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Abstract: It is commonly agreed on that the �rst step in early vision consists ofprojections of the image to a set of basis functions. Usually the spatial distribution ofthe basis functions is homogeneous and the projection is a convolution but in general thiswill not be the case. In the literature there is a wealth of di�erent basis functions, eachof them optimal with respect to certain criteria. On the other hand, there seems to be aconvergence towards derivatives of Gaussians or harmonic modulations of Gaussians (Ga-bor functions). In this report we discuss the principles and analysing methods underlyingthe choice of these functions. One of these methods that recently became of exceptionalimportance is the energy/phase representation. We investigate in detail the quality of suc-cessive orders of derivatives of Gaussians as odd/even pairs for the energy/phase concept.In addition we work out to which extent derivatives of Gaussians can be approximated byGabor functions.
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1 IntroductionIn many computational early vision methods the �rst processing step can be modeled asthe projection of the image to a set of basis functions and it is believed that biologicalvisual systems can be modeled in the same manner. In technical systems this step usuallyis performed by convolution, i.e. by one function that is translated on a homogeneousgrid. In general, this restriction is not desirable. Therefore, we use the term 'projection'.The term 'basis function' is chosen because the projection can be seen as a change of therepresentation of the image from a Dirac (pixel) basis to another basis in the sense oflinear algebra. In our case the new basis can be overcomplete or even be incomplete. Anovercomplete basis will be necessary in general if the representation has to be invariantwith respect to a certain transformation (spatial shift, rotation, scaling). An incompletebasis can be necessary for complexity reasons or to get rid of irrelevant information byprojecting the image to a subspace.However, before answering questions about the optimal sampling of the parametersfor translating, rotating, and scaling a function, the type of function (its shape) that isoptimal for a given task must be found. There are many di�erent tasks in computerand biological vision and even for one task (e.g. edge detection) there are many di�erentoptimization criteria, each of which results in a di�erent optimal function. Accordingly, inthe computer vision literature a vast number of 'optimal' functions can be found. On theother hand, the receptive �eld pro�les of simple cells in the visual cortex are frequentlymatched to Gabor functions or derivatives of Gaussians in the neuroscience literature.Motivated by biological vision systems and independently by theoretical insights therehas been a growing interest in these functions in computer vision. It seems that they areoptimal with respect to the most generic criteria, i.e. for systems that are not committedto special tasks or input signals. Whether this is the case or not is hard to decide becausethe answer depends on the following processing steps. But the design of complete visionsystems that are optimal for general vision tasks is unknown. Nevertheless, there are basicprinciples that are highly distinguished by theoretical considerations as for example theuncertainty principle or the energy/phase concept.The content of this report is (1) a presentation of the relevant literature, (2) a discussionof the principles underlying the design of basis functions, and (3) an investigation of therelevant basis functions. In this report we concentrate on 1D functions or on 1D crosssections respectively. Most of the literature is not discussed in detail. The purpose is nota complete review of the articles but to show the background of previous work that has tobe considered to realize the importance of the mentioned functions in computer vision andthe knowledge about them. In section 2 the most relevant principles underlying the designof basis functions are discussed. In some papers only one of these principles (uncertainty,scale-space, energy/phase etc.) is particularly emphasised and the basis functions haveto be chosen accordingly. In contrast, our point of view is that all the principlesare important but there is not one special principle that has to be satis�edunder all circumstances. As a result of this discussion we point out the importance ofderivatives of Gaussians and Gabor functions.The problem is that for weakly oscillating Gabor functions and lower derivatives ofGaussians not all principles can be satis�ed at the same time. To understand the limita-tions we investigate in detail some properties of the derivatives of Gaussians and Gaborfunctions. In particular we emphasize the question of odd/even (quadrature) pairs andthe comparison of the di�erent functions. Even though we deal with lower percentagee�ects, we think that it is worth the e�ort because of the exceptional importance of theinvestigated functions and principles. For weakly oscillating functions there are a num-1



ber of associated functions that satisfy some of the required principles, e.g. true Hilberttransforms, DC-, and ramp-corrected versions of the Gabor functions.2 Basic principles in early visionIn this section we discuss in some detail the uncertainty principle, the Hilbert transformwhich is closely related to the energy/phase concept, scale-space, regularization and noise,the discrete case, wavelets, and biological vision systems. Besides these items there areother points that have to be considered for the design of basis functions:� Separability: The analysis in this report is essentially 1D. In 2D there are newdegrees of freedom. The functions are usually cartesian or polar separable in positionor frequency space [3, 34, 62, 35].� For theoretical analysis, functions that have simple analytical expressions are prefer-able.� A small spatial extent is preferable to save computation time. This restriction mightnot be valid if hardware is cheap as in biological vision systems.� Another important question concerns the sampling scheme that is necessary fora given function. This is closely connected to steerability, a topic that we willinvestigate in a following report.� A main criterion is the optimality for following processing steps. But these stepsdepend on the application. A step towards evaluating them with respect to theapplication is to investigate the responses to certain signals, e.g. single event, mul-tiple event, and texture responses. In this report, however, we concentrate on thefunctions themselves.2.1 Uncertainty principleThe uncertainty principle in its most cited form states that a function cannot be localizedboth in the spatial and in the frequency domain. The mathematical foundations for thisprinciple are well understood. On the other hand, there are more general forms of theprinciple and the deeper meaning behind it and its relevance and consequences in signaland image processing are still vague. The uncertainty principle became more recognizedin recent years because it is closely connected to the popular bivariate representations [65]and the question of appropriate basis functions.2.1.1 Basic formThe uncertainty principle �rst appeared in quantum mechanics in the 20th and was appliedto the �eld of signal processing by Denis Gabor in his famous article in 1946 [25]. Itsmathematical form is given by: �x�! � 1=2 (1)with the variances (the metric) de�ned by:(�x)2 = Z 1�1(x� �x)2f(x)f�(x)dx (�!)2 = Z 1�1(! � �!)2f̂(!)f̂�(!)d! (2)2



f̂(!) = (2�)�1=2 R f(x)ei!xdx is the Fourier transform, �x and �! are the expectationvalues. The complex function that minimizes the inequality (1) is the Gabor function:G�;c(x) = e� x22�2 eic x� (3)The relevance of the uncertainty principle for vision was pointed out by Marcelja andDaugman [47, 17]. Daugman extended the uncertainty principle to two dimensions. Theoptimal functions in 2D are Gaussians with any aspect ratio and a complex harmonic mod-ulation in any orientation. As in the 1D case the cross-sections parallel to the modulationare given by (3). In practice the modulation is always chosen parallel to one of the axesof the Gaussian. Depending on the parameter �, the Gabor functions are better localizedin position or frequency space but they always exhibit the best possible joint localization.For the majority of the papers that use Gabor functions the above is the justi�cation forusing them. But the subject has some more facets that we will discuss in the following.2.1.2 Some extensionsThe uncertainty principle is not restricted to position and spatial frequency. In quantummechanics it is stated for all eigenbases of hermitian operators that do not commute.Another point is the de�nition of the variance as the 2nd moment in (2). In quantummechanics this choice is motivated by the probability interpretation of the wave functionbut in general there are other metrics possible. Some of them might even be preferablein computer vision. Other metrics are discussed by Stork et al. [66]. This paper hasbeen rightly criticized by Yang [76], Daugman [19], and Klein and Beutter [31] becauseit contains some errors concerning the metrics and the optimal functions for real insteadof complex function spaces. Nevertheless, the criticism of Stork et al. of the unre
ecteduse of the 2nd moment as the variance is justi�ed. However, Klein and Beutter point outthat for reasonable metrics the optimal functions will be more or less Gabor like shaped.The eigenfunctions of the harmonic oscillator (Hermite functions) that were erroneouslysuggested (and confused with the derivatives of Gaussians) by Stork et al. maximize ratherthan minimize the uncertainty.2.1.3 Information theoretical point of viewThe basic question in this subsection is: How much information is contained ina function f? The answer depends of course on the way the information is coded inthe function. We assume that the coding is linear, i.e. the information is coded in thecoe�cients ak with respect to some basis functions gk (h�j�i is the scalar product):f =Xk akgkak = hf j~gki with hgkj~gli = �kl (4)The ~gk constitute the dual basis. This equation implies that a physically possible sensorexists that corresponds to ~gk. The measurement of the coe�cients should be independentof each other what means that the basis functions are more or less orthogonal. It ishelpful to associate to f the abstract function jfi as in quantum mechanics. f(x) = hxjfior f(!) = h!jfi are just di�erent representations of the same function with hxjx0i =�x0 ; hxj!0i = ei!0x; h!j!0i = �!0 . Hence we leave the symbol f unchanged.If the resolution for the amplitude of the coe�cients is �nite, the amount of informationdepends on the number of coe�cients. How many basis functions contribute to f?How big is the alphabet? For example the information content of one letter, say 'o',3



