Signal Modeling for Two-Dimensional

Image Structures and Scale-Space

Based Image Analysis

Dissertation

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften
(Dr.-Ing.)
der Technischen Fakultat
der Christian-Albrechts-Universitat zu Kiel

Di Zang

Kiel
Mai 2007



1. Gutachter Prof. Dr. Gerald Sommer (Kiel)

2. Gutachter Prof. Dr. Reinhard Koch (Kiel)

Datum der miindlichen Priifung: 19.04.2007



ABSTRACT

Model based image representation plays an important role in many computer
vision tasks. Consequently, it is of high significance to model image struc-
tures with more powerful representation capabilities. In the literature, there
exist bulk of researches for intensity based modeling. However, most of them
suffer from the illumination variation. On the other hand, phase information,
which carries most essential structural information of the original signal, has
the advantage of being invariant to the brightness change. Therefore, phase
based image analysis is advantageous when compared to purely intensity
based approaches. This thesis aims to propose novel image representations
for 2D image structures, from which useful local features can be extracted,
which are useful for phase based image analysis. The first approach presents
a 2D rotationally invariant quadrature filter. This model is able to han-
dle superimposed intrinsically two-dimensional (i2D) patterns with flexible
angles of intersection. Hence, it can be regarded as an extension of the struc-
ture multivector. The second approach is the monogenic curvature tensor.
Coupling methods of differential geometry, tensor algebra, monogenic signal
and quadrature filter, we can design a general model for 2D structures as the
monogenic extension of a curvature tensor. Based on it, local representations
for the intrinsically one-dimensional (i1D) and i2D structures are derived as
the monogenic signal and the generalized monogenic curvature signal, re-
spectively. From them, independent features of local amplitude, phase and
orientation are simultaneously extracted. Besides, a generalized monogenic
curvature scale-space can be built by applying a Poisson kernel to the mono-
genic curvature tensor. Compared with other related work, the remarkable
advantage of our approach lies in the rotationally invariant phase evalua-
tion of 2D structures in a multi-scale framework, which delivers access to
phase-based processing in many computer vision tasks. To demonstrate the
efficiency and power of the theoretic framework, some computer vision appli-
cations are presented, which include the phase based image reconstruction,
detecting i2D image structures using local phase and monogenic curvature
tensor for optical flow estimation.
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1. INTRODUCTION

Computer vision research has gained lots of attention over the past decades.
In order to handle the dramatically increased low-level computer vision tasks,
the methodology of image analysis has also been considerably progressed. As
a consequence, image information has been represented in different ways as
different types of features for further analysis. Among these, model-based
image representation plays a significant role. It combines several important
image features into a framework by a parametric way, which contributes a
lot for the analysis of image information.

This thesis aims to introduce such novel model-based image representa-
tions for analyzing images in a multi-scale way. These novel image repre-
sentations are derived by combining the knowledge from the mathematics,
engineering and computer science fields. It turns out that the presented
framework delivers access to many low-level computer vision tasks.

1.1 Motivation

Model based image representation plays an important role in many computer
vision tasks such as object recognition, motion estimation, image retrieval,
etc. Therefore, signal modeling for local image structures is of high signifi-
cance in image processing. There are bulk of researches for intensity-based
modeling, see [43, 65, 71, 34, 35]. However, most of those approaches suffer
from non-stable performances when the illumination varies. Therefore, that
intensively investigated area of research is not adequate to model local struc-
tures. On the other hand, phase information carries most essential structure
information of the original signal [85]. It is invariant with respect to illumi-
nation changes. Consequently, modeling of local structures should take both
the intensity and phase information into consideration.

In 1D signal processing, the analytic signal [45] is an important complex
valued model which can be used for speech recognition, seismic data analysis,
airfoil design and so on. The polar representation of the analytic signal yields
the local amplitude and local phase, which are measures of quantitative and
qualitative information of a signal, respectively. In 1D case, there exist four
types of structures, they are the peak, pit, decreasing slope and increasing
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slope. The local amplitude is invariant with respect to local structures and
it indicates the energetic information of the signal. The local phase allows to
distinguish structures and it is invariant with respect to the local amplitude.
If the local structure varies, the local phase will correspondingly change.
Local amplitude and local phase are independent of each other and they
fulfill the properties of invariance and equivariance. Invariance means that a
feature value is not changed by a certain group acting on a signal. Opposite to
invariance, equivariance means there is a monotonic dependency of a feature
value on the parameter of the group action. If a set of features includes only
invariant and equivariant features, it thus has the property of invariance-
equivariance. In addition to satisfying the requirement of invariance and
equivariance, if a set of features is at the same time a unique description
of the signal, it then performs a split of identity [47]. The split of identity
indicates that different features represent mutually different properties of the
signal and the whole set of features describes completely the signal. Hence,
the analytic signal performs a split of identity.

For 2D images, there exist infinite many types of structures. These can be
classified with different features such as their intrinsic dimensions, the num-
ber and shape of junctions, or the type of curvature in a differential geometric
setting. According to their intrinsic dimensionality, 2D images can locally
belong to the intrinsically zero dimensional (i0D) signals which are constant
signals, intrinsically one dimensional (i1D) signals representing straight lines
and edges and intrinsically two dimensional (i2D) signals which do not belong
to the above two cases. The i2D structures are composed of curved edges and
lines, junctions, corners and line ends, etc. Intrinsic dimensionality [121] is
a local property of a multidimensional signal, which expresses the number of
degrees of freedom necessary to describe local structure. The term intrinsic
dimension used in image processing corresponds to the term codimension in
mathematics. In [121], a discrete concept of the intrinsic dimensionality has
been proposed and it was later extended to a continuous one by Kriiger and
Felsberg [72]. The ilD and i2D structures carry most of the important in-
formation of the image, therefore, correct characterization of them has great
significance for many computer vision applications.

1.2 Related Work

Many approaches have been proposed for the signal representation of local
image structures. The structure tensor [43] and the boundary tensor [65]
estimate the main orientation and the energy of the i2D signal. However,
the split of identity is lost, because the phase is neglected. In [71], a nonlinear
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image operator for the detection of locally i2D signals was proposed, but it
captures no information about the phase. There are lots of papers concerned
with applications of the analytic signal for image analysis. But they have
serious problems in transferring that concept from 1D to 2D in a rotation-
invariant way. The partial Hilbert transform and the total Hilbert transform
[48] provide some representations of the phase in 2D. Unfortunately, they
lack the property of rotation invariance and are not adequate for detecting
i2D features. Biillow and Sommer [20] proposed the quaternionic analytic
signal, which enables the evaluation of the i2D signal phase, however, this
approach also has the drawback of being not rotationally invariant.

For i1D signals, Felsberg and Sommer [36] proposed the monogenic signal
as a novel model. It is a rotationally invariant generalization of the analytic
signal in 2D and higher dimensions. In [70], the 3D monogenic signal has
been used for image sequence analysis. From the monogenic signal, the local
amplitude, local phase and local orientation can be simultaneously extracted.
They deliver an orthogonal decomposition of the original signal into ampli-
tude, phase and orientation. Thus, the monogenic signal has the property of
split of identity [36]. However, it captures no information of the i2D part. A
2D phase model was proposed in [31], where the i2D signal is split into two
perpendicularly superposed il1D signals and the corresponding two phases
are evaluated. The operator derived from that signal model takes advantage
of spherical harmonics up to order three. It delivers a new description of
i2D structure by a so-called structure multivector. Unfortunately, steering is
needed and only i2D patterns superimposed by two perpendicular i1D signals
can be correctly handled.

Quite another approach of local signal analysis is based on differential
geometry of curves and surfaces [63, 64]. The main points of concern are
some invariance properties of signal analysis and regional symmetry with
respect to certain combinations of Gaussian and mean curvatures of local
surface patterns in a Gaussian multi-scale framework [42, 41]. We will pick
up the differential geometry model of surfaces. But instead of a Gaussian
blurring operator, we will apply a Poisson blurring operator as a consequence
of the algebraic embedding we use.

Our purpose is to build a general model for all 2D structures. This model
should contain both the amplitude and phase information of 2D structures
in a rotation-invariant manner. In other words, the new model should be an
extension of the analytic signal to the 2D case.
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1.3 Contributions

In this thesis, we first present a rotationally invariant 2D quadrature filter.
It is designed by combining the rotation invariance of the monogenic signal
and the symmetry decomposition of the quaternionic analytic signal. The
assumed signal model is the superimposed 12D pattern with a flexible angle of
intersection. This approach also enables the extraction of local amplitude and
local phase in a rotation invariant way. Moreover, it is capable to correctly
treat superimposed i2D patterns with flexible angles of intersection. Hence,
it is regarded as an extension of the structure multivector [37].

Secondly, we present a novel signal model which covers 2D structures of
all intrinsic dimensionalities. By embedding our problem into a certain geo-
metric algebra, more degrees of freedom can be obtained to derive a complete
representation for the 2D structure. Based on the differential geometry, we
are able to design that general model for 2D structures in a rotation-invariant
manner by coupling the methods of tensor algebra, monogenic signal and
quadrature filter. The proposed model can be considered as the monogenic
extension of a curvature tensor. From this model, a local signal representa-
tion for i1D structures is obtained. It is exactly the monogenic signal [36]
as a special case of this general model. The local representation for i2D
structures, referred as the generalized monogenic curvature signal, can also
be derived based on the proposed model. The odd part of the generalized
monogenic curvature signal results from the even part by convolving with a
second order 2D spherical harmonic, which can be interpreted as a general-
ized Hilbert transform in the case of i2D signals.

From the generalized monogenic curvature signal, three independent local
features can be extracted. They are the amplitude, phase and orientation just
like that in the case of the monogenic signal. Hence, the generalized mono-
genic curvature signal also performs the split of identity, i.e., the invariance-
equivariance property of signal decomposition. The energy output (square
of the amplitude) can be regarded as a junction strength for detecting the
points of interest. The estimated orientation represents the local main ori-
entation of the structure and the phase feature can be used to classify some
specific i2D structures.

