is 6%. When
high precision is required as in some differential geometric methods the error for the lower
orders is too large to use the Gabor functions instead of the derivatives of Gaussians. But
for other more qualitative applications the fit is quite well. Note that we did the fit with
the true Gabor functions. In practice a DC-corrected version has to be used for the lower
even orders instead (section 2.2).

7 Summary

We have provided strong motivations that the first processing step for all common early
vision tasks is adequately done by projecting the image to a set of basis functions. We
discussed the basic principles that determine the choice of the basis functions. But in
contrast to some papers that overemphasize one particular principle we also pointed to
their limitations. We derived some interesting results on the construction of optimal
odd/even pairs from successive orders of derivatives of Gaussians and on the relation to
the Gabor functions. It turns out that higher derivatives (and the first derivative as well)
can be approximated almost perfectly by Gabor functions and there is no difference to the
true Hilbert transforms or DC-, and ramp-corrected functions. In this case all principles
(uncertainty, scale-space behavior, energy/phase etc.) can be satisfied simultaneously and
no compromises are necessary. On the other hand, for weakly oscillating functions there
exists no optimal solution that satisfies all requirements. This is especially true for the
second and third derivatives that are important for edge and line detection. Hence, we
investigated this case in detail to understand the limitations and to provide the criteria
to find the best compromise for a given task.
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Appendix A: Scale-space and the diffusion equation

All fundamental basis functions are based more or less on the Gaussian. This is not too
surprisingly as the Gaussian plays an exceptional role in many parts of mathematics. One
strong justification for the use of the Gaussian in computer vision is its relation to the
concept of scale. This relation has been investigated by Babaud et al. [4], Yuille and
Poggio [78], and Koenderink [32]. All three papers have slightly different premises and
statements but essentially they present the same results.

Babaud et al.
The paper treats the 1D case and defines scaling by the convolution of a signal f(z) with
a kernel g4(z) := sg(sz), where g satisfies some natural conditions. The convolution is
denoted by ®(z, s) := f(x) * gs(x). The central proposition states that if for first order
extrema (i.e. 0,® = 0,0,,P # 0) the monotonicity condition 0s®0,, P < 0 is valid the
kernel must be a Gaussian. This implies that local maxima only decrease towards larger
scales and local minima only increase.

The connection to the diffusion equation is made in the sufficiency part of the proof.
The monotonicity condition is valid for all ® that are solutions of the diffusion equation

2
2o _ o 0
Ox? 0s

The Gaussian is the Green’s function of the diffusion equation and hence the solutions
® are convolutions of the source term (the signal) by a Gaussian. For the diffusion equation
to have the form (49) the Gaussian is denoted:

122
gs(z) = (4ms) 2e & (50)

With the usual form of the Gaussian, where the denominator of the exponent is 20
instead of 4s the diffusion equation looks slightly different, but the results are the same.
The two forms are connected by a transformation of the scale parameter 2s = o2,

The authors point out that the monotonicity condition is not possible for higher order
extrema. This is one hint that the importance of this scale-space behavior is sometimes
over-emphasized. The argument usually is that signals can be analysed by their extrema
(or level crossings, see below) only if the extrema can be traced back to finest scales to
give the connection to the signal. But there always will be extrema for which this is not
the case and moreover the methods to analyse the signal and the interpretation of extrema
and other events are by no means unique.

From the monotonicity condition follows a result for zero-crossings too. We are in-
terested in the zero-crossings of an arbitrary linear differential operator. Such operators
commute with the Gaussian convolution and hence it suffices to investigate zero-crossings
of @ itself. The result is that zero-crossing contours in scale-space are always locally
parabolic and concave up, i.e. zero-crossings never disappear towards finer scales.

As an outlook the ’dumpbell’ example is given that shows that in 2D zero-crossings
are free to split and merge with increasing scale even though they are never created from
nothing. A simple tree-structure of the events as in the 1D case is not possible.

Yuille and Poggio

Yuille and Poggio generalize the results of Babaud et al. to two dimensions. As in the
paper of Babaud et al. signals are investigated that are scaled by convolution with a kernel.
The basic theorem is stated not for extrema but for zero-crossings of the Laplacian and
shows that the Gaussian (isotropic or elongated) is the only kernel that does not create new
zero-crossings. The result is then generalized for level crossings of any differential operator
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L that commutes with the diffusion equation, i.e. events of the type L(g * f) = const are
never created towards larger scales. As already mentioned, in 2D a split and merge is
possible.