depends on the alphabet. If it is a member of the latin alphabet it is about 5 to 7 Bit. If itis a 600 dpi PostScript bitmap it is several kBit. If in our example the basis consists only off itself, just one coe�cient is needed. On the other hand, if there are no restrictions tothe sensors (basis functions) the number of basis functions clearly can be in�nite. Hence,without �xing the restrictions of the sensors there is no sensible answer to the posedquestion.From the theory of signal processing we know an answer. For a signal of length �x =xmax�xmin and sensors with a bandwidth of �! = !max�!min the number of coe�cientsthat can be transmitted is 2�x�!. We now want to derive a deeper understanding of thisformula. The most obvious physical restriction is with respect to the position (respectivetime). The signal is only measurable in a period �x and there will be a maximal spatialresolution �x. Hence, we could assume �x=�x basis functions, each of which has e.g. arectangular pro�le (Fig.1).
xk=2 k=3 k=4k=1xmin xmax
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a k Figure 1: Rectangular basis functionsAn example for such a sensor is a CCD-camera where the number of pixels gives thenumber of basis functions that sample the original signal (illuminance distribution). Inthe next step we try to improve the sensor to obtain more information from the signal.Therefore, in Fig.2 the rectangular function and the Gaussian function are compared assensors.
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(a) (b)Figure 2: Comparison of rectangular and Gaussian function as sensorBoth functions have approximately the same spatial width, i.e. they have to be shiftedby the same amount for the next basis function to be orthogonal. Clearly the Gaussianfunction will never be exactly orthogonal to shifted copies. But a small dependence be-tween the coe�cients is tolerable, at least if it is below the resolution of the amplitudeof the coe�cients. We will now establish the connection to the uncertainty principle: Inpractice the resolution often is not given by a spatial shift �x but by the bandwidth �!of the sensor. Fig.2b shows that the spread of the rectangle in frequency space is much4



larger than for the Gaussian. Because the Fourier basis is orthogonal, shifting the Gaus-sian in the frequency space by the width of its support results in an orthogonal function.Hence, for the Gaussian more (quasi) orthogonal basis functions are possible. It can beproofed that for the metric (2) the function with the best joint localization is the Gaus-sian. Shifting the Gaussian in frequency space leads to complex Gabor functions. Theshift leaves the variances unchanged and hence the Gabor functions have the same optimaljoint localization as the Gaussian.Our question can now be answered as follows. If the restrictions are given by sensorsthat respond in a certain time or spatial interval and a certain frequency band and noother possibilities or restrictions exist the largest vector space in which the signal canbe embedded is given by the span of Gabor functions paving the time-frequency area ofthe sensor. This implies that Gabor functions are the �nest probes that are possible toinvestigate the signal or, in other words, to maximally decorrelate the information in thesignal.The improved performance of Gabor functions with respect to rectangular functionsis achieved by opening the frequency channel. With this new degree of freedom theconstruction of orthogonal basis functions is not only possible by spatial shifts but also byfrequency shifts.Why not open more channels? In a strict sense the new channel is no new degreeof freedom because the Dirac (position) base is already complete for all reasonable (andunreasonable) functions. This is expressed in the uncertainty principle. It is not possibleto pave the x; !-plane with Diracs. If x is already sampled with Diracs there is no morefreedom through the !-channel. Opening the new channel is just a possibility to fullyexploit the capabilities of the sensor. That means if there exists a sensor for anotherorthogonal basis this channel can be opened too and will result in more information thatcan be retrieved. There will be also a corresponding uncertainty principle. It simplymeans that we have �ner sensors not by improved sampling in position but with respectto some other basis. On the other hand, in practice signals are almost always investigatedin position and frequency space. The exceptional role of the Fourier base results from thefollowing facts, that are closely related to each other:� Frequency and position are best suited to describe the restrictions for common sen-sors.� The Fourier base is complementary to the position base, i.e. jhxj!ij = 1 with linearphase. ei!x is maximaly spread with respect to x and contains no position informa-tion.� ei!x are the eigenfunctions for the spatial shift operator i@x.� ei!x are the eigenfunctions of linear shift invariant operators, i.e. spatially nonadaptive (constant) operators that do not single out one position.Now that we have a deeper understanding about the what and why of Gabor andFourier bases we conclude the following:If the base (sensors, features, alphabet) is given by the problem in hand itshould be used. The uncertainty principle then reveals the consequences forthe inference process as it is explained in section 2.1.4. If no alphabet isgiven, Gabor functions are for natural restrictions (position and bandwidth)the �nest possible generic sensors. 5



For example in applications like texture segmentation or compression the methods are oftenmotivated by maximal information decorrelation and not by the detection of features. Onthe other hand, in many recognition tasks the question is not to pack as much informationas possible in a signal or to decorrelate it maximally but to recognize the natural alphabet(e.g. edges, lines etc.). The performance of Gabor functions in this case is not too badas well [12, 46, 51]. Some more comments about Gabor functions can be found in section3.1.Gabors 'proof': Gabor proofs in his paper [25] that the Gabor functions have thebest joint localization with respect to the metric of equation (2). But concerning the moregeneral question of how much information can be coded in a signal it is rather a motivationthan a strict proof. The metric is given ad hoc from an example. It is the same as inquantum mechanics but there we have di�erent physical foundations and other questions inmind. Following a comment in [31] the in
uence of other reasonable metrics should not betoo severe and the optimal functions are more or less Gabor shaped but to our knowledgethis topic has not been investigated in depth. Another point is that Gabor functionsare not orthogonal. Hence, the coe�cients are correlated and there is less information intheir amplitudes than for orthogonal functions. The exact consequences of this fact havenot been investigated too. Orthogonal bases have been developed for subband coders asquadrature mirror �lters or orthogonal wavelets. But for these functions the uncertaintyprinciple is ignored even though their task is to decorrelate the information in the signal.Finally, we want to remind that in Gabor's paper as well as in this section only linearcoding schemes as in equation (4) were considered.2.1.4 What is where?One of the basic tasks in image analysis is to localize and classify the objects in animage. This is expressed by the question 'what is where'. There are many approaches tothis question. In this subsection we comment on one approach that relates this questionclosely to the quantum mechanical inference process.Wilson together with Granlund [72] and Knutsson [73] drew up another consequenceof the uncertainty principle for the inference from pixels to symbols (features)(see alsoSommer [65]). We give a very concise summary of their inference mechanism. Accordingto them the basic features 's' are characterized by invariances and are represented in imagesby the invariant subspaces of corresponding operators (corresponding to the invariances).The subspaces are spanned by the eigenfunctions �k of the operators. E.g. in the case ofshifts the operator is i@x and the eigenfunctions are ei!x. The inference to the features isdone by probabilities. The probability P of the feature s that is related to the eigenfunction�k (denoted s(�k)) to be present in the signal ff(x) =Xk ak�k (5)is given by P (s(�k)jf) = jakj2Pl jalj2 (6)Also serial inferences are possible by introducing in addition to the �k a second eigen-basis 	l to another operator. The possibility P (s(�k)jf) of the symbol s to be present inthe signal f can be estimated by: 6



P (s(�k)jf) =Xl P (s(	l)jf) jh	lj�kij2 (7)For an illustration one should think of infering to textures directly as in (6) or by �rstinfering to edges via (6) and then to textures by (7).This 'subspace structure of inference' as it is called by the authors is a one-to-onetranslation from quantum mechanics to image processing. The well known e�ects of theuncertainty principle, e.g. interferences and the non commutativity are derived. For noncommuting operators the features cannot be simultaneously sharp. 'Sharp' means thatf consists of only one eigenfunction of the corresponding operator. For serial inferencesthe order in which the bases are applied changes the result. The most popular example isagain that between position (operator x, eigenvector �x) and spatial frequency (operatori@x, eigenvector ei!x) but it is true for all other features too.To our opinion the usefulness of the details of the inference process are doubtful mainlybecause real symbols/features (even edges) are too complex to be linked directly to thesubspaces. The linear structure of the subspace concept is not rich enough to render thecomplexity of the subdivision of a signal into features. The projection to a set of basisfunctions will only be the �rst of several layers in an approach to feature detection.Some of the e�ects (interferences) are shared by the energy concept instead of prob-abilities. The e�ect whether one or two events are seen is more related to scale ([55]) orcontext than to the inference process even though the uncertainty principle is necessaryfor the understanding. Anyway, a linear modul is necessary in all methods and the pointconcerning the incompatibility of di�erent features is undoubtedly true.We will not go further into the details because our concern is: What can we learnabout basis functions from this formalism?The goal is to get from pixels to symbols. According to Wilson et al. the symbols areconnected directly to the basis functions and the (invariant) subspace structure. Especiallythree bases are mentioned: The Dirac base �x, the Fourier base ei!x, and the Gabor base.The motivation for these bases in [73] is as follows. The Fourier base is invariant to shiftsand therefore spans the invariant subspaces for the object classi�cation. The Dirac baseis invariant to the Fourier base (classi�cation) and is therefore related to position. TheGabor functions are the best trade o� between both domains and allow a desired degreeof invariance in one of them.This motivation is not wrong but misleading. Of course Fourier coe�cients are usedfor position invariant object recognition. But beside the position invariance the connectionto the objects is as close or as far and as obvious (or not obvious) as for the Dirac baseor other bases. Accordingly, the role of the Gabor base in object classi�cation is notcleared up. We already mentioned that real features are not related in a simple way tothe invariant subspaces. On the other hand, the Dirac base and the Fourier base are ingeneral used to analyse all other functions and the Gabor base is known to have manyapplications in computer vision. Some motivation for these functions was given in section2.1.The �nal conclusion is the following: The uncertainty principle does not indicate onespecial basis that is preferable for object recognition. If the features and appropriatebasis functions are given, the uncertainty principle shows the consequences of this basisfor the inference process. The formalism of the inference process of [72, 73] should notbe overemphasized because in general, features are not given by simple projections but infollowing (nonlinear) processing layers.
7