The amplitude, orientation and phase are coupled to a scale concept in one
single framework which is called the generalized monogenic curvature scale-
space. The generalized monogenic curvature scale-space is the scale-space of
the generalized monogenic curvature signal. But instead of considering that
unifying framework, the orthogonal scale-spaces for amplitude, phase and
orientation can also be studied separately for local signal analysis. These
features are scale dependent, but they are still independent of each other at
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each scale. The generalized monogenic curvature scale-space is completely
different to the well-known Gaussian curvature scale-space [79, 78]. Both the
definition of curvature and the scale generating operator are different. Com-
pared with the related research work, our main contribution is the derivation
of a general signal model for 2D structures, which enables us to simultane-
ously extract local features in a multi-scale way. The remarkable advantage
lies in the possibility of evaluating the 2D structure phase information in a
rotation-invariant manner, which gives access to many phase-based process-
ing in computer vision tasks.

Thirdly, some scale-space based image analysis are presented as appli-
cations of the proposed image representation framework. They include the
image reconstruction, detection of i2D image structures and optical flow es-
timation. Parts of this work have already been published in [112, 113, 106,
115, 114, 116, 119, 117, 118, 105].

1.4 Outline of the Thesis

The rest of this thesis is organized as follows. The second chapter introduces
the fundamental mathematical background of this thesis. A brief overview
of geometric algebra over 2D and 3D Euclidean space is given. We focus
on only the group representation and Clifford analysis on the introduced
algebra, which are related to the remaining part of this thesis.

Some signal processing techniques are very crucial for the understanding
of the proposed new framework. Hence, in chapter three, signal processing
basics represented in terms of the geometric algebra are introduced. Besides,
the monogenic signal and the monogenic scale-space, as the newly devel-
oped low-level image processing framework, are briefly described for better
understanding of the following chapters.

The fourth chapter describes a novel approach to design the rotationally
invariant 2D quadrature filter. The assumed signal model is the superim-
posed 12D pattern with a flexible angle of intersection. Combining the rota-
tion invariance of the monogenic signal with the symmetry decomposition of
the quaternionic analytic signal, this new quadrature filter can be derived.
From it, local amplitudes and phases of two i1D signals are easily to be
obtained. Hence, it can be considered as the extension of the structure mul-
tivector [37, 31], since the superimposed two i1D signals are not necessarily
required to be perpendicular to each other.

The most important contribution of this thesis is given in chapter five.
Where we propose a novel image representation to model 2D image struc-
tures. This new model is called the monogenic curvature tensor, which con-
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sists of the curvature tensor and its harmonic conjugate part. Motivated from
the differential geometry, the monogenic curvature tensor can be derived by
coupling the methods of tensor algebra, monogenic signal and quadrature
filter. It is unified within a scale-space framework by employing 2D damped
spherical harmonics as basis functions. From this novel image representation,
local amplitudes, main orientations and phases of 2D image structures can
be extracted, which delivers access to many applications for the computer
vision tasks.

The sixth chapter mainly focuses on the scale-space based image anal-
ysis. Three applications based on the presented theoretical framework are
introduced, which include image reconstruction, detecting i2D image struc-
tures using local phase and optical flow estimation. All these applications
demonstrate much advantages over the related work in the literature.

The summary and outlook of this thesis are given in the last chapter.
The novel theoretical framework is summarized and important contributions
are listed. Open problems and future work are also discussed. This thesis is
completed by an appendix and a list of references.



2. GEOMETRIC ALGEBRA

2.1 General Overview

Geometric algebra is one of the most powerful available mathematical sys-
tems, which can be seen as the Clifford algebra mainly focusing on a suited
geometric interpretation.

In the 19th century, Hamilton (1805-1865) invented the quaternions to
generalize complex numbers and rotations to 3D. In a separate development,
Grassmann (1809-1877) pioneered the introduction of the exterior or outer
algebra. Based on the former work of Hamilton and Grassmann, Clifford
(1845-1879) made a crucial step for the mathematical systems by introducing
his Clifford algebra. This algebra combined all the advantages of quaternions
with those of the vector geometry. The term geometric algebra was intro-
duced by Hestenes in the 1960’s, who made further development of Clifford
algebra in classical geometry and mechanics.

Geometric algebras constitute a rich family of algebras as generalizations
of vector algebra. Compared with the classical framework of vector algebra,
the geometric algebra has a more powerful subspace structure. Compared
with subspaces of a vector space, subspaces of the geometric algebra are not
restricted to interpretations within set theory, instead, they contain group
generators and have more powerful geometric meanings. Solving problems
in the framework of the geometric algebra contains more degrees of freedom,
which makes a tremendous extension of modeling capabilities available.

Geometric algebras have the properties of compact symbolic represen-
tations of higher order entities and of linear operations acting on them.
However, in the classic framework, different representations are mixed which
makes it very hard to formulate coherent derivations. One has to switch
between different representations in order to perform necessary calculations
or to interpret the results. For example, when one deals with vectors and
rotations, the former ones are commonly denoted by column vectors and the
latter ones are represented in terms of matrix algebra. In addition to this,
complex numbers can also be a representation of 2D vectors, 2D rotations
and scale transformations, respectively. In the classical way to formulate
multi-dimensional signal theory, those different mathematical approaches for
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denoting the same entities are mixed. Moreover, rotations by means of ma-
trix algebra are not intuitive with respect to their geometric meanings. The
rotation angle and axis are not obviously shown in the corresponding ma-
trix. Therefore, working in the geometric algebra is much easier than using
the classic vector algebra since representations in geometric algebra are more
simple and elegant. In this thesis, all derivations and image processing ap-
proaches are formulated in the framework of geometric algebra.

For a more general introduction to geometric algebra, one may refer to
2, 54, 53, 26, 97, 12, 76]. Much easier to understand the geometric algebra
are those in [73, 91, 27, 96]. The GABLE tutorial [27] is combined with
a Matlab-package for numerical computations in geometric algebra. There
exist also some other softwares which are helpful for computations with ge-
ometric algebras. CLICAL [86] is a calculator type computer program for
vectors, complex numbers, quaternions, bivectors, spinors, and multivectors
in Clifford algebras. Under OpenGL environment, Perwass has developed
a software library, called CluCalc, for geometric algebra computations and
visualization [90]. The online geometric calculator [60] is an ordinary desk
calculator that uses the Clifford numbers over a three dimensional Euclidean
Space. Other useful packages for geometric algebras can also be found in
[4, 55, 3, 94].

In general, the geometric algebra R, , , is a linear space of multivectors of
dimension 2", n = p + q + r, which results from a vector space RP*¢". These
indices mark the signature of the vector space. Hence, (p, ¢, ) means we have
p/q/r basis vectors which square to +1/—1/0, respectively. By choosing
the right signature, the geometric algebra will take on certain geometric
properties which enables adaption of the embedding framework to the task at
hand [104]. For the problems we concentrate on, only the geometric algebras
R, and R; over the Euclidean spaces R? and R? are needed. In such cases, n
is equal to p. The chosen dimensions of the vector spaces come from the fact
that an n-dimensional signal will be embedded into an (n + 1)-dimensional
vector space.

In this chapter, we will give brief introduction to the geometric algebras
R, and R3 over the Euclidean spaces R? and R3.

2.2 Multiplying Vectors

In the linear space, a vector has the geometric concept of directed line seg-
ment. The well-known products for vectors are the inner product and the
cross product, which enable algebraically the geometric ideas of the results.

The inner product is also known as the dot or scalar product. For two
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Fig. 2.1: Outer products of vectors.

vectors x and y, their inner product is defined as

x -y = [x[|y|cos(0) . (2.1)

The result is a scalar with magnitude |x||y| cos(#), where |x| and |y| are the
lengths of x and y, and @ is the angle between them. Therefore, the inner
product of two vectors is effectively an algebraic definition of cos(d). The
inner product of two vectors vanishes if they are perpendicular to each other.
Hence, this product encompasses partial information of the relative direction
of two vectors. To capture the direction information, the vector cross product
is introduced. The cross product of vectors x and y is x x y. The result
is a vector of magnitude |x||y|sin(f) in the direction perpendicular to the
plane defined by x and y. In this case, x, y and x x y forms a right-handed
set. The cross product exists only in 3D space. In 2D, their exists no such a
direction perpendicular to both x and y and this direction is ambiguous in
four or more higher dimensions. Therefore, a more general concept is required
such that full information about relative directions can still be encoded in all
dimensions. The outer or exterior product, proposed by Grassmann, provides
a way of encoding a plane geometrically without relying on the notion of a
vector perpendicular to it.

The outer product of two vectors x and y, denoted as x Ay, is a bivector.
Same as the cross product, the magnitude of x Ay is |x||y]|sin(f). The outer
product of vectors is anti-commutative and associative

XAy =-yAX (2.2)

(xAy)ANz=xAN(yANz)=XAyANzZ. (2.3)

Fig. 2.1 visualizes the outer products of vectors. The outer product of two
vectors is not a scalar or a vector, but an oriented area in the plane containing
x and y. The outer product of three vectors x Ay Az represents an oriented
volume.

Clifford united the inner product and outer product into a single frame-
work by introducing his geometric product. The geometric product of two
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Fig. 2.2: Basis vectors e, e; and the unit pseudoscalar I, = eqs.

vectors is defined as
Xy =X'y+XAy. (2.4)

The right-hand side is a sum of two distinct objects, they are carried into a
single entity, which enables many mathematical simplifications.

2.3 Geometric Algebra in 2D Euclidean Space R>

2.3.1 Definition

The 2D Euclidean space R? is spanned by the orthonormal basis vectors e;
and e;. The geometric algebra of the 2D Euclidean space Ry consists of
22 = 4 elements,

Ry = span{l,e;, ez, e10 = I} . (2.5)

Here e, is the bivector or unit pseudoscalar which is formed by the outer
product of e; and e,

e =e Ney=—e Ne = _[2 . (26)

All the elements of Ry are shown in Fig. 2.2, which represents an oriented
plane. For every two vectors X = x1e; +x2e5 and y = y,€; +y2€, their inner
product reads

Xy = T1Y1€1 - €1+ T1Y2€1 - €3+ TaY1€2- €1 + Tola€s - €3 = T1Y1 + oY . (2.7)

Note that in geometric algebra, vectors are not denoted in terms of column
or row vectors, but solely as linear combinations of basis elements. The outer
product of two vectors is defined as

XAy = (T1y2 — T2y1)e12 - (2.8)

The basic product of geometric algebra is the geometric product, indicated by
juxtaposition of the operands. For orthogonal vectors, the geometric product
is a pure bivector

€€y =€ =¢€e1-et+e Ne =e Ney=—e Ne] = —ey . (29)
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Tab. 2.1: The geometric product of basis elements {1, e, ey, €12}.