It turns out that the heat equation is the only one with the required scaling behavior of
its solutions. Other filters are expected to have this scaling behavior only for scales where
they are approximate solutions of the heat equation. E.g. the difference of Gaussians and
the Gabor functions for scales that are not too small.

Koenderink

Koenderink starts with a function ®(x,y, s) with the boundary condition that for scale 0
it is the original image ®(x,y,0) = f(x,y). It is not required (in the beginning) that ®
results from a convolution. Koenderink requires that level crossings ®(z,y, s) = const can
always be traced back to finer scales. Then, ® has to be a solution of the 2D diffusion
equation.

Appendix B: Hermite transform

The Hermite functions themselves are not very important in computer vision. The interest
in these functions stems from their close connection to the derivatives of Gaussians. If the
projection of a signal to the latter is viewed as the transformation of a Gaussian windowed
signal the Hermite functions are the dual functions for the reconstruction of the original
signal. It has been shown that the derivatives of Gaussians are not too different from
the Gabor functions but with the advantage that basis functions of different orders are
mutually orthogonal for the same window. Though, in contrast to orthogonal wavelet
(subband) coders, basis functions for different windows have some overlap.

The interplay of the derivatives of Gaussians and the Hermite functions in the Her-
mite transform is explained in the following equations. All equations are modulo some
normalizing coefficients. More details can be found in [49]. The Hermite transform is a
windowed transform, i.e. we distinguish a window function in addition to the analysing

function and the reconstruction function. ,

Let f(z) be the signal and V(z) = o Ze 27 the Gaussian window that selects a
weighted region of interest of the signal. Then the Hermite decomposition and reconstruc-
tion is given by the following two formulas:

Z Z cn(B)Py(z — kAZ)W ! (1)

/f (r — kAz)dx

W(z) := >, V(z — kAz) is the weighting function. D,(—z) = H,(z/o)V?%(z) =
O"V?%(z) are the analysis functions which is the n’th order derivative of a Gaussian.
P,(z) = Hyp(z/o)V(z) are the reconstruction functions, the n’th order Hermite func-
tions. H,(x) is the n’th order Hermite polynomial. In the above notation D, is the
derivative of the square of the Gaussian in its usual form but this results only in some
different constants and a rescaling of 0. The reconstruction functions are orthogonal:

(51)

/ Py ) dz = 6y (52)

The sum over k in equation (51) is the sum over all shifted non-orthogonal Gaussian
windows. Within each window the sum over n is an orthogonal expansion. The expansion
coefficients ¢, can therefore easily be obtained by a projection to the analysing functions
D,,. This step is painful for the non-orthogonal Gabor functions.
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Appendix C: Integrals of the Gaussian

Throughout the text integrals of polynomials times Gaussians are needed. For the non-
definite integrals there is no simple analytical expression but mostly the following definite
integrals are sufficient [9] (a > 0):

1-3...(2k—1)y7
o0 2 ki1 k] , n=2k
/ e " dy = { a (53)
0 k!

For the first orders and a = (202)~! the explicit forms are:

2ya 27

o0 —az? ﬁ ﬁ
/ e de =
0

o am2
ze ™ dr = — = o
2a

o0

0

(e e}
/ e’ gy = YT _ VT (54)
0 4a V2
[ee]
J
[ee]

9
e ™ dy = = 20°

4 —az? _ _ v
/0 z"e dx = N o
Appendix D: Hermite polynomials

The Hermite polynomials are defined to be the orthogonal polynomials with respect to a
Gaussian weighted scalar product [43]:

oo , 0 , m#n
/ Hyo(2) Hy ()e " de — (55)
—o0 Vr2'n! . m=n
To calculate these polynomials Rodrigues’ formula can be used:
2 dhe
Ho(z) = (1) e S (56)
The explicite form of the first orders and the general form is:
H(](Z) =1
H1 (Z) = 2z
Ho(z) = 42° 2
Hs(z) = 82°—12z
(57)
Hy(z) = 162" —482% + 12
(2)

Hs(z) = 322° —1602° + 1202

Ho(z) = nl' Y %(2.@)”%



We also need the recurrence relations (the prime denotes the derivative):

H!/(z) = 2nH, 1(2)
Hoilz) = 2:H,(2) — HY(2)

2zHp(z) = Hpi1(2) +2nHp_1(2)
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