2.2 Hilbert transformDuring the last decade complex quadrature �lters, with the real and imaginary part con-nected by a Hilbert transform, became an important tool in image processing. A goodintroduction to the Hilbert transform can be found in the textbook of Bracewell [8]. Inthe following paragraphs we distinguish three lines leading to the use of quadrature �lters.Gabor functions and analytical signalsIn Gabor's paper [25] the signal is extended to an analytical signal to allow an elegantmathematical formalism. Gabor's 'elementary signals' or Gabor functions as they werecalled later are therefore complex analytical signals. One bene�t compared to real signalsconcerns the metric of equation (2) that is used in the paper. The spread of the Gaborfunction in Fourier space �! corresponds to the shift that is necessary to obtain an (quasi)orthogonal function only in the case of the complex function but not for the real one (seeFig.3), because the latter has two lobes.
(a) (b) (c)Figure 3: Fourier transform for the real and analytical signal. (a) signal, (b) Im of FFTof (a) (Re is zero), (c) Re of FFT of analytical signal of (a) (Im is zero). The FFT in (b)has two lobes. Hence, the metric from equation (2) is not very meaningful to describe thewidth of the signal (b).Feature detectionTo detect features independently of their pro�le (line, edge, mixed) quadrature pairs of�lters are used [3, 26, 29, 36, 53, 55, 59, 62]. The most profound analysis is the paperof Perona and Malik [59]. Usually the quadrature pair consists of a real even part andan imaginary odd part. The response is transformed to an energy/phase representationwhere the energy detects the features and the phase recognizes their symmetry type.Australian feature detectionAn australian group (Owens, Venkatesh, Morrone, Burr ..) [56, 57, 58, 70, 71] founded anew school of feature detection. Based on comprehensive psychophysical experiments andsome mathematics they state that features that are perceived by humans are connectedto the energy maxima of the analytic signal of the image. The method is in principle thesame as in the last paragraph. The di�erence is that the former starts by de�ning featuresand then designs optimal �lters for them whereas the latter (in its basic form) uses alwaysbroad band �lters and de�nes as features what is detected in the energy.CommentsThe sine and cosine Gabor functions are not true Hilbert pairs. This is easy to see as thecosine functions do not integrate to zero. Therefore, in some applications modi�ed versionsare used. E.g in Lades et al. [40], Ronse [61], and Michaelis et al. [53] the following DCcorrected cosine function: G�;c(x) = e� x22�2 (eic x� � e� 12 c2) (8)For large c the correction is neglectible, and therefore one usually chooses c � 5.But large c are not always possible (e.g. [53]). Some authors even require an imaginary8



component that is insensitive to linear ramps [59, 61]. A ramp-corrected complex Gaborfunction is: G�;c(x) = e� x22�2 (eic x� � e� 12 c2 � i cx� e 12 c2) (9)Other corrected Gabor functions are also used, e.g. in [29]. Figure 4 compares theGabor cosine function with some related functions. For demonstration purposes the oscil-lation parameter is c = 0:1, much smaller than any reasonable value. The imaginary partin �g.4 is always a Gabor sine function.
Gabor sine function (Im)

Gabor cosine function Gabor cosine DC corrected Hilbert transform of Im
Energy of the complex function

−π

+π
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Phase of the complex function
Fourier transform of the complex function (Re only; Im of FFT is zero)Figure 4: Comparison of di�erent odd/even pairs for Gabor functions. All three even(Re) variants have the same odd (Im) partner that is depicted in the �rst row. For furtherexplanations see text.� The �rst column is the Gabor cosine function that obviously does not integrates tozero. The energy in position space (i.e. the response for a line) is the unmodulatedGaussian of the Gabor function. The phase is perfectly linear. The Fourier transformis Gaussian shaped too.� The second column is the DC corrected version from equation (8). The energy isnot single peaked and the Fourier transform is not single lobed (but remember that9



c is unreasonable small). The phase is not linear. Especially there's not much shiftbetween the phases ��=2; 0, and �=2 and hence, the phase estimation is not veryrobust.� The last column is the true Hilbert transform of the Gabor sine function. The DCcomponent is zero and the phase is approximately linear. The drawback of thisfunction is its width. The slow decay results from a convolution of the Gabor sinefunction with 1=x by the Hilbert transform. As a consequence the energy is not theunmodulated Gaussian but a broad function with a support much larger than thatof the Gabor sine function. In practice this means that the response is much largerthan the feature and might be in
uenced by other features in the neighborhood(interferences). The Hilbert transforms of the Gabor sine functions and many otherfunctions of interest do not have simple analytical forms.In this extreme case none of the functions is very satisfactory and for larger c allbecome the same. In between the trade o�s have to be considered carefully. Especially wewant to make the point that the energy of the Hilbert transform pair is not what mightbe expected naively as the envelope of the Gabor sine function. The details of the tradeo�s of the Hilbert transform and other odd/even pairs should be better investigated.These trade o�s exist for others than Gabor functions too. The Hilbert transform is avery good candidate to design odd/even pairs but there are also alternative possibilities.For example Perona and Malik [59] use a Gaussian derivative and its true Hilbert transformwhereas in Michaelis and Sommer [54, 55] a pseudo quadrature pair of two Gaussianderivatives is used and the merits and drawbacks are discussed.2.3 Scale-spaceIn a narrow sense scale-space means the continuous scale LoG analysis of Witkin [75] thatwas a seminal work for hundreds of following papers. This and all other work related to theLoG underlines the importance of the derivatives of Gaussians. Babaud et. al [4] proofedthat the Gaussian is the unique kernel for smoothing 1D signals without producing newzero-crossings. Yuille and Poggio [78] and Koenderink [32] investigated the 2D case. In 2Dthe zero-crossings can split and merge but nevertheless the authors show the exceptionalrole of the Gaussian even in the 2D case (zero-crossings never vanish at �ner). More detailsabout scale-space behavior can be found in appendix A.But the importance of scale-space violations depend on the information that is retrievedfrom the image. E.g. Kube and Perona [39] point to vanishing zero crossings in the caseof energy �lters for edge detection. On the other hand, Ronse [61] shows that for theMorrone/Owens edge detection scheme [56, 57] the only requirement for a smoothing �lternot to change the edge information is zero Fourier phase. Hence, the scale-space behaviorshould be treated in the same way as the uncertainty principle or the true quadraturepairs: important but not undisputable.The Gaussian has two other fundamental and unique bene�ts as a smoothing kernel.First it has minimal uncertainty and second it is isotropic and cartesian separable.Therefore, we would like to derive scaled signals by Gaussian smoothing. To satisfy thewavelet like scaling (f(x) 7! f(sx)) as well as the Gaussian scaling, functions are preferredthat satisfy (D is a Gaussian):D�(x) � f(x) / f(sx) s = s(�) (10)This type of scaling is investigated in depth by Koenderink and van Doorn [34] and isrefered to as relative invariance. If f has free parameters, denoted with � , a weaker form10