1 €1 €2 €12

1 1 (S5} €9 €19
€1 €1 1 €12 €2

€2 €2 —€12 1 —€
€12 | €12 —€ € 1

The geometric product of two arbitrary vectors x and y can be decomposed
into their inner product and outer product

Xy =Xy +XAYy =mzy1 + Toys + (T1y2 — T2y1)€12 - (2.10)

The inner and outer product of vectors can also be defined according to the
commutator and the anti-commutator of the geometric product

1

X y= §(Xy+yx) (2.11)
1

XAy = §(xy—yx) . (2.12)

The multiplication table of the basis elements is shown in Tab. 2.1. The
bivector ejo = I5 squares to -1 and it represents a rotation by 90° from e; to
ey. Therefore, the imaginary unit ¢ of the complex numbers can be identified
with I, yielding an algebra isomorphism. That means every calculation in
the complex domain can be performed by a calculation in the algebra of the
space spanned by {1, I5}. Applying the algebra isomorphism, a rotation by
angle 6 can thus be represented by cos(6) + sin(0) Iy = exp(612) according to
cos(f) + sin(f)i = exp(0i) in the complex domain.

For the geometric algebra in 2D Euclidean space, we have four basis
elements, a general combination of these elements is called a multivector

M = a+ bey + ces + deys . (2.13)

The k-grade part of a multivector is obtained from the grade operator (M )y.
Hence, (M) is the scalar part of M, (M), represents the vector part, (M),
indicates the bivector part. Given two multivectors M; and M, their sum
reads

M1 + M2 = (a1 + b161 + ey + dlelg) + ((lg + bg@l + ey + dgelg) (214)
= (a1 + CZQ) + (bl + 62)e1 + (Cl =+ 02)e2 =+ (dl + dg)elg .
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The geometric product of two multivectors takes the form

M1M2 = (al + blel + c1e9 + dleu)(az + b2€1 —+ coeq + d2e12) (215)
= ((IlCLQ + b1b2 + cic9 — dldg) + (albg + blag - Cldg + dlcg)el
+ (a101 + bldz + crag — dle)eQ + (aldg + blcQ — Clbz + dlag)eu .

Multivector addition and multiplication obey the associative and distributive
laws. The geometric product of a multivector M by I,! from the right is
called the dual of M

M*=MI;' = —Mey, . (2.16)

The reverse of a multivector is denoted by a tilde and it takes the form

M = (M)o + (M) — (M) . (2.17)

The reversion describes the result when basis vectors are multiplied in the
reverse order. Thereby, scalars and vectors remain unchanged, but bivectors
are negated. The role that the reversion plays is just like the complex con-
jugate in many cases. The reversion is involutive and anti-automorphic, this
means

M=M and MN=NM . (2.18)

The modulus of a multivector can be obtained from its reverse, that is

IM| = \/(MM), . (2.19)

As an alternative way, the modulus of a multivector M = a+ be; + ces + deq
is also given by its Euclidean norm

M| =Va2+b+c2+d?. (2.20)

Hence, for a vector x, its modulus can be obtained from the square root of the

product with itself. Its inverse vector is correspondingly given by x! = 2

XX

2.3.2 Reflection and Rotation

A special case of the multivector is the spinor, which is combined by a scalar
and a bivector, e.g. S = a + dIy = rexp(0ly). Here, r represents a scaling
and the angle ¢ indicates a rotation. Therefore, the spinor is equivalent to a
scaling-rotation. The inverse of a spinor reads
St =rlexp(—0L,) = 5 . (2.21)
|57
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»
| 2

nxn x = x| + xt

Fig. 2.3: Reflection of vector x with respect to vector n.

All spinors in Ry form an even-grade subalgebra Ry, which is isomorphic
to the complex algebra, i.e Ry ~ C. Hence, complex numbers which are
interpreted as scaling-rotations, are now replaced with spinors. This means
z = x + iy = rexp(0i) can be substituted by S = z + ylo = rexp(0l,).
However, complex numbers which interpret vectors are then represented as
the action of spinors on the basis vector e, i.e x = 1.5 = re; + yes.

By interpreting the scaling-rotation in terms of Lie groups [99, 9], the unit
pseudoscalar I, is considered as the generator of the rotation. The group of
scaling is generated by the scalar 1. The logarithm of the spinor plays an
important role for the definition of the local phase. For any spinor s € Ry,
its logarithm can be defined as [52]

_ (5)a (I(S >2|)
log(S) = log(|S]) + TGN atan S ) (2.22)
where log(|S|) is the ordinary real logarithm of the modulus of S, atan de-
notes the inverse tangent mapping for the interval [0, 7).

The interpretation of reflection, same as the scaling-rotation, can also
be represented in an algebraic way (see Fig. 2.3). Let n be a unit vector
describing the orientation of an arbitrary line, any vector x which is reflected
with respect to this arbitrary line can be split into two parts, i.e. x = xll +x*.
Here, x!l is the component of x parallel to n and x* refers to the part of x
which is perpendicular to n. The part x!!, called the projection of x on n, is
given by projecting x onto n

xl = (x-n)n. (2.23)

The other component x* is called the rejection of x with respect to n and it
takes the following form

xtT=x—xl=x—(xn)n=(xn)n— (x-n)n= (xn—x-n)n= (xAn)n.

(2.24)
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From Fig. 2.3, it is obviously shown that the reflection of x can be obtained
by x* —x/I. Considering equations (2.23) and (2.24), we are able to have the
reflected result

xll—x+ =

x-n)n— (xXAn)n (2.25)
n-x)n+ (nAx)n
n-x+nAx)n

(
(
(
(nx)n = nxn .
Therefore, the reflected result of any vector x with respect to the orientation
vector n is given by the two-sided multiplication with the orientation vector.
The rotation of a vector x can be implemented based on successive re-
flections, i.e. non;xnin,, where n; and n, denote two orientation vectors. In
this way, the rotation angle is two times the angle between n; and ns, this
means

X/ = DNy XNy = (ngnl)x(nlng) (226)
= x(nny)? = x(cos(#) + sin(f)eis)?
= xexp(20e;s) ,

where 6 is the angle between the orientation vectors n; and ns.

Up to now, we have understood some basic definitions of the geomet-
ric algebra in 2D Euclidean space. Some important features of R, are in
accordance emphasized as below

e The geometric product of two parallel vectors is a scalar number, which
is the product of their lengths.

e The geometric product of two perpendicular vectors is a bivector, it
represents the oriented area formed by the two vectors.

e Parallel vectors commute under the geometric product, however, per-
pendicular vectors are anti-commutative.

e The bivector squares to -1. It has the geometric effect of rotating e
basis vector to e; by the angle of 90°.

e Complex numbers are contained in Ry as a subalgebra which is isomor-
phic to the even-grade subalgebra R; .

e The subalgebra of spinors represent the group action of scaling-rotation
over R,.
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1
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Fig. 2.4. Basis elements of R3.

Tab. 2.2: The geometric product of basis elements in Rj.

1 €1 €2 €3 €23 €31 €12 I3

1 1 €1 €2 €3 €23 €31 €12 I3
€ | € 1 €12 —€31 I3 —€3 €2 €23
€2 €2 —€12 1 €23 €3 I3 —€ €31
€3 €3 €31 —€23 1 —€2 €1 I3 €12
€3 | €3 I3 —e3 € -1 —epp e —e
€ [ €3 €3 Iy —e; ep -1 —e3 —ey
ep | e —€ e I3 —e3 e -1 —e3

I3 I3 €23 €31 €12 —€ —€9 —€3 -1

2.4 Geometric Algebra in 3D Euclidean Space R?

2.4.1 Basic Definitions

The Euclidean space R? is spanned by the orthonormal basis vectors {e;, e, e3}.
The geometric algebra of the 3D Euclidean space R3 consists of 23 = 8 ele-
ments,

Rg, = span{l, €1, €y, e3, €23,€31,€19,€193 = Ig} . (227)

All the elements of R3 are illustrated in Fig. 2.4. Here ey, €31 and e, are the
unit bivectors and the element ejo3 = I3 is a trivector or unit pseudoscalar.
These three bivectors are independent of each other, each encodes a distinct
plane. Sweeping the bivector e;e, along the vector es results in the trivector
I3, which is a 3D volume element. The squares of bivectors and the trivec-
tor equal one, and the trivector commutates with all elements in R3. The
geometric products of these basis elements are shown in Tab. 2.2. According
to the habits of geometric calculus [54], the differential operator is always
combined with the corresponding basis. Hence, the vector-valued 3D nabla



2. Geometric Algebra 16

operator is defined as

0 0 0
Vi3 = . 2.28
3 1 8x1 + 2 8x2 + s 81'3 ( )
The Laplacian is a scalar operator, which has the following form
0? 0? 0?
A =V3V3 = (2.29)

ot s
oz O0x3  0x3

Therefore, for a vector x = x1e; + x2€9 + x3e3 in the 3D Euclidean space, its
derivative with respect to the basis vectors is given by

0 0 0
=—e;— —_— —X . 2.
Vix = e o X+ ey s X+ e; 8x3X (2.30)

In accordance, its Laplacian is shown as below

0 0? 0

= X + X 4+ X .
ox? 0x3 0x}

Asx (2.31)

Any two vectors in the 3D Euclidean space, e.g. x = x1€; + xse5 + x3e3 and
Y = y1€1 + Y262 + yses, can be multiplied by using the geometric product,
and we still have

Xy =X"Y+XAYy. (2.32)

The inner product of two vectors is defined as
Xy =21y + Tays + T3Y3 - (2.33)

The bivector x Ay belongs to the 3D space, spanned by the e; A e; (for all
i, j). The outer product of two 3D vectors is given by

XAY = (ays—x3y2)eaNes+ (31 —21Y3)esAer+(T1y2a—2ayr Jer Aey . (2.34)

The components are the same as those of the cross product, but the result
is a bivector rather than a vector. The bivector x A y represents a plane
spanned by x,y € R?. The dual of this plane, given by (x Ay)*, is shown
in Fig. 2.5. It indicates the normal of this plane. The side of the plane from
which the normal (x Ay)* sticks out from is usually regarded as the ”front”-
side of the plane. Thus, a bivector represents a sided plane. Accordingly,
the dual of the sided plane y A x is (y A x)*, which points in an opposite
direction. The idea of a plane normal vector does only work in R?. In any
dimension higher than three, the set of vectors perpendicular to one vector
spans a higher dimensional space than a plane.
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Y
X

(y Ax)'y

Fig. 2.5: Dual of plane represented by bivector x A'y.

Due to the orthogonality of basis vectors, their outer products are equiv-
alent to their geometric products

(S5} VAN €y = €1€9 = €19 (235)
(S5) N €3 — €9€3 — €23 (236)
e Ne; = eze; = ez . (237)

An arbitrary bivector is a linear combination of these basis bivectors,
B = aeio + begg + ceos . (238)

The interpretation of bivector addition is most easily seen when the bivectors
are expressed in terms of the outer product with a common vector factor.
In 3D space, this is always possible because any two planes will either be
parallel or intersect along a common line. Given two bivectors B = x A z
and By = y A z, the bivector addition is defined as

Bi+By=xANz+yAz=(x+y) Nz. (2.39)

The geometric significance of this can be depicted in Fig. 2.6. By decompos-
ing the vector x and y into components parallel and perpendicular to x +y,
we have

x=xl+x* y=yl+yt, (2.40)

where y* = —x*. In this case, the addition of bivectors in 3D is reduced to
the addition of coplanar bivectors. This is evidently shown as follow

xANz+yAz=(x+y)Az=+yhrz=xlrnz+ylaz. (241

The geometric product of two basis bivectors results in a third basis
bivector, for example,

(82 AN eg)(61 N e2) — €362€e2€1 — €361 (242)

(e1 N 62)(62 N 83) = €1€e9e9e3 — €13 — —e3eq . (243)
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Fig. 2.6: Addition of two bivectors.

It is obvious that the geometric products of bivectors are anti-commutative.
Furthermore, the basis bivectors all square to -1. These are the properties
of the generators of the quaternion algebra. Quaternions are generalized
complex numbers of the form ¢ = a + ib + jc + kd, where the generalized
imaginary units ¢, j and k satisfy the following multiplication rules:

i =% =k =ijk=—1 (2.44)
ij =k=—ji, jk=i=—kj, ki=j=—ik. (2.45)

Therefore, we can identify the imaginary units ¢, 7 and k& of quaternions with
the following bivectors in Rj.

71— €93, j — €12, k — €371 . (246)

The property of the quaternion imaginary units based on the chosen bivectors
can be checked as follow

P =(ey)’ = -1, j°=(enn)’=—1, k*=(esn)’=-1 (2.47)
ijk = exenez = —1 (2.48)

1] = eg3e13 = €31 = k (2.49)

Jk = enes =exn =1 (2.50)

ki =e3e3=epn=7. (2.51)

Hence, the subalgebra with basis {1, es3, €12, €31 } is isomorphic to the quater-
nions H. However, the above mentioned identification is only one possible
isomorphism.

In 3D space, the geometric product of a vector and a bivector is expressed
as xB. To understand the properties of this result, the vector x is decom-
posed into two terms

x =x/ + x| (2.52)
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B
Fig. 2.7: Inner product of a vector and a bivector.

where x!l indicates the part which is parallel to the plane B and x* is the
component perpendicular to the plane. This plane can thus be represented
as B = xIl Ay with y being a vector that is orthogonal to x/l in this plane
(see Fig. 2.7). Hence, the product xB takes the following form

xB =+ xHEIny) =xIxl Ay) +xt & Ay) . (2.53)
The first component of equation (2.53) is further written as

xl(xlh Ay) = xl(xlly) = (x)?y (2.54)

which is a vector in the y direction. The second component of equation

(2.53) reads

Ll

xtH(xlAy)=xt Axll Ay =xtxly . (2.55)

It is the outer product of three orthogonal vectors, namely, a trivector. There-
fore, the geometric product of a vector and a bivector results in two terms,
i.e. a vector and a trivector. Hence, it can be obtained as

xB=x-B+xAB. (2.56)

The inner product x - B = x/l - B now subtracts the subspace represented by

x|l from the subspace indicated by B. Opposite to this, the outer product

adds the subspace represented by x* to the subspace indicated by x/l A y.
The inner product between a vector and a bivector is anti-symmetric,

x-B=xNy=—-xlp)xl=-B-x. (2.57)

Thereby, as an alternative, it can also be obtained as

x-B= %(XB — Bx) . (2.58)
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The outer product x A B returns a trivector which is symmetric
xAB=xxlly =xllyx* =BAx. (2.59)
Hence, it can be alternatively written as
XA\ B = %(XB + Bx) . (2.60)
A general combination of the elements in Rj3 is called a multivector,

M =a+ be1 + ceqy + de3 + eeoqz + f631 + geio + h[g . (261)

The geometric product of two multivectors M; and Ms is indicated by jux-
taposition of M; and M, i.e. M{M,. The k-grade part of a multivector is
obtained from the grade operator (M);. A blade of grade k, i.e. a k-blade
By, is the outer product (A) of k independent vectors xy, ..., x; € R3

Bk =X N ... AXp = <X1...Xk>k . (262)

Hence, (M) is the scalar part of M, (M), represents the vector part, (M),
indicates the bivector part and (M) is the trivector part, which commutes
with every element of the Rj.

2.4.2 Multiplication of Multivectors
The inner product of two multivectors is defined as
M1 . M2 - <M1M2>|7’—5| 5 (263)

where My = (My),, My = (Ms)s and r,s > 0. For some specific cases, the
following rules occur:

e If M; and M, are scalars, which means » = s = 0, their inner product
is zero.

e For two vectors, their grades satisfy » = s = 1. Hence, the inner
product is their scalar product.

e The inner product of a vector x (r = 1) and a bivector B (s = 2) is
given by the vector part of their geometric product

X-B:<XB>1:%(XB—BX):—B-X. (2.64)
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e For a vector x (r = 1) and a pseudoscalar A3 (s = 3), their inner
product is identical to their geometric product

X/\Igz)\Xlgz (AIg)X (265)
e The inner product of two bivectors By and By (r = s = 2) reads

1
B1 . Bg = <B1B2>0 = §(BlB2 + BgBl) = Bg . Bl . (266)

e For a bivector B (r = 2) and a pseudoscalar A\l3 (s = 3), their inner
product is given by their geometric product

B-As =Bl = (\3)-B. (2.67)

e Given two pseudoscalars A\ I3 and A\yI3 (r = s = 3), their inner product
is just their geometric product

M) - Ools) = —Mdo = (Nols) - (M) . (2.68)

The outer product of two multivectors takes this form
M1 N M2 = <M1M2>r+s 5 (269)

where M; = (M), My = (Ms)s and 7+ s < 3. To be more specific, we have
the following cases:

o If either M; or Ms is a scalar, that is 7 = 0 or s = 0, their outer product
is identical to the scalar multiplication.

e Given two vectors x and y (r = s = 1), the outer product reads
XAY = (T2y3—T3Y2)€2e3+(T3y1 —T1y3)eser +(z1y2—xoy1)erey . (2.70)

e For a vector x (r = 1) and a bivector B (s = 2), their outer product is
given by the pseudoscalar part of their geometric product

1
XN\ B = <XB>3:§(XB+BX):B/\X. (2.71)

Except for the case (r = s = 2), the geometric product of two multivectors
is always the combination of their inner product and their outer product

MMy = My - My + My A M, . (2.72)
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The geometric product of two bivectors By and B, is the combination of their
inner product and their cross product

B1B2 = B1 . BQ + Bl X B2 , (273)

where the cross product can be written as

1
Bl X BQ = —BQ X Bl = Q(BlBQ — BQBl) . (274)

The relationship between this cross product and the Gibbs cross product can
be established through the duality. For a multivector M, its dual is obtained
from the product of M with the inverse of the unit pseudoscalar

M*=MI;' = —MI; . (2.75)

Hence, in the Euclidean 3D space, the dual of a vector is a bivector. This
bivector is formed by two linear independent vectors which are orthogonal
to the vector. Analogously, the dual of a bivector is a vector which is per-
pendicular to the plane represented by the bivector. Therefore, the duality
maps the 3D bivector space into the 3D vector space and vice versa.

In terms of duality, the Gibbs cross product equals the cross product
of geometric algebra. Given two vectors x = xie; + r2€s + x3€3 and y =
y1€1 + Y2eo + yzes, their Gibbs cross product can be obtained as

XXgy = ($2y3 - $3y2)61 + (xlyg - $3y1)62 + ($2yl - $1y2)es . (2-76)

The cross product of the dual of x and the dual of y is given by

* *

X" Xy" = (71€3 + 12€3 + T3€12) X (Y1€23 + Y2€31 + Yz€12) (2.77)
= (w3y2 — Toys)ers + (T3y1 — T1y3)es1 + (212 — Tay1)eis
Hence, the following form can be derived
(xXgy)' =x"Xy" ' =yAx. (2.78)

Having different products occurring in R3, some precedence rules for the

products should be taken into consideration. The wedge product binds

strongest, the inner product binds stronger than the geometric product.
The modulus of a multivector in Rj3, same as that in Ry, can be defined

M| =\/(MM)q, (2.79)

where M refers to the reverse of M and it takes the following form

as

M = (M)o+ (M) — (M)s — (M)3 . (2.80)
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Fig. 2.8: Reflection of a bivector with respect to a vector.

The reverse of a multivector is obtained by reversing the order of basis ele-
ments. The scalar and vector components remain the same, but the bivector
and the trivector parts are negated. As for Ry, the reversion is an involu-
tive anti-automorphism. The main automorphism of geometric algebra is the
grade involution

—

M = (M)o— (M)1+ (M)s — (M)s . (2.81)
The grade involution satisfies the rule
(Mle) = ]\/4\1]\/4\2 . (2-82)

The conjugation of a multivector [73] results from the combination of the
grade involution and reversion

—
—~

N = M = (M) — (M), — {M)s + (M)5 (2.83)

2.4.3 Reflection and Rotation

In contrast to Ry, the reflection in R3 has more degrees of freedom. Reflection
of a vector with respect to a vector is very similar to that of Ry, the only
difference is that the vectors are now in 3D space. In addition to it, bivectors
can also be reflected with respect to a vector (see Fig. 2.8). Let B be a
bivector which is formed by the outer product of two vectors x and y, i.e. B =
x Ay. The reflection of the bivector B with respect to a vector n is obtained
as

nBn = (nxn) A (nyn) . (2.84)

This means the reflection of a bivector with respect to a vector is the outer
product of the separately reflected vectors. This property is also called the
outer-morphism. Analogously, a vector x can also be reflected with respect
to a bivector B as shown in Fig. 2.9. The reflected result is given by BxB.
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BxB

Fig. 2.9: Reflection of a vector with respect to a bivector.