is possible where the smoothed function has changed parameters � 0:D�(x) � f� (x) / f� 0(sx) s = s(�) (11)This behavior is exhibited by Gabor functions (equation (3)) that have the free oscil-lation parameter c.2.4 Regularization and noiseTorre and Poggio [68] show the ill-posed nature of edge detection due to noise. In theirpaper, edge detection is seen as di�erentiation. The authors show that an optimal regular-ization can be done by �ltering with a spline that is close to a Gaussian. Canny [14] askedfor the optimal �lter that maximizes the product of a localization measure and the SNR.He obtained a function close to the �rst derivative of a Gaussian. Mehrotra et al. [51]calculated the same criterion for Gabor sine functions. These functions do not performtoo bad if c (see equation (3)) is chosen to be approximately 1 (but see the commentin section 6.3). This is not too surprisingly as the Gabor sine function resembles verymuch the �rst derivative of a Gaussian (section 6.3). Larger c result in multiple responses,whereas for smaller c the detection becomes hampered because of noise maxima. Manju-nath and Chellappa [46] discuss the same for complex Gabor �lters used as energy featuredetectors. For some reason they only use c = �, a value that is not very reasonable foredge detection.2.5 Discrete caseFor theoretical considerations, the basis functions most often are supposed to be con-tinuous. We assume that future vision systems need spatial resolutions such that thiscontinuous point of view is justi�ed. On the other hand, there always will be some dis-cretization and in past systems discretization often played a dominant role. Therefore, wehint to some papers that take into account the e�ect of discretization.Usually for discretization the unmodi�ed continuous basis functions are sampled. Itcan be calculated which sampling rate is necessary to limit the discretization e�ects. Thisis done for example in [7] for the Gabor functions. If the sampling of the basis functionshas to be sparse because of speed requirements or a sparse sampling of the signal, it isnot possible just to sample the continuous basis functions. Discrete modi�cations haveto be used instead. Examples can be found in Davies [20], Wilson and Bhalerao [74],and Hashimoto and Sklansky [27] for the Gaussian, in Lindeberg [41] for the scale spaceanalysis, in Martens [49] for the Hermite transform that includes derivatives of Gaussiansand Hermite functions. For discrete derivatives see also Lindeberg [42] and Hummel andLowe [30].2.6 WaveletsWavelets are bases that consist of translated and scaled copies of one mother wavelet:f�;s(x) = psf(sx� �) (12)Among the most popular wavelets are Gabor functions [37] even though for small c (eq.(3)) Gabor cosine functions do not integrate to zero and hence are not admissible. In thecase of Gabor functions the term 'wavelets' refers to the scaling (12) and to the analysisof the response in a combined position scale space. The theory of wavelets brought newinsights about sampling schemes for complete bases, regularity and other things.11



There is a class of wavelets, the orthogonal wavelets, that is of special interest. Wehave already mentioned that Gabor functions are not orthogonal. In the case of orthogonalwavelets, where speci�c mother wavelets and sampling schemes have to be used, all scaledand translated functions are orthogonal to each other. The basis is therefore minimal andcomplete and the coe�cients are uncorrelated. With these wavelets orthogonal, discretemultiresolution pyramids can be built where the information in the di�erent scales isuncorrelated [44, 45]. On the other hand, the uncertainty principle is ignored in thedesign of orthogonal wavelets and they are not always plausible as feature detectors, e.g.the orthogonal Gabors of Daubechies et al. [15]. If the goal is the analysis and not thecoding of the data the orthogonal sampling schemes with its minimal number of coe�cientsare unattractive anyway [52, 64].2.7 Biological vision systemsStrong motivations for the design of early vision methods stem from �ndings in biologicalvision systems. In the early 80th the famous LoG �lter had its counterpart in the ganglioncells of the retina. However, today it is believed that the �rst interesting processing stepstake place only in the visual cortex. Especially the interpretation of the �rst layer (V1) isusually based on the work of Hubel and Wiesel. According to them the neurons in V1 actas feature detectors and can be classi�ed in simple cells, complex cells, and hypercomplexcells. The simple cells are believed to be the �rst processing units and they are modeled bylinear projections to basis functions. Complex cells might be modeled by energy featuredetectors as in [60]. Energy feature detectors are widely used in computer vision, signalprocessing, and simulations of biological vision systems [29, 38, 46, 53, 55, 59, 70]. Thesimple cells are mostly matched to Gabor functions [16, 17, 47, 60]. But derivatives ofGaussians are also suggested by other authors [77, 33, 34, 49, 66].2.8 ApplicationsOf course the �nal justi�cation for using projections to basis functions in general and Gaborfunctions, derivatives of Gaussians, and related functions in particular is the usefulness forthe problems in early vision. We list the most important early vision tasks and cite papersthat use basis functions in general and Gabor functions and derivatives of Gaussians inparticular to underline their relevance.� Compression and CodingLoG coding by Burt and Adelson [13] and Hermite transform coding by Martens [50].In case of the non orthogonal Gabor functions the calculation of the coe�cients isa non trivial problem. Many solutions have been suggested, e.g. by Bastiaans [6] orby Daugman [18] who uses neural networks for the computation. Coders that useorthogonal wavelets have less coe�cients [44, 45]. On the other hand, this mightnot be the decisive argument if other bases are more adapted to the visual relevantfeatures or if they are '�ner probes' because of optimal uncertainty (may be lessentropy and better vector quantization possible).� Texture segmentationFrequently Gabor functions are used where the energy, phase or both informationsare used for texture segmentation [10, 11, 7, 69].� Edge and line detectionFirst derivative [14] or second derivative [48] edge detectors (see also [68]). Energydetectors for edges and lines [38, 46, 59, 70, 56].12



� Junction detection and classi�cationAndersson [3], Rosenthaler et al. [62], Michaelis and Sommer [55].� StereoSanger [63].� Optical 
owAdelson and Bergen [2], Fleet [21], Heeger [28].� Shape from XFreeman and Adelson [24].� Restoration and EnhancementKnutsson et al. [36].Besides these applications there are methods as the jets or di�erential geometry thatcover a wide range of applications and that are based on derivatives of Gaussians. Jets wereintroduced by Koenderink and van Doorn [33, 34]. Applications of di�erential geometrycan be found e.g. in papers of Barth et al. [5] and Florack [23].3 Basis functionsIn this section we list the basis functions that are of interest for early vision tasks. Insection 2.5 we mentioned functions for the discrete case. These functions and all otherfunctions that are purely technical optimizations for special tasks without any genericvalue will not be considered. The derivatives of Gaussians and the Gabor functions areinvestigated in detail in sections 4, 5 and 6.3.1 Gabor functionsGabor functions are optimal with respect to the uncertainty principle and hence they arethe �nest possible sensors. In addition they prove to be good feature detectors [46, 51] suchthat du Buf [12] states that the justi�cation for the Gabor functions in the visual cortexmight not be the uncertainty principle but their optimal preprocessing for the followinglayers. A drawback of the Gabor functions is that the real part does not integrates to zero,especially for small c that are used for edge detection. Di�erent solutions are possible asexplained in section 2.2.3.2 Derivatives of GaussiansDerivatives of Gaussians are motivated by their optimal feature detection properties [14,48, 59], their connection to scale-space [32, 75], and their close connection to di�erentialgeometrical methods [23] and Taylor expansions [33, 34]. They have a simple analyticalstructure what makes them easy to handle and they need no DC correction even thoughthe spatial extent has to be quite large for even orders. Odd/even pairs for the derivativesof Gaussians can be constructed by taking the true Hilbert transform [59] or successivederivatives [33, 54, 55].3.3 Hermite functionsThe importance of the Hermite functions in image processing is due to their connectionto the derivatives of Gaussians. With the latter they are often confused because of theirsimilar analytical form: 13



Pn(x) = Ne�x22 Hn(x)Dn(x) = Ne�x2Hn(x) (13)Hn denotes the n'th order Hermite polynomial, N is a normalization factor. Pn andDn are the Hermite function and the derivative of Gaussian of n'th order. The di�erencebetween both is the scale of the Gaussian in relation to the scale of the Hermite polynomial.In case of the Hermite functions the Hermite polynomials grow as fast as the exponentialdecays and hence the maxima of the Hermite functions have all about the same height(Fig.5), giving them the shape of a truncated sine/cosine wave.
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Figure 5: P5(x) (left) and D5(x) (right): Hermite function and derivative of Gaussian oforder 5The connections of the Hermite functions to the derivatives of Gaussians is as follows:In case of the Hermite transform (Martens [49]) the �lter functions (analysing) are thederivatives of Gaussians, whereas the pattern functions (reconstruction) are the Hermitefunctions. This unsymmetry is necessary because the derivatives of Gaussians are notorthogonal. Instead the Hermite transform can be viewed as the transform of a Gaussianwindowed image. With respect to the Gaussian weighted window the derivatives areorthogonal. Some more details about the Hermite transform can be found in appendix B.A second point of view connecting both functions is that of Koenderink and van Doorn[34]. They call the derivatives of Gaussians neighborhood operators and the Hermite func-tions ripples. The basic question for them is a taxonomy of all functions satisfying a relativeinvariance scaling equation ((10), section 2.3). This question leads to the di�usion equa-tion. The derivatives of Gaussians are solutions to this equation. They can be decomposedinto the product of an invariant part (the ripple) and a scaling window (a Gaussian). Theripples (Hermite functions) themselves satisfy the quantum mechanical equation of theharmonic oscillator. Hence, they are orthogonal.The Hermite functions have two interesting properties. First they maximize theuncertainty principle (with respect to a certain class of functions, [31]) and second, as forthe Gaussian, their Fourier transform has the same functional form as the function itself.3.4 Other functionsKoenderink suggests also solutions of the polar separable harmonic oscillator (times Gaus-sian window) as basis functions [34]. This basis can easily be converted to the cartesianseparable derivatives of Gaussians.The Link�oping school suggests functions that are polar separable in Fourier space[35, 36, 3, 26, 62]. The angular component is usually given by a power of the cosinefunction whereas the radial component is based on Gabor functions. One bene�t of thepolar separability is that the response to an edge separates in a term that depends on thepro�le of the edge and a term that depends on the orientation.Finally, the orthogonal wavelets are another interesting class even though they are notalways optimal if focus is on the analysis of the image content. The restrictions for the14



design of the functions (and the sampling scheme) hamper their use for feature detection.4 Derivatives of GaussiansIn this section we collect some de�nitions, conventions, and calculations that are necessaryfor the following and that are often a source of trouble because of di�erent sign conventionsand constants.4.1 De�nitionThe Gaussian has the general form:D0(x) = N(a) e�ax2 (14)N is a normalization constant that depends on a but not on x. There are severalpossibilities for the coe�cient a in the exponent: (1) The standard form is a = (2�2)�1where � is the standard deviation. (2) In the Hermite transform a Gaussian window aswell as the squared window are used (see appendix B) and hence a can be a = ��2.(3) In scale-space theory the natural scale parameter s is given by a = (4s)�1 becausethis Gaussian is the Green's function of the simplest di�usion equation (see appendix A).In general we assume the Gaussian to have the standard form. If not otherwise stated,expressions containing � refer to this form.The normalization constant can be such that L1(D0) = 1 (N1) or L2(D0) = 1 (N2).L2 is especially interesting if a reconstruction is required as in the Hermite transform(appendix B). But we will also consider the L1 norm because sometimes it is preferablefor the interpretation of the responses. Using the integrals of appendix C we can calculatethe normalization constants:(L2(D0))2 = 2 Z 10 N22 e�2ax2dx = N22 p�p2a = N22�p�) N2 = (2a) 14�� 14 = �� 12�� 14 (15)L1(D0) = 2 Z 10 N1e�ax2dx = N1p�pa = N1�p2�) N1 = pap� = (p2��)�1 (16)The derivatives of the Gaussian are (Hn are the Hermite polynomials, appendix D):D0 = N e�ax2D1x = �N 2ax e�ax2D2x = N 2a(2ax2 � 1) e�ax2D3x = �N 4a2(2ax3 � 3x) e�ax2D4x = N 4a2(4a2x4 � 12ax2 + 3) e�ax2Dnx = dnD0dxn = (�1)nNan2 Hn(pax) e�ax2
(17)

The formula for the general expression Dnx is derived with (56) of appendix D. Fig.6shows the �rst four derivatives. 15
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L1(Dnx) = N an2 Z 1�1 jHn(pax)je�ax2dx == N an�12 Z 1�1 jHn(z)je�z2dx = N �n�12 1�n2 Z 1�1 jHn(z)je�z2dx (25)The integral I(n) := R1�1 jHn(z)je�z2dx is calculated numerically:n 0 1 2 3 4 5I(n) 1.77245 2 3.43106 7.57009 19.8557 59.2576n 6 7 8 9 10I(n) 195.901 704.821 2725.68 11225.8 48890.4Table 1: Numerically calculated Integrals of the L1 norm of the derivatives of Gaussians5 Optimal odd/even pairs with Gaussian derivativesThere is growing evidence that feature detection has to be done by energy detectors thatconsist of complex �lters of an even real part and an odd imaginary part. In section 2.1we discussed the Hilbert transform as a natural method to construct a partner for a givenodd or even function. We have also mentioned that for weakly oscillating functions thetrue Hilbert transform is not always the best choice because it results in functions with alarge support. Moreover, considering a framework that already uses all lower derivativesof Gaussians (e.g. jets or di�erential geometry) we would like to save the computationalburden to calculate the projections to the Hilbert transforms. In addition the Hilberttransforms have the drawback that they are not given analytically.We would like to build complex odd/even �lters F from derivatives of Gaussians alone.From (21) and (25) we see that the dependence on the order n of the L1 norm as well asthe L2 norm and the amplitude is given by ��n. Hence, to make the relative strength ofthe odd and even function independent of their scale the lower order function has to bemultiplied by a factor ��1. With k we introduce a free parameter that controlsthe relative weight of the odd and even part of the complex �lter F .F := D2mx � i k ��1D(2m�1)x (26)With Dnx we denote the derivatives from equation (17) and we assume both functionsto have the same normalization constant N . Note that k is always at the imaginary,odd part. This apparently changes the formulas for k for the two cases that the odd parthas the higher or lower order. The relative sign of the odd and even part in (26) is suchthat the Fourier energy at negative frequencies compensates as can be seen from �g.7. Forthe opposite Fourier transform sign convention the sign of the imaginary part changes.The free parameter k raises the question: What is the best relative amplitude ofthe two functions? In this section we discuss several possible answers. As we will see, forthe lower derivatives there is no choice for k that optimizes all requirements. Dependingon the task we have to accept more or less satisfactory compromises. The optimizationcriteria that are discussed in the following subsections are (1) same L2 or L1 norm of theodd and even part, (2) minimal Fourier energy at negative frequencies of the complex�lter, (3) monomodal energy, (4) �t of the energy to a Gaussian, and (5) linear phase ofthe complex �lter. 18



In principle the comparison of the di�erent choices for the relative weight k shouldinclude an analysis of the responses to signals and noise. But this is beyond the scopeof this report, and even when considering signals and noise, a �nal decision is di�cultbecause there is no single generic signal or noise model. Hence, we restrict in this reportto the investigation of the �lters themselves. Therefore, the implications of our resultsare of a qualitative nature. Considering for example the monomodal energy criterion weknow that side maxima lead to false detections or that nonlinear phase leads to a worseperformance in classifying odd and even signals. The quantitative investigation of thesethings needs signal and noise models. But even without this we get a qualitative feelingfor the performance of complex Gaussian derivative �lters and we know qualitatively howthis performance is in
uenced by increasing or decreasing the relative weight k.5.1 Same L2 or L1 normThe L2 norm and the L1 norm of Dnx are given by the equations (21) and (25). Accordingto (25) there is no simple analytical expression for the L1 norm and therefore we shownumerical results for kL1 in table 2. n denotes the higher order of the odd and even part.L2(Dnx)L2(D(n�1)x) = qn� 12 ��1 =) kL2 = ( qn� 12 n even1=qn� 12 n odd (27)L1(Dnx)L1(D(n�1)x) = I(n)p2 I(n� 1) ��1 =) kL1 = see table 2 (28)The integrals I(n) are given by table 1.n 1 2 3 4 5kL1 1.25332 1.21306 0.64097 1.85469 0.47386n 6 7 8 9 10kL1 2.3376 0.3931 2.7345 0.34338 3.0796Table 2: Numerically calculated weight factor kL1 for the odd and even part to have thesame L1 normThe following table shows that k is approximately the same for both norms, i.e. kL1 �kL2 (n = 1 is not very interesting). To be precise, we listed kL2=kL1 for n even and kL1=kL2for n odd in the table to better demonstrate the convergence.n 1 2 3 4 5kL2=kL1 0.886 1.0096 1.0135 1.0087 1.0052n 6 7 8 9 10kL2=kL1 1.0032 1.0021 1.0015 1.0011 1.0008Table 3: The table shows the relative magnitude of kL2 and kL1 . The di�erence betweenboth weights is small and vanishes with increasing order n.5.2 Minimal Fourier energy at negative frequenciesA complex function with the odd and even part in quadrature has vanishing Fourierenergy at negative frequencies. Therefore, we calculate the optimal relative amplitude k19



that minimizes the relative amount of Fourier energy at negative frequencies. By A(k) wedenote the energy at positive frequencies divided by the energy at negative frequencies.This expression has to be maximized.A(k) := Z 10 (!2m + k��1!2m�1)2 e��2!2d!Z 0�1(!2m + k��1!2m�1)2 e��2!2d! = Z 10 (!2m + k��1!2m�1)2 e��2!2d!Z 10 (!2m � k��1!2m�1)2 e��2!2d!
= Z 10 (!4m + 2k��1!4m�1 + k2��2!4m�2) e��2!2d!Z 10 (!4m � 2k��1!4m�1 + k2��2!4m�2) e��2!2d!We now split into the two cases that the odd function has higher or lower order than theeven function. Using formula (53) yields (f2m� 1g denotes the product 1�3 : : : (2m� 1)):Case 2m� 1:A(k) = f4m� 1gp�22m+1�4m+1 + 2k (2m � 1)!2�4m+1 + k2 f4m� 3gp�22m�4m+1f4m� 1gp�22m+1�4m+1 � 2k (2m � 1)!2�4m+1 + k2 f4m� 3gp�22m�4m+1 =