Besides its interpreting algebraic properties, the geometric algebra over
3D Euclidean space is also able to represent the group of rotations and
isotropic scale transformations by spinors. The spinor can be regarded as
a special case of a multivector, i.e. the even graded multivector. A general
spinor in Rj3 reads

S=a+ b623 + cesz + d612 . (285)

All spinors form a proper subalgebra of R, i.e. R}, which is isomorphic to
the algebra of quaternions, R =~ H [73]. A spinor represents a scaling-
rotation, i.e. S = rexp(6B), where B is a bivector indicating the rotation
plane, 6 is the rotation angle within that plane and r refers to the scaling
factor. There exists the isomorphism between the algebra of complex num-

bers and the subalgebra of Rs , which is generated by {1, I3} or {1, %} with
B

5] being a normalized bivector. The idea behind spinors is to generalize
the interpretation of a unit complex number as a rotation. It is shown in
Tab. 2.2 that the square of the basis bivector or trivector equals -1, there-
fore, the imaginary unit ¢ of the complex numbers can be substituted by a
bivector or a trivector, yielding an algebra isomorphism. A vector-valued
signal f in R3 can be considered as the result of a spinor acting on the es
basis, i.e. f = be; + ce; + des = e3S. The transformation performed un-
der the action of the spinor delivers access to both the amplitude and phase
information of the vector-valued signal f [106]. From the logarithm of the
spinor representation, two parts can be obtained. They are the scaling which
corresponds to the local amplitude and the rotation which corresponds to
the local phase representation. The Rs-logarithm of a spinor S € RJ takes
the following form

 oa($)ho -+ o511  log([80) 4 512 atan (16522
08(5) = Jog(S)o + log($))2 = o) + 1o atan (U221 (256

where atan is the inverse tangent mapping for the interval [0, 7). The scalar
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Fig. 2.10: Rotation in 3D space. The rotation axis is denoted by n and the
rotation angle is 2¢p.

part (log(S))o = log(]S|) illustrates the logarithm of the local amplitude,
hence, local amplitude is obtained as the exponential of it

|S| = exp(log|S|) = exp(({log(.S))o) - (2.87)

The bivector part of log(.S) indicates the local phase representation

(log(9))2 = |§§;z|atan (%g;?) : (2.88)

A spinor with a unit magnitude is called a rotor, which means a® + b* +
c2+d? = 1. In order to avoid pseudoscalar components, the action of a spinor
is represented by means of a two-sided product. For example, the action of a
vector x is denoted as SxS, where S = a — beys — ces; — deys is the reverse of
the spinor S. In the case that the spinor is a rotor, SS = a?> +b*+c*+d? = 1.
Furthermore, a rotor S is possible to be written as S = cos ¢ —n* sin ¢, where
n is a unit vector and ¢ indicates a rotation angle. Hence, the two-sided
action of the rotor on a vector x represents a rotation of the vector into 3D
space. This 3D rotation can be visualized in Fig. 2.10. In this case, the
vector is split into two parts

x=xl+x"=(x-n)n+ (xAn)n, (2.89)

where x! is the component which is parallel to the unit vector n and x*
indicates the part which is perpendicular to n. Evaluating the action of the
rotor yields

SxS = (cosy + n*sinp)x(cos ¢ — n*sin ) (2.90)
= (cosy + n*sing)(cosp — n*sin )x!| + (cos p + n* sin @) *x*
= x/l(cos? p — sin? ¢ + 2n* cos @ sin @)
= x4 (cos(2¢) 4+ n*sin(2))x* .
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Hence, the rotation of a vector in 3D space only rotates the part that is
perpendicular to the unit vector, however, the part parallel to it remains
unchanged. The double sided operation results in anti-clockwise rotation
with an angle of 2¢.

Since there is the isomorphism between the complex numbers and the
subalgebra of Rz generated by {1, %}, the exponential map of a bivector
can be written as

B
expB = cos |B| + |§|Sin |B| . (2.91)
It is decomposed into the scalar and the bivector parts which establishes
a generalized Euler equation. Correspondingly, the exponential map of the
dual rotation vector is directly related with the rotor

exp(pn®) =cosp+n*sinp =5 . (2.92)

Therefore, in terms of Lie group theory, the generation of an arbitrary 3D
rotation is given by the bivector which is dual to the unit rotation vector.
In contrast to 2D, an angle in 3D has the directional information. Due to
the representation of a rotation by the dual of the rotation vector, angles are
better considered as bivectors.

Reflections with respect to a normalized vector are always reflections on
a line passing through the origin. Just like the 2D case, two consecutive
reflections on different normalized vectors are equivalent to twice the angle
between those two normalized vectors. Fig. 2.11 shows such a setup in 3D
space. The normalized vectors n,m € R? enclose an angle # and define
a rotation plane through their outer product n A m. Reflecting a vector
x € R? first on n and then on m, rotates the component of x which lies in
the rotation plane by a angle of 20. The component of a perpendicular to
the rotation plane remains unchanged.

The rotation of the vector x in the plane n A m can be obtained as
mnxnm. From the definition of the geometric product, we can find that

mn=m-n+mAn (2.93)

and also

—_——

nm=n-m+n/Am=n-m+ (mAn). (2.94)

Since the reverse of a scalar is still itself, it follows
mn = nm . (2.95)
Hence, consecutive reflections can be rewritten as

RxR , (2.96)
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Fig. 2.11: Rotation of a vector by consecutive reflections on two different
normalized vectors.

where R = mn refers to a rotor and satisfies RR = 1. Expanding the rotor
R, we have

R=mn=m-n+mAn=cosf + Bsinf = exp(Bf) , (2.97)

where B indicates the normalized version of m A n, that is

A
mAan (2.98)

" mAn|’

Hence, it turns out that R actually represents a rotation by angle 26 in the
plane spanned by n and m. Just as for reflections, with the same rotor,
we can rotate vectors and bivectors. It turns out that a rotor also has the
property of outer-morphism. This means that given a rotor and a blade By =
which is the outer product of k independent vectors x, ..., x; € R3

Bk =x; AN\ ... /\Xk = <X1...Xk>k . (299)
We can expand the expression RBkﬁ as
RBiR = (Rx1R) A (RxsR) A ... A (Rx4xR) . (2.100)

Hence, the rotation of the outer product of a number of vectors is identical
to the outer product of a number of rotated vectors.
As a conclusion, some basic results of R3 are summarized as follow:

e R3 contains the vector space R? as a subspace.

e The geometric product of two parallel vectors is equivalent to their
inner product. For two perpendicular vectors, their geometric product
equals their outer product.
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e A spinor represents a scaling-rotation. The geometric product of a
vector and a spinor results in a scaled and rotated vector.

e There exist the isomorphisms between the complex numbers and the
subalgebras generated by {1, I3} and {1, %}.

e All spinors form the even subalgebra of Ry, i.e. R3, which is isomorphic
to the algebra of quaternions, i.e. Rf ~ H.

e One can switch from spinors to rotation vectors and from plane to
normal vectors by using the property of duality.

2.5 Summary

In this chapter, a powerful algebraic framework was introduced. Brief in-
troduction to the geometric algebra over FEuclidean 2D and 3D spaces was
given as the mathematical background for the remaining part of this thesis.
The 2D and 3D vector spaces are extended by the outer product of vectors,
which denote directed planes. Therefore, R? is a subspace of R3. Subspaces of
the geometric algebra are not restricted to interpretations within set theory,
instead, they have geometric meanings.

The algebra product of geometric algebra is the geometric product. The
geometric product of two vectors is the combination of their inner product
and outer product. It represents the geometric relation between them. For
a vector and a spinor, their geometric product indicates the group action on
this vector, which will result in a scaled and rotated vector. The three-fold
outer product of vectors denotes a directed volume spanned by three vectors.
The outer product of three basis vectors is a trivector or pseudoscalar, which
enables us to switch between spinors and rotation vectors or between planes
and normal vectors by means of duality. All spinors form even subalgebras
Ry and R3, which provide representations of scaling-rotations in 2D and 3D
spaces by means of spinors. The subalgebras of R and R3 are isomorphic
to the complex numbers and quaternions, respectively.

Geometric algebra enables simple and elegant representations. Compared
with the classical framework of vector algebra, the geometric algebra has a
more powerful subspace structure with particular geometric meanings. Solv-
ing problems in the framework of the geometric algebra contains more degrees
of freedom, which makes a tremendous extension of modeling capabilities
available.



3. FUNDAMENTAL OF SIGNAL
PROCESSING FOR COMPUTER
VISION

Computer vision has progressed considerably in the past decades. From
methods only applicable to simple images, it has developed to treat dra-
matically increasing complex scenes, volumes and time sequences. However,
there still exist many fundamental questions of how to handle and represent
vision information in an effective and meaningful way. For low-level com-
puter vision, signal processing techniques play important roles for modeling
and representing image information. Low-level image features are extracted
and united as building blocks for high-level computer vision tasks. In this
chapter, some basic concepts of signal processing for computer vision will be
introduced. They are fundamental knowledge for understanding the follow-
ing chapters in this thesis.