= f4m� 1gp� + k 22m+1(2m� 1)! + k2f4m� 3g2p�f4m� 1gp� � k 22m+1(2m� 1)! + k2f4m� 3g2p� =: u(k)v(k)The maxima of A(k) are found by taking the derivative with respect to k. If thenumerator of A(k) is called u and the denominator v we have:@A@k =(!) 0 =) u0v � v0u = 0 == 22m+2p�f4m� 3g(2m� 1)! (2kF � 4m+ 1) = 0=) kF = r2m� 12 (29)Case 2m+ 1: A(k) = f4m� 1gp�22m+1�4m+1 + 2k (2m)!2�4m+1 + k2 f4m+ 1gp�22m+2�4m+1f4m� 1gp�22m+1�4m+1 � 2k (2m)!2�4m+1 + k2 f4m+ 1gp�22m+2�4m+1 =
= f4m� 1g2p� + k 22m+2(2m)! + k2f4m+ 1gp�f4m� 1g2p� � k 22m+2(2m)! + k2f4m+ 1gp� =: u(k)v(k)u0v � v0u =(!) 0 = 22m+3(2m)!f4m � 1gp� (k2F (4m+ 1)� 2)20



=) kF = s 24m+ 1 (30)Taking into account that kF in this case weights the higher order derivative it is thesame result as in the case 2m � 1. Changing the factor kF� from the odd to the lowerorder even function gives (kF�)�1) and denoting the higher order by n (i.e. 2m+ 1 =: n)gives k�1F = p(4m+ 1)=2 = q(2m+ 1)� 12 . This is the same expression as in the case2m� 1 where n = 2m. It turns out that:kF = kL2Quality of the odd/even pairTable 4 shows the ratio of the energy at negative frequencies to the total energy(v=(u + v) in the notation of (29),(30)).order 2/1 2/3 4/3 4/5 6/5 6/7uu+v 0.0393411 0.0242336 0.0174848 0.0136703 0.0112203 0.0095142Table 4: Energy at negative frequencies divided by the total energy for derivatives ofGaussian odd/even pairsFigure 8 gives a qualitative impression of the performance of the complex �lter usingthe relative weight kF of the imaginary part. For D2x + ikF��1D1x the result is quitereasonable. In contrast, the energy for the functions where the odd part has the higherorder (D2x� ikF�D3x and D4x� ikF�D5x) is double peaked. This very likely causes falsedetections and localizations. We will investigate this in more detail in the next section.The phase of all functions is slightly dominated by the real part (
at slope at 0;��). Thephase is investigated in section 5.5.5.3 Monomodal energyThe energy for odd/even pairs of derivatives of Gaussians tends to be non-monomodal.The energies that are depicted in �gs 8 and 9 are the responses for a Dirac signal. Featuredetection is done by evaluating the maxima in the energy of the response to a signal.Maxima that are caused by the function and not by the signal lead to false detections andlocalizations. In practice things are not as critical as they might seem from the �guresbecause real signals usually are smooth and not Diracs and hence, the responses aresmoothed too. Nevertheless, the detection and localization performance of a monomodalenergy �lter will be better than for a non-monomodal �lter (e.g. with noise that consistsof Dirac peaks). To investigate this quality criterion we calculate the derivative of theenergy E. E := qD2nx + k2��2D2(n�1)xWe are interested in the extrema of E that are indicated by the zeros of the �rstderivative of E with respect to x. We can examine E2 as well, because (E2)0 = 2EE0and E has no zeros or poles (the prime denotes the derivative). We choose N = 1 anda = 1; � = 1=p2 in (17) for convenience.E2 = e�2x2 (H2n(x) + k22H2n�1(x))21
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Looking at �g.9, that shows the energy for di�erent weights k, we derive the followingpreliminary conclusion: Giving the even part less weight than for kE results in very poorenergy shapes that have local minima at the center instead of maxima. This is the case ifthe higher order is odd and kF = kL2 is taken as the weight. It is even preferable togive more weight to the even part than for kE . This pronounces the middle peak.If the higher order is odd the third order central maximum becomes a sharper �rst ordermaximum. The trade o� is that the more the even part is emphasized the more the saddlepoints at the slope of the energy split in increasingly pronounced maxima and minima.If the higher order is even, kL2 might be a good compromise. In the other case the evenpart should be more pronounced or at least equal than for kE . Figure 9 shows the energyfor di�erent weights of the odd part.
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but the results are pretty much the same if the norm of the Gaussian is varied too. Thenormalized Gaussians and the L2-error are given by:D0(x) := �� 12�� 14 e� x22�2error(k; �) := L2(E �D0) = �2� 2 Z ED0dx� 12 (34)The error is minimized if the projection of E to D0 is maximized. For every order nwe calculate error(k; �) and search for the maximum. It turns out that this criterion is notvery decisive because the quality of the �t is almost independent of k. However, the best�t is achieved for weights k that are approximately equal to kL2 . In the case that the evenfunction has the higher order this choice is quite reasonable. On the other hand, if theodd function has the higher order the energy function is double peaked with a minimumat the center what does not seem to be an appropriate choice. Table 5 and �gure 10 showthe results. With kG we denote the weight that optimizes the �t to a Gaussian. For thecase that the odd function has the higher order we also show the results of the best �t fork = kP1 . kP1 will be introduced in the next section and avoids the double peaked energy.The results show that the L2 error is not very di�erent for this choice, even though the twoweights are quite di�erent. Notice that the scale of the optimal �tting Gaussian convergesto � = 1, what is the scale of the approximating Gabor functions for higher order Gaussianderivatives (see section 6.3).order k � L2 error in %2/1 kG = 1:27 � = 1:13 11.4%2/3 kG = 0:63 � = 1:05 10.9%2/3 kP1 = 0:53 � = 1:06 12.4%4/3 kG = 1:87 � = 1:03 9.3%4/5 kG = 0:47 � = 1:02 8.2%4/5 kP1 = 0:43 � = 1:02 8.7%Table 5: Results for optimal Gaussian �ts to the energy. The weight k with the best �t isdenoted kG.
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5.5 Linear phaseThe phase in position space should be approximately linear at the center of the function.The phase is used for classifying the shape of the local signal structure (line, edge, etc.).The motivation for linear phase is robustness against noise, shifts and small deformationsof the signal. It is de�ned by:P := � arctan(k��1D2m�1D2m ) (35)For linear phase, the phase is a direct measure of the shift between a delta-event andthe center of the basis function. In the extreme case nonlinear phase means 
at plateauswith jumps between the plateaus. This is depicted in Fig.11 that shows examples withdominating real or imaginary part. A jumping phase contains almost no information,because the slightest deformation of a signal causes it to be classi�ed according to thephase value at the plateaus.. In this section the phase is handled without wrap around at�� because otherwise the derivative of the phase is meaningless at these points.
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at plateaus.The theoretically optimal linear phase can be de�ned as follows: The phase di�erencebetween the �rst zero x1 of the even part and x = 0 is �=2 and the total phase di�erenceis n� if n is the higher order of the odd and even part. Hence, the optimal slope Sopt ofthe phase is �=(2x1) between �nx1 and +nx1, and 0 outside. This is depicted in Fig.12.This de�nition could be made also with the last zero instead of the �rst or some meanvalue but we are interested �rst of all in an optimal phase near the center.
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at. But it turns out that this linearity measure willbe disadvantageous for most purposes for the following two reasons: (1) The region wherethe phase is linear is small and outside this region the linearity is worse than for kP1 andkP2 . (2) The energy is unreasonable for this choice.The linearity measures are rather ad hoc but it turns out that the exact choice of themeasure is not very critical. This gives more weight to the results than for the case thatthey depend on the accidental choice of the measure. Especially, for all three linearity26
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Figure 16: Derivative of the phase P 0 of D4x � ikD5x for kF = 0:47; kE = 0:45; kP1 =0:43; kP3 = 0:405; k = 0:38 and the theoretically optimal phase for comparison (larger khave larger central maxima).measures it con�rms that optimal linear phase is derived with more weight onthe higher order part than for the previous criteria. Table 6 in the followingconclusion shows the optimal kP 's derived from (36) and (37).5.6 ConclusionIn summary we achieved the following results: The weights from the L1 normalizationdo not di�er much from those of the L2 normalization. The criterion of minimal Fourierenergy at negative frequencies gives the same weights as the L2 normalization. Hence,there are essentially 3 di�erent weights kF ; kE , and kP1 , where kE always is between theother two. If the even function has the higher order kF gives more weight and kP1 givesless weight to the even part than kE . If the odd function has the higher order it is viceversa. An overview of the di�erent weights is given in table 6.Now, what is altogether the best k? Remember that we did no investigations includingsignals and noise and surely the answer is task and signal dependent. But for a commondetection, localization, and classi�cation task we would give the following advice: Mostlythe detection and localization is more important and moreover the quality of the phase isrelatively robust compared to the quality of the energy. Therefore, we exhaust the possibledetection and localization performance by optimizing the energy. For this we give more orat least as much weight to the even part as for kE . If the higher order is even, kF mightbe a good compromise at the cost of a poorer quality of the phase. If the higher order isodd we choose kP1 at the cost of more Fourier energy at negative frequencies and at thecost of di�erent L1 and L2 normalizations of the odd and even part. But in any case the27



order 2/1 2/3 4/3 4/5kL1 1.21 0.64 1.85 0.47kF = kL2 1.22 0.63 1.87 0.47kG 1.27 0.63 1.87 0.47kE 1.41 0.58 2.0 0.45kP1 1.52 0.53 2.06 0.43kP2 1.52 0.53 2.08 0.43kP3 1.7 0.48 2.21 0.405Table 6: Optimal k according to the di�erent criteria. kP2 is included to demonstrate thesmall di�erence between the linearity measures.deviation from kE can't be very large because otherwise the energy gets undesired strongside extrema.6 Relationship between derivatives of Gaussians and Ga-bor functions6.1 De�nition and normalization of Gabor functionsThe Gabor functions are de�ned as:Gc(x) := Nc e� x22�2 cos( cx� )Gs(x) := Ns e� x22�2 sin( cx� ) (38)Nc and Ns are normalization constants. The Fourier transform is:Ĝc(!) = Nc �2 �e� (!��c)22 + e� (!�+c)22 �Ĝs(!) = Ns �2 �e� (!��c)22 � e� (!�+c)22 � (39)Usually the Gabor functions are applied without normalization or with a normalizedGaussian. However, we are interested in L1 or L2 normalized Gabor functions.L2 normalizationThe L2 norm is calculated in Fourier space. Using (39) and the integrals from (54) weobtain: L2(Gc) = �Z 1�1 Ĝ2c(!) d!� 12 = Ncr12 �p� (1 + e�c2)L2(Gs) = �Z 1�1 Ĝ2s (!) d!� 12 = Nsr12 �p� (1� e�c2) (40)L1 normalizationThe L1 norm is calculated numerically:
28



L1(Gc) = Nc � Z 1�1 je� z22 cos(cz)j dz =: Nc � Ic(c)L1(Gs) = Ns � Z 1�1 je� z22 sin(cz)j dz =: Ns � Is(c) (41)Figure 17 shows Ic(c); Is(c), and their quotients with the L2 norm from (40) for � = 1(p2Ic=s(c)=� 14 (1 � e�c2) 12 . The quotient reveals the di�erence between the two normal-izations. It turns out that both norms are approximately independent of c above c � 2.Papers that are interested in local frequency analysis or texture classi�cation usually don'tuse small c. In contrast we are interested also in values of c below 2.
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cosine functions. If the derivatives of Gaussians have the scale �, the Gabor functionshave the scale p2� and an oscillation parameter c = p2n+ 1. The error decreases rapidlywith O(n�1=4). Therefore, only for the lower orders we expect deviations between Gaborfunctions and derivatives of Gaussians worth mentioning. In the following subsection weinvestigate the quality of the �t for the orders n = 1; 2; 3.6.3 Fit of Gabor functions to derivatives of GaussiansIn this section we investigate the optimal L2 �t for the lower orders, where the approxi-mation of (43) does not hold.The derivatives of Gaussians are normalized to L2(Dnx) = 1 according to (21) with ascale � = 1=p2: Dnx(x) = (�1)n 2 14q1 � 3 : : : (2n� 1)p� Hn(x)e�x2 (44)We restrict the �ts to the case that the Gabor functions are normalized to L2(G) = 1as well: Gc = s 2�p�(1 + e�c2) e� x22�2 cos(cx� )Gs = s 2�p�(1� e�c2) e� x22�2 sin(cx� ) (45)Now we are looking for the parameters c; � that minimize L2(Dnx�Gc=s), where Gs isused for n odd and Gc for n even. The sign � is ++��++ : : : for the orders 1; 2; 3 : : :.L2(Dnx �G) = s(L2(Dnx))2 + (L2(G))2 � 2 Z DnxGdx == s2� 2 Z DnxGdx =: q2� 2An(c; �)
An(c; �) = ( 2 34q�f2n� 1g�(1 + e�c2) Z e�(1+ 12�2 )x2Hn(x) cos(cx� )dx; n even� 2 34q�f2n� 1g�(1 � e�c2) Z e�(1+ 12�2 )x2Hn(x) sin(cx� )dx; n odd (46)f2n � 1g denotes the product 1 �3 : : : (2n � 1). The L2 error is p2� 2An and for aperfect �t An would be 1. Using Mathematica we obtain:Case n = 1 A1(c; �) = 2 94 c � 32 (1� e�c2)� 12 e� c22+4�2 (1 + 2�2)� 32@A1@� =(!) 0 =) � = 1p6 qc2 +pc4 + 9 (47)30



According to (47) � depends approximately linear on c if c is not too small. Figure18a shows L2(D1x + Gs(c; �)) with � = �(c) according to (47). The optimal �t is forc ! 0 and � ! 1=p2, where A1 approaches 1. This can be understood by consideringthe Taylor expansion of sin(cx=�). For very small c the �rst term in the Taylor expansioncx=� su�ces and it has the same functional form than the �rst order Hermite polynomial.Hence, for small c the Gabor function perfectly �ts D1x. On the other hand, for small cthe amplitude of the sine function goes to zero whereas the normalization constant in (45)goes to in�nity. This is quite unnatural and Fig. 18a shows that the �t is not much worsefor larger c. For c = 1 and � = 0:833 the L2 error is about 1.5%. Figure 18b shows theremaining error of the �t.
1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c

-3 -2 -1 1 2 3

-0.015

-0.01

-0.005

0.005

0.01

0.015

(a) (b)Figure 18: (a) shows L2(D1x +Gs(c; �(c))) in the range of c 2 [0; 6]. For c ! 0 D1x andGs become identical. The dependence on c is not very strong. (b) shows D1x + Gs forD1x: � = 0:707 and for Gs: � = 0:833; c = 1. The amplitude of D1x + Gs is just 1.3%of the amplitude of D1x. Hence, there is no visible di�erence between D1x and Gs. Thefunction D1x in (b) (dashed) is depicted only to illustrate the spatial scale. It has notthe true amplitude.Comment to the paper of Mehrotra et al.Mehrotra et al. [51] investigate the edge detection performance of Gabor sine func-tions according to Canny's criteria. The authors denote the Gabor function by G(x) =exp(�x2=(2�2) + i!x), what is not very convenient. Choosing the parameter in the oscil-latory part c=� instead of ! makes � a true scale parameter and c a true shape parameter,whereas ! mixes both things. Hence, the �nding in [51] that �! is the appropriate tuningparameter is evident, because �! = c.The authors then motivated as an optimal choice c � 1. The above results providean easy understanding of the fact that the performance is close to D1x. On the otherhand, the low values of the quality parameter C in [51] (spacing between noise maxima)for small c are hard to believe, because for an appropriate choice of � and c the resultsshould become the same as for D1x. We did not check the calculations in [51] in detail.Case n = 2A2(c; �) = �2 94 3� 12 (1 + e�c2)� 12 e� c22+4�2 (1 + 2�2)� 52� 12 (1 + 2�2 + 2c2�2)@A2@� =(!) 0 =) c2 = 20�4 � 4�2 � 7 +p400�8 + 160�6 + 24�4 + 104�2 + 418�2 (48)This complex formula can be �ted very well by the simple linear dependence c ��0:26+2:37� (see Fig. 19c). Figure 19a shows L2(D2x+Gc(c; �)) with c = c(�) according31