3.1 Local Structures and Intrinsic Dimensionality

Local image structures play an significant role in many computer vision tasks.
For an 2D image, its local structures are tightly associated with the term in-
trinsic dimension [121, 71]. This term is important for multi-dimensional
signal processing. Hence, it is necessary to distinguish the global embedding
dimension n of a signal and its local intrinsic dimension d. In image process-
ing, intrinsic dimension corresponds to the term codimension in mathematics.
If S C R" is a subspace, then the intrinsic dimension is given by

d(S) = codim(S) = n — dim(S) . (3.1)

Intrinsic dimensionality is a local property of a multidimensional signal,
which expresses the number of degrees of freedom necessary to describe lo-
cal structures. In an 2D image, there exist three types of structures. The
image f(x), x € R? can be locally classified as one of the following intrinsic
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d-dimensional (idD) structures

{i0D}, Va,y eR*: f(x) = f(y)
d(f) e {ilD}, dneR:\{(0,0)},VzeR* a €R: f(z)=f(z+n-a).
{i2D}, else

(3.2)
The first class is the intrinsically zero dimensional (i0D) signal which is con-
stant in the spatial domain. The frequency representation of the i0D signal is
a delta function in the origin which indicates the DC component. The intrin-
sically one dimensional (i1D) signal belongs to the second class. It is constant
in one orientation in the spatial domain. Its spectral domain representation
is concentrated on a line which is orthogonal to the constant lines in the spa-
tial domain. In an 2D image, line and edge structures, which are constant
along one orientation, can be regarded as i1D signals. The third class is the
intrinsically two dimensional (i2D) signal which varies in at least two orienta-
tions. The i2D structures are composed of curved edges and lines, junctions,
corners and line ends, etc. Fig. 3.1 illustrates these three basic classes of in-
trinsic dimensionality. There exists a close relationship between the concept
of intrinsic dimensionality and the statistical properties of natural images
[28, 123, 122]. Local structures show a clear order in their probability of oc-
currence. The i0D signals, which correspond to homogeneous regions in an
image, have the highest probability. The i1D signals, representing edge and
line like structures, appear less than i0D signals. The most rare cases in na-
ture images are i2D signals, which have higher cardinality than the other two
types of structures. This implies that the amount of information carried by
a local image structure increases systematically with its intrinsic dimension-
ality. The relevance of the concept of intrinsic dimensionality with respect
to the processing of images is also supported by a variety of results from
neurophysiological and psychophysical research on biological vision systems
(39, 110, 109, 120].

3.2 Analytic Signal in 1D and 2D

Signal processing is a fast-growing segment of modern science and technology,
which integrals various techniques into a framework. Analytic signal is an
important concept in signal processing with wide applications. Since the
topic of this thesis focuses on modeling 2D image structures in terms of the
generalization of analytic signal in a rotation-invariant manner. Thus, a brief
introduction to existing definitions of analytic signals in 1D and 2D is given
in this section.
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Fig. 3.1: Top row: from left to right are i0D, i1D and i2D signals. Bottom
row: illustration of the three basic classes of intrinsic dimensionality
as occurring in a natural image.

3.2.1 The 1D Analytic Signal

In one dimensional (1D) signal processing, the analytical signal [45] is an
important complex valued model which can be used for narrow-band com-
munication, speech recognition, seismic data analysis, airfoil design and so
on, see [50, 29, 82, 83].

The analytic signal f4 : R — C of a real 1D signal f is defined as the sum
of f and a version of f which is shifted in phase by (—%) multiplied by i.
The shifted version of f is the Hilbert transform fy of f. Thus, 1D analytic

signal can be formulated in the spatial domain as

falx) = f(z) +ifu(z) = f(x) +i(f(z) * h(z)) , (3.3)

where h(z) = = refers to the Hilbert transform in the spatial domain. In
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the frequency domain, the Hilbert transform is given by

1 ifu>0
H(u) = —isign(u) with sign(u)=4¢ 0 ifu=0 (3.4)
-1 ifu<O
and the analytic signal takes the following form
Fa(u) = F(u) + iFg(u) = (1 + sign(u))F(u) , (3.5)

where F'(u) is the Fourier transform of the real signal f. The components f
and fpg of the complex valued signal f4 are phase shifted by —7 and they
are in quadrature phase relation.

The local amplitude and local phase of the 1D analytic signal are respec-

tively defined as

afx) = \/ () + f3(2) (5.6)
o) = argfa(x) (3.7)

where arg means the argument of the expression. The local energy of f4
is the square of its local amplitude. Only if the local energy exceeds a cer-
tain threshold of significance, the local phase feature then makes sense for
analysis. The polar representation of the analytical signal yields the local
amplitude and local phase, which are measures of quantitative and qualita-
tive information of a signal, respectively. The local amplitude is invariant
with respect to local structures and it indicates the energetic information
of the original signal. The local phase is invariant with respect to the local
amplitude. If the local structure varies, the local phase will correspondingly
change. Local amplitude and local phase are independent of each other and
they fulfill the properties of invariance and equivariance [47]. Hence, the
analytic signal performs a split of identity.

Local phase of the analytic signal is tightly related with the concept of
parity symmetry. Parity refers to the invariance of a process with respect to a
reflection operation. A real function is of even symmetry (parity invariance)
if f(—x) = f(x) and of odd symmetry (parity variance) if f(—x) = —f(x)
for all x € R™. Parity symmetry is understood as the structural feature of a
signal. Hence, the parity symmetry of local phase enables a local structure
analysis. The following ideal cases occur: peak: ¢(z) = 0, pit: ¢(x) = m,
decreasing slope: ¢(z) = 7, increasing slope: ¢(x) = —7. Both peak and
pit indicate even symmetry, while slopes are of odd symmetry. Hence, the
mapping A: f — f4 indicates a rotation in the complex domain from the
real axis to any location on the unit circle.
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Because the Hilbert transform is an allpass filter, in practice, quadrature
filter pairs [47] are preferred. Being bandpass filters, they have to guarantee
the quadrature phase relation only within a passband. This is achieved by
coupling two filters of even and odd symmetry according to

hy(x) = he(z) + iho(z) . (3.8)

The Gabor filter [45] is a widely used example. Gabor filters are used as stan-
dard quadrature filters in image analysis [47]. Due to their lack of rotation-
invariance, they are applied as oriented filters. Convolution of f with each
filter of the quadrature pair {h., h,} results in

9(x) = ge(x) + igo(z) - (3.9)

In that case, the real axis on the complex unit circle indicates pure even
symmetry and the imaginary axis indicates pure odd symmetry.

3.2.2 Partial and Total Hilbert Transform

It is shown that the 1D analytic signal can be used to separate the local am-
plitude and local phase of a given real 1D signal. Such a separation would be
of much use for multidimensional signals as well for feature extraction, clas-
sification and so on. There exist some approaches towards the generalization
of the analytic signal to 2D.

The first one is the partial analytic signal [48]. It is defined as the com-
bination of the original signal and its partial Hilbert transform. Let f be a
real 2D signal, its partial Hilbert transform with respect to the orientation
vector n in the spatial domain is given by

fo(x) = f(x) = (;) : (3.10)

7(x - n)
In the spectral domain, the partial Hilbert transform reads
F,(u) = —iF(u)sign(u-n) . (3.11)

Hence, the partial analytic signal takes the following form

1
P(x) = x| 0(x) + . 3.12
P00 = 1060+ (86 4 — ) (3.12)
The symmetry of the partial Hilbert transform is illustrated in Fig. 3.2.
It is obvious that the partial analytic signal is only a generalization to
i1D signal with a pre-defined orientation. Unfortunately, it cannot deliver
information about i2D parts of a 2D signal.
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Fig. 3.2: From left to right: symmetry of the partial Hilbert transform with

respect to an orientation vector n and the symmetry of the total
Hilbert transform.

The second generalization of analytic signal to 2D is the total analytic
signal [48], which is obtained by the successive Hilbert transforms with re-
spect to both coordinate axes. The total Hilbert transform of a 2D signal in
the spatial and frequency domains are respectively given by

ft(X):f(X)*( ! ) (3.13)

m2ay

Fi(u) = —F(u)sign(u)sign(u) . (3.14)

Hence, the total analytic signal is defined as

(%) = f(x) * (5(@ + ngjy) . (3.15)
The resulting symmetry of the total Hilbert transform is even with respect to
point symmetry and odd with respect to line-symmetry, see Fig. 3.2. Hence,
the total analytic signal is not rotationally invariant and is not capable of
detecting i1D features.

A further approach, proposed by Hahn [48] is obtained by combing the
previous methods, that is

e = seos (50 + ) s+ D) a0

Ty

= f(x) = falx) +i(ff (x) + f2(x)
where f1'(x) and f!*(x) are partial Hilbert transforms with respect to x and
y coordinates. This analytic signal is only non-zero in the first quadrant of

the frequency domain which yields a loss of information. Hence, it is not a
satisfactory generalization to 2D signal.

3.2.3 Quaternionic Analytic Signal

Another extension of the analytic signal to 2D case is the quaternionic ana-
lytic signal [20, 18], which has more powerful algebraic interpretations when
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compared with previous approaches. Derivation of the quaternionic analytic
signal is based on the quaternionic Fourier transform (QFT), hence, a brief
view of QFT is first given.

It is well known that any real function f : R® — R at any location x € R"”
may be decomposed into an even and an odd part [47] by reflection at the
origin

f(x) = fe(x) + fo(x) . (3.17)
Only in the case of a 1D function, i.e. x € R, the Fourier transform pre-
serves this symmetry decomposition in an integral manner due to the parity
symmetry properties of its basis functions

exp(—i2muz) = cos(2mux) — isin(2wuz) . (3.18)

Hence,
F(u) = F.(u) + F,(u) (3.19)
for all u € R with F, = F{f.} and F, = F{f,}, Fr = F. is the real spectrum
and F; = —iF, denotes the imaginary spectrum. The amplitude spectrum

A(u) = |F(u)| is of even symmetry and the phase spectrum ®(u) = argF'(u)
has the odd symmetry. For 2D case, basis functions of the Fourier transform
are

exp(—i2mu-x) = cos(2mux) cos(2mvy) — sin(2rux) sin(2wvy)  (3.20)
+ i(cos(2mux) sin(2mvy) + sin(2wux) cos(2wvy))

Hence, for x,u € R?, the following relation holds
F(u) = F..(u) + F,,(u) + F.,(u) + F,.(u) (3.21)

and
f(x) = fee()) + foo(%X) + feo(X) + foe (%) , (3.22)

where ee means even symmetry with respect to both z and y, and so forth.
This relation corresponds to considering products of symmetries with re-
spect to the coordinate axes. The limited degree of freedom in the algebraic
structure of complex numbers results in a partial cover of symmetry with

Fr(u) = Fee(u) + Foo(u) (3.23)

Fi(u) = —i(Fio(u) + Foe(u)) . (3.24)

The algebraic nature of the 2D Fourier transform in the complex domain
causes a limited representation of symmetries. Hence, there exists no access
to the single symmetries.
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To overcome this problem, Biilow and Sommer [20] proposed the quater-
nionic Fourier transform, which is algebraically extended by employing the
quaternion algebra. The QFT of a 2D function is given by

Fi(u) = //exp(—iQwux)f(x)exp(—j?wvy)dxdy : (3.25)

The imaginary unit ¢ in the second exponential of the original Fourier trans-
form is now replaced by j. The units ¢ and j are elements of the quaternion
algebra and they obey the following relations

i?=j=—-1 and ij=—ji=k. (3.26)
The algebraic decomposition of F'¢ reads
Fi(u) = Fi(u) + iFf(u) + jFj(u) + kFi(u) . (3.27)
For real signal f(x), this corresponds to the symmetry decomposition
F(x) = fee(%) + foo(X) + feo(X) + foe(x) - (3.28)

The extended polar representation of QFT gives access to a novel phase
concept

Fi(u) = [F?(u)[exp(ig(u))exp(ky (u))exp(j0(a)) . (3.29)
Here the triple
(6,0,0) € [-m,mlx[-3, 5[x [~ 7. ] (3.30)

of the quaternionic phase represents i1D phases in axes directions (¢, #) and
the 12D phase (¢), respectively. Basis functions of QFT are 12D, thus, they
are able to represent explicitly i2D signals. However, QFT has the drawback
of being not rotationally invariant.