to (48). The optimal �t is for c = 2:29 and � = 1:073, where the L2 error is 10%. TheTaylor expansion of the cosine function is cos(cx=�) � 1 � c2x2=(2�2) what is the 2ndorder Hermite polynomial if c = 2� (up to a factor 2). For � = 1=p2, the scale we choosein (44), this results in c = p2 what is indeed the solution of (48). But in contrast to thecase n = 1 this is not the overall optimal solution.
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Case n � 4For larger orders n the asymptotic behavior (� = 1, c = p2n+ 1) gives a very goodapproximation of the optimal �t.6.4 ConclusionFor higher orders the derivatives of Gaussians can be approximated almost perfectly byGabor functions. From the lower order functions D1x can be approximated perfectly too.The worst �t is for D2x where the L2 error is 10%. For D3x the error is 6%. Whenhigh precision is required as in some di�erential geometric methods the error for the lowerorders is too large to use the Gabor functions instead of the derivatives of Gaussians. Butfor other more qualitative applications the �t is quite well. Note that we did the �t withthe true Gabor functions. In practice a DC-corrected version has to be used for the lowereven orders instead (section 2.2).7 SummaryWe have provided strong motivations that the �rst processing step for all common earlyvision tasks is adequately done by projecting the image to a set of basis functions. Wediscussed the basic principles that determine the choice of the basis functions. But incontrast to some papers that overemphasize one particular principle we also pointed totheir limitations. We derived some interesting results on the construction of optimalodd/even pairs from successive orders of derivatives of Gaussians and on the relation tothe Gabor functions. It turns out that higher derivatives (and the �rst derivative as well)can be approximated almost perfectly by Gabor functions and there is no di�erence to thetrue Hilbert transforms or DC-, and ramp-corrected functions. In this case all principles(uncertainty, scale-space behavior, energy/phase etc.) can be satis�ed simultaneously andno compromises are necessary. On the other hand, for weakly oscillating functions thereexists no optimal solution that satis�es all requirements. This is especially true for thesecond and third derivatives that are important for edge and line detection. Hence, weinvestigated this case in detail to understand the limitations and to provide the criteriato �nd the best compromise for a given task.
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Appendix A: Scale-space and the di�usion equationAll fundamental basis functions are based more or less on the Gaussian. This is not toosurprisingly as the Gaussian plays an exceptional role in many parts of mathematics. Onestrong justi�cation for the use of the Gaussian in computer vision is its relation to theconcept of scale. This relation has been investigated by Babaud et al. [4], Yuille andPoggio [78], and Koenderink [32]. All three papers have slightly di�erent premises andstatements but essentially they present the same results.Babaud et al.The paper treats the 1D case and de�nes scaling by the convolution of a signal f(x) witha kernel gs(x) := sg(sx), where g satis�es some natural conditions. The convolution isdenoted by �(x; s) := f(x) � gs(x). The central proposition states that if for �rst orderextrema (i.e. @x� = 0; @xx� 6= 0) the monotonicity condition @s�@xx� < 0 is valid thekernel must be a Gaussian. This implies that local maxima only decrease towards largerscales and local minima only increase.The connection to the di�usion equation is made in the su�ciency part of the proof.The monotonicity condition is valid for all � that are solutions of the di�usion equation@2�@x2 = @�@s (49)The Gaussian is the Green's function of the di�usion equation and hence the solutions� are convolutions of the source term (the signal) by a Gaussian. For the di�usion equationto have the form (49) the Gaussian is denoted:gs(x) = (4�s)� 12 e�x24s (50)With the usual form of the Gaussian, where the denominator of the exponent is 2�2instead of 4s the di�usion equation looks slightly di�erent, but the results are the same.The two forms are connected by a transformation of the scale parameter 2s = �2.The authors point out that the monotonicity condition is not possible for higher orderextrema. This is one hint that the importance of this scale-space behavior is sometimesover-emphasized. The argument usually is that signals can be analysed by their extrema(or level crossings, see below) only if the extrema can be traced back to �nest scales togive the connection to the signal. But there always will be extrema for which this is notthe case and moreover the methods to analyse the signal and the interpretation of extremaand other events are by no means unique.From the monotonicity condition follows a result for zero-crossings too. We are in-terested in the zero-crossings of an arbitrary linear di�erential operator. Such operatorscommute with the Gaussian convolution and hence it su�ces to investigate zero-crossingsof � itself. The result is that zero-crossing contours in scale-space are always locallyparabolic and concave up, i.e. zero-crossings never disappear towards �ner scales.As an outlook the 'dumpbell' example is given that shows that in 2D zero-crossingsare free to split and merge with increasing scale even though they are never created fromnothing. A simple tree-structure of the events as in the 1D case is not possible.Yuille and PoggioYuille and Poggio generalize the results of Babaud et al. to two dimensions. As in thepaper of Babaud et al. signals are investigated that are scaled by convolution with a kernel.The basic theorem is stated not for extrema but for zero-crossings of the Laplacian andshows that the Gaussian (isotropic or elongated) is the only kernel that does not create newzero-crossings. The result is then generalized for level crossings of any di�erential operator34



L that commutes with the di�usion equation, i.e. events of the type L(g � f) = const arenever created towards larger scales. As already mentioned, in 2D a split and merge ispossible.It turns out that the heat equation is the only one with the required scaling behavior ofits solutions. Other �lters are expected to have this scaling behavior only for scales wherethey are approximate solutions of the heat equation. E.g. the di�erence of Gaussians andthe Gabor functions for scales that are not too small.KoenderinkKoenderink starts with a function �(x; y; s) with the boundary condition that for scale 0it is the original image �(x; y; 0) = f(x; y). It is not required (in the beginning) that �results from a convolution. Koenderink requires that level crossings �(x; y; s) = const canalways be traced back to �ner scales. Then, � has to be a solution of the 2D di�usionequation.Appendix B: Hermite transformThe Hermite functions themselves are not very important in computer vision. The interestin these functions stems from their close connection to the derivatives of Gaussians. If theprojection of a signal to the latter is viewed as the transformation of a Gaussian windowedsignal the Hermite functions are the dual functions for the reconstruction of the originalsignal. It has been shown that the derivatives of Gaussians are not too di�erent fromthe Gabor functions but with the advantage that basis functions of di�erent orders aremutually orthogonal for the same window. Though, in contrast to orthogonal wavelet(subband) coders, basis functions for di�erent windows have some overlap.The interplay of the derivatives of Gaussians and the Hermite functions in the Her-mite transform is explained in the following equations. All equations are modulo somenormalizing coe�cients. More details can be found in [49]. The Hermite transform is awindowed transform, i.e. we distinguish a window function in addition to the analysingfunction and the reconstruction function.Let f(x) be the signal and V (x) = �� 12 e� x22�2 the Gaussian window that selects aweighted region of interest of the signal. Then the Hermite decomposition and reconstruc-tion is given by the following two formulas:f(x) = Xn Xk cn(k)Pn(x� k�x)W�1(x)cn(k) = Z f(x)Dn(x� k�x)dx (51)W (x) := Pk V (x � k�x) is the weighting function. Dn(�x) = Hn(x=�)V 2(x) =@nxV 2(x) are the analysis functions which is the n'th order derivative of a Gaussian.Pn(x) = Hn(x=�)V (x) are the reconstruction functions, the n'th order Hermite func-tions. Hn(x) is the n'th order Hermite polynomial. In the above notation Dn is thederivative of the square of the Gaussian in its usual form but this results only in somedi�erent constants and a rescaling of �. The reconstruction functions are orthogonal:Z Pm(x)Pn(x) dx = �mn (52)The sum over k in equation (51) is the sum over all shifted non-orthogonal Gaussianwindows. Within each window the sum over n is an orthogonal expansion. The expansioncoe�cients cn can therefore easily be obtained by a projection to the analysing functionsDn. This step is painful for the non-orthogonal Gabor functions.35



Appendix C: Integrals of the GaussianThroughout the text integrals of polynomials times Gaussians are needed. For the non-de�nite integrals there is no simple analytical expression but mostly the following de�niteintegrals are su�cient [9] (a > 0):Z 10 xne�ax2dx = ( 1 � 3 : : : (2k � 1)p�2k+1ak+ 12 ; n = 2kk!2ak+1 ; n = 2k + 1 (53)For the �rst orders and a = (2�2)�1 the explicit forms are:Z 10 e�ax2 dx = p�2pa = p�p2 �Z 10 xe�ax2 dx = 12a = �2Z 10 x2e�ax2 dx = p�4a 32 = p�p2 �3Z 10 x3e�ax2 dx = 12a2 = 2�4Z 10 x4e�ax2 dx = 3p�8a 52 = 3p�p2 �5
(54)

Appendix D: Hermite polynomialsThe Hermite polynomials are de�ned to be the orthogonal polynomials with respect to aGaussian weighted scalar product [43]:Z 1�1Hm(x)Hn(x)e�x2 dx = ( 0 ; m 6= np� 2nn! ; m = n (55)To calculate these polynomials Rodrigues' formula can be used:Hn(z) = (�1)n ez2 dne�z2dzn (56)The explicite form of the �rst orders and the general form is:H0(z) = 1H1(z) = 2zH2(z) = 4z2 � 2H3(z) = 8z3 � 12zH4(z) = 16z4 � 48z2 + 12H5(z) = 32z5 � 160z3 + 120zHn(z) = n! [n2 ]Xm=0 (�1)mm! (n� 2m)!(2x)n�2m
(57)
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We also need the recurrence relations (the prime denotes the derivative):H 0n(z) = 2nHn�1(z) (58)Hn+1(z) = 2zHn(z)�H 0n(z) (59)2zHn(z) = Hn+1(z) + 2nHn�1(z) (60)
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