The quaternionic analytic signal takes advantage of the additional de-
grees of freedom in the quaternionic domain. In the spectral domain, the
quaternionic analytic signal reads

Fj(u) = (1 +sign(u))(1 + sign(v))F(u) . (3.31)
Its spatial domain representation is given by

Fa(x) = f(x) +n'f}(x) , (3.32)
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Fig. 3.3: Symmetries of the quaternionic analytic signal.

where n = (4,7, k)7 is the vector of quaternionic imaginary units and f}, is
the vector of the Hilbert transformed signal

£1 — (Fyr1, Fura, Fuas)” — f(x)*((M) o) 1 ) | (3.33)

Y Y 2
T™r T  TETY

Local amplitude and local phase of the quaternionic analytic signal take the
following forms, respectively

|f1?1| = \/fQ(X) + f12{1 + f12{2 + f12{3 (3.34)

® = arg(f(x) +n’f}) . (3.35)

The resulting quaternionic analytic signal consists of four parts. Two parts
correspond to the partial Hilbert transforms with respect to the coordinate
axes and one corresponds to the total Hilbert transform. The corresponding
symmetries of the quaternionic analytic signal is shown in Fig. 3.3. The
quaternionic analytic signal is able to estimate three phases which correspond
to two 11D phases and one i2D phase, just as in the case of QFT. Local phase
of the quaternionic analytic signal will lose its direct relation to the local
structure when the signal is not of narrow bandwidth. Hence, quaternionic
Gabor filters [18] are used in real applications just like in the case of 1D
analytic signal. The impulse response of a quaternionic Gabor filter is a
Gaussian-windowed basis functions of the QFT

hi(x;u9,0,6) = g(x;0,¢)exp(i2mugz)exp(j2mvoy) (3.36)
= (bl + g, + jhi, + khi,)(x; g, 0, )
with ) )
g(x;0,6) = Nexp (—M) , (3.37)
o

where N is the normalization constant, ug means the center frequency, o
indicates the variance of Gaussian and ¢ denotes the aspect ratio. The QFT
of a quaternionic Gabor filter reads

H(u; g, 0, ) = exp(—2m20%[u — ug)® + (v — v9)?/?) . (3.38)
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Fig. 3.4: The impulse response of a quaternionic Gabor filter.
f(x)es
x + f(x) = ve1 + flz)es

A

req

Fig. 3.5: A real scalar valued 1D signal f(z) is embedded into 2D space as a
curve x + f(x) = ze; + f(x)es.

A quaternionic Gabor filter consists of four components with four differ-
ent symmetries i.e. h? = hl, + hi + hi + h? . The impulse response of a
quaternionic Gabor filter is illustrated in Fig. 3.4. Although the quaternionic
analytic signal enables the evaluation of i2D signal phase information. Due to
its symmetry decomposition, it still lacks the property of rotation invariance.

3.3 Fourier Transform and 2D Spherical Harmonics

Introducing geometric algebra to signal processing will result in some tiny
changes with respect to algebraic aspects. Hence, it is necessary to investigate
some fundamental theorems within the embedded algebraic framework.

3.3.1 Fourier Transform

For 1D case, a real scalar valued signal f(z) is embedded into 2D space as
a curve in the e; A ey plane, see Fig. 3.5. According to this embedding, the
scalar-valued signal becomes the es-valued signal, that is

f(x) =f(zer) = f(x)ey . (3.39)

The 1D Fourier transform of a multivector valued signal g(x) [31] is given by

G(u) = Fi{g(x)}(u) = /oo exp(—e2rxu)g(x)dz (3.40)

=—00
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where x = ze;, u = wue; and their geometric product equals their inner
product, i.e. xu = x-u. The commonly used imaginary unit ¢ in the classical
Fourier transform is now replaced with e;s according to the isomorphism
R3 ~ C. The inverse 1D Fourier transform can be obtained as the following

g(x) = FiH{G()}(x) = /OO exp(e22rxu)G(u)du . (3.41)

=—00

According to the Hermite symmetry of the complex Fourier transform [11],
1D Fourier transform can be split into an even and an odd part

G(u) = Ge(u) + e12G,(u) , (3.42)

where G(u) and G,(u) take the following forms, respectively

Ge(u) = /OO g(x) cos(2mxu)dz (3.43)

=—00

Go(u) = /OO g(x) sin(2rxu)dx . (3.44)

=—00

Hence, for a signal f(x) = fi(x)e; + fa(x)eq, its Fourier transform F(u) =
F1{f(x)} can be decomposed as

F(u) = Fi(u)e; + >(u)er = (Fei(u) + Fo(u))er + (—Foi(u) + Fea(u))er

(3.45)
where [} = F,; + F,1e12 and Fy = F_5 + F, o€ are the Fourier transform of
f1 and fo, respectively.

The derivative operator, or the nabla operator, is one of the most often
used linear, shift invariant (LSI) operators in signal processing techniques.
According to the habits of geometric algebra and Clifford analysis, the first
derivative operator in 1D case is a vector valued operator. For a given mul-
tivector valued function g(x), its first order derivative is given by

0
Vig(x) = ela—xg(x) . (3.46)
Its Fourier transform reads
Fi{Vig(x)} = —27ue;3G(—u) . (3.47)

The second order derivative of a multivector valued function g(x) takes the
following form

Vig(x) = Mg = 5 50(x). (3.45)
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Fig. 3.6: A real scalar valued 2D signal f(x,y) is embedded into 2D space as
a surface x + f(x) = zre; + yes + f(z,y)es.

where V# = A, is called the 1D Laplace operator. It is obvious that this
operator is a scalar valued operator. The Fourier transform of the second
derivative can be obtained as

Fi{Vig(x)} = Fi{A1g(x)} = —47*u’G(u) . (3.49)
Hence, the Fourier transform of the Laplace operator reads
Fl{Al} = —47’(21,12 . (350)

For real 2D signals, they are considered as surfaces in 3D space as shown
in Fig. 3.6. Hence, a real scalar valued signal f(z,y) is embedded as e3-valued
signal according to

f(x) = f(ze; +yes) = f(x,y)es . (3.51)

The 2D Fourier transform of a multivector valued function g(x) is defined as

G(u) = /:O /:0 g(x)exp(—I327x - u)dzdy . (3.52)

In this case, the pseudoscalar I3 substitutes the imaginary unit ¢ due to the
isomorphism between the subalgebra {1, I3} and the complex numbers. Since
I3 commutes with every element of Rs, the transform kernel can be placed
on the left or on the right, whereas it has to be on the left for the 1D case.
The 2D inverse Fourier transform reads

g(x) = /00_ /00_ G(u)exp(I327x - u)dudv . (3.53)

Similar as in the case of 1D, 2D Fourier transform can also be decomposed
to even and odd parts

G(u) = Ge(u) + G,(u) 13, (3.54)
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where G.(u) and G,(u) are defined as the following forms, respectively

Ge(u) = /Oo/ N ) cos(27x - u) (3.55)
Go(u) = /Oo/ N )sin(27x - u) . (3.56)

Hence, the spectral domain representation of a signal f(x) = fi(x)e; +
fa(x)es + f3(x)es is given by

Fu) = F{f(x)}(u)=e Fi(u)+ e Fy(u) + e3F3(u) (3.57)
= e F.(u) —e[F,;(u) +exFo(u) — esFp(u) +esFs(u) —esFy3(u) ,

where Fj, = Fo + Fil3, kK = 1,2, 3 is the Fourier transform of f;.
In 2D case, the nabla operator still takes vector value. The first order
derivative of a multivector valued function g(x) is obtained by

0 0
Vag(x) = e a—xg(x) + eza—yg(x) (3.58)
and its frequency domain representation reads
fg{Vgg(X)}(U) = 271'1,1[3G(11) . (359)

The second order derivative of g(x) in the spatial and Fourier domain are
given as following, respectively

Vig(x) = %Q(X) - 88—y29(x) (3.60)
Fo{Vig(x)}(u) = Fo{Asg(x)}(u) = —47*u’G(u) . (3.61)

As in the 1D case, two-fold of the first derivative operator results in the
Laplace operator A,.

3.3.2 2D Spherical Harmonics and Plancherel Theorem

For an arbitrary 2D spatial vector x, it can be regarded as an oriented vector
with an angle 6, i.e. x = |x|(cos fe; +sin fes). According to the introduction
in Section 2.2, this angle can be obtained as the bivector part of the logarithm
of a spinor field e;x

feir = (log(e1x)), . (3.62)
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In this case, angles are considered as bivectors. The imaginary unit is directly
given as ejs. Consequently, the definition of the Fourier series of an angular,
Ry -valued function h can be represented as

h(0) = Huexp(nfesy) , (3.63)

neL

where H, indicate the coefficients. If this Fourier series is truncated by
In| < Nag, it is an optimal approximation of h(6) with respect to the L2-
norm [69]. The basis functions exp(nfe;2) = cos(nf) + sin(nf)e;s are called
2D spherical harmonics or circular harmonics of order n. Actually, spherical
harmonic is a general term which denotes the harmonic oscillations on the
unit sphere of a multi-dimensional Euclidean space. In this thesis, only
the spherical harmonics of 2D space are used as basis functions for signal
modeling.

In the classical case, the Plancherel theorem [108] is formulated for the
complex function space. Considering the present geometric embedding, the
scalar product of two multivectors ¢;(x) and g»(x) is now defined as

(1, 92) = / N / T (Fa(x)drdy (3.64)

=—00 Jr=—00

In terms of scalar product, the Plancherel theorem in Rj3 reads [31]

(91, 92) = (G1,Ga) (3.65)

where G; and G5 are the Fourier transforms of g; and gs, respectively. From
this definition, it can be naturally concluded that each component of the
scalar product is equivalent

<<91792>>k = <<G1a G2>>k7 ke {07 L 273} : (3'66)

Hence, for the special case with £ = 0 and g = g; = g», the Parseval theorem
is obtained

Ey = <<91792>>0 = ((G1, G2>>0 = Le (3.67)

where I/, and E indicate the energies of g and G, respectively.

3.4 Tensor Algebra

The main contribution of this thesis is a general signal model for 2D image
structures, which consists of a curvature tensor and its conjugate part. As
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the fundamental knowledge, a brief overview of tensor algebra is given in this
section.

Tensor analysis [15, 61, 51] is a generalization of the notions from vector
analysis. The need for such a theory is motivated by the fact that there exist
complicated quantities that cannot naturally be described or represented by
scalars or vectors. These quantities can be represented adequately only by
the more sophisticated mathematical entities called tensors. Scalars and
vectors are special cases of tensors. Associated with a tensor is its order,
which can be regarded as the complexity of the entity it describes. A zeroth
order tensor is a scalar and a first order tensor indicates a vector. A second
order tensor is a matrix which is particularly suited for the simultaneous
analysis of i1D and i2D image structures.

3.4.1 Definition

An nth-rank tensor in m-dimensional space is a mathematical object that has
n indices and m”™ components and obeys certain transformation rules. Each
index of a tensor ranges over the number of dimensions of space. However,
the dimension of the space is largely irrelevant in most tensor equations
(with the notable exception of the contracted Kronecker delta). Tensors are
generalizations of scalars (that have no indices), vectors (that have exactly
one index), and matrices (that have exactly two indices) to an arbitrary
number of indices.

The notation for a tensor is similar to that of a matrix (i.e. A = (a;5)),
except that a tensor a;ji..., L agk..., etc., may have an arbitrary number
of indices. In addition, a tensor with rank r + s may be of mixed type (r, s),
consisting of r so-called ”contravariant” (upper) indices and s ”covariant”
(lower) indices. Note that the positions of the slots in which contravariant
and covariant indices are placed are significant so, for example, af;u is dis-
tinct from a/”f‘. While the distinction between covariant and contravariant
indices must be made for general tensors, the two are equivalent for tensors in
three-dimensional Euclidean space, and such tensors are known as Cartesian
tensors. Tensors may be operated on by other tensors (such as metric ten-
sors, the permutation tensor, or the Kronecker delta) or by tensor operators
(such as the covariant or semicolon derivatives).

In the computer vision community, there exist two well known tensor
approaches, that is the structure tensor and the orientation tensor which will
be briefly introduced in terms of classical matrix algebra in the following
sections.
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3.4.2 Structure Tensor

The structure tensor [43, 59] is one of the well known methods in multidi-

mensional signal processing. It is a second order tensor which enables the

detection of edge and corner information. The structure tensor T is con-

structed by the tensor product of a gradient vector Vof = [fx,fy]T with
itself, that is
2 2

T, = g+ (Vof)(Vof)T = g+ [ ffﬂ%y f;ygy } - {ff_fy f%y } L (368)

where ¢ represents the Gaussian filter, which is used for averaging the com-
ponents, every component with a bar over it indicates the averaged result.
The gradient itself encodes only step edge information, but the averaging dis-
tributes this information over a local neighborhood, and points that receive
contributions from edges with different orientations are considered as corners
or junctions. According to [59], the structure tensor can also be related to
the tensor of inertia.

The structure tensor is a positive semi-definite symmetric tensor, it has
two non-negative eigenvalues which are given by

1 /[— — — p—
Mz =3 (fg T RSV ((I IO 4fzfy) . (3.69)

They encode the magnitudes of the quantity of interest in the directions
given by the corresponding orthogonal eigenvectors. Let 6y be the local main
orientation, the first and second eigenvectors are v, = [cos(6p), sin(fy)]? and
vy = [—sin(fy), cos(6y)]T, respectively.

The local main orientation vector can also be obtained from a double
angle representation [5, 46|

(3.70)

0 = |o[[cos(26y), sin(26,)]T = [ £-f } :

of, T,

where o means the local main orientation vector and its amplitude equals
the difference of eigenvalues, i.e. |o| = Ay — Ay. According to the eigenvalues,
the coherence [59] of the local structure is obtained as

c= (:;iz) = (%) : (3.71)

Assume the denominator is non-zero, the coherence is of value one if the
underlying structure is i1D. It will decrease with raising intensity of i2D
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structures. If the energy of the i2D structure is distributed uniformly for all
orientations, the coherence equals zero.

In order to detect i1D (edge) and i2D (corner, junction) structures, the
structure tensor should be decomposed into two parts

1
T =Tap + Tiap = (M — A2)vivi + Mg [ 0 (1) } , (3.72)

where A\; — Ay can be interpreted as an edge strength and 2\, as a junction
strength. Since the evaluations of i1D and i2D structures are tightly related
with the eigenvalues, the structure tensor hence enables the rotationally in-
variant detection of local structures. From the structure tensor, the Harris
detector [49] which is a well known approach to detect corners and junctions,
can also be obtained. In this case, the corner strength measure reads

s = det(T) — 0.04(trace(T))? . (3.73)

The eigenvalues of the structure tensor can also be considered as a cos?-
decomposition of the local amplitude [31]. According to the definitions of
eigenvectors, it follows that

viTve= M\, k=12. (3.74)

Let T now be the tensor of a structure rotated by a small angle A#, the
two-sided multiplication by the first eigenvector v; reads

T cos?(0p + A0) cos(0y + AB) sin(by + AH)
v v
Ll cos(By + Af) sin(6y + AB) sin?(0y + A0) !
=vi [ Z?r?((gs—tﬁg)) ] [ cos(fp + A0) sin(fy + Af) | vy = cos®(AF) .

Analogously, for the two-sides multiplication by the second eigenvector v,
we have

T cos?(6y + AB) cos(bp + Af) sin(6y + AD)
cos(fy + Af) sin(6y + AD) sin?(fy + A0) V2
7| cos(By+ AB) : .9
— { sin(fo + AG) [ cos(fp + A9) sin(fy + Af) | vo = sin®*(AF) .

Hence, eigenvalues of the structure tensor can be obtained from two oriented

filters cos?(A#) and sin*(Af).
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Fig. 3.7: Angular spectral responses of four oriented quadrature filters.

3.4.3 Orientation Tensor

The orientation tensor [47, 10], which encodes both step and roof edge in-
formation simultaneously, is derived by combining four oriented quadrature
filter responses. These four filters, denoted as ¢1, g2, g3, q4, are oriented in
the directions 0°, 45°, 90°, 135°, respectively. As basis functions to construct
the orientation tensor, these four filters in the spectral domain are built by
lognormal radial bandpass filters B(|u|) and the squared scalar product of
frequency vector and directional vector in the positive half space of the di-
rectional vector

(3.75)

B(lu|)(u-n)?, ifu-ng >0
Qk(u) = { .
0, else
The resulting angular functions is a cos?>-function which is centered at the
angle of the directional vector, see Fig. 3.7. Thus, the orientation tensor is
built as

L1 3lqu] + [ge| — las| + |aal 2|q2| — 2|q4l
r_1 . 3.76
4 { 2|q2| — 2|qa| —|q1| + |q2| + 3lg3| + |ga] (3.76)

The key idea is to analyze the angular behavior of the local spectrum. From
the orientation tensor, local main orientation can be obtained in double angle

representation as
1] — las| ]
o= . 3.77
ol (370

Returning to the eigenvalue decomposition of the orientation tensor, it is
obvious that it has a rank of one, hence, the second eigenvalue is always
zero. From this point of view, the orientation tensor can only handle the
i1D structure. By employing a family of oriented quadrature filters as basis
functions, the orientation tensor encodes step and roof edge information si-
multaneously. However, the suitability for corner or junction detection has
apparently never been investigated.
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3.5 Monogenic Signal and the Phase Concept

The main contribution of this thesis, i.e. the signal modeling for 2D image
structures, is derived on the basis of the monogenic signal. Hence, a brief
introduction to the monogenic signal and its phase concept is given.

3.5.1 Definition

The scalar-valued real 2D image signal f(z,y) is embedded into Rj as a real-
valued vector field, i.e. f(z,y)es = f(x) = f(ve; + ye, + ze3), x € R? and
z = 0. Thus, rotating the signal f out of the e3 axis results in a representation
fys which contains additional non-real components. Hence, f); takes the
following form

fM = f1 (x)e1 + fQ(X)eg + fg(X)eg s (378)

where f3(x)es indicates the real component which is identical to the original
signal f(x), fi(x)e; and fa(x)es are two non-real components that can be
obtained from the Riesz transform of the original signal. This representa-
tion of a 2D signal is called a monogenic signal [36, 31|, as the rotationally
invariant generalization of the analytic signal.

Let x = xe; + ye, and u = ue; + vey be the Cartesian coordinates of the
spatial domain and the Fourier domain, respectively. The convolution mask
of the Riesz transform is given by

Xes

Y
h = — = 3.79
r(%) 2P T o R 2 |x[* (3.79)
and its frequency domain representation reads
Hr(u) = %Igl . (3.80)

The Riesz kernel consists of two components and it is basically identical
to the first order spherical harmonic. Combining the signal and its Riesz
transformed result yields the monogenic signal

frr(x) = £(x) + (hp * £)(x) . (3.81)

The real part f(x) is also called the even component of the monogenic signal.
And the odd component of the monogenic signal, called the figure flow, is
defined as (hg * f)(x), which is in quadrature relation to the even part.
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e3-axis
Ixles

Fig. 3.8: Geometric model for the phase representation of the monogenic sig-
nal. Local phase angle is indicated by ¢, 6y denotes the local orien-
tation and r represents the local rotation vector [31].

3.5.2 Local Features

In the light of the discussion in Section 2.4.3, fy;(x) can be regarded as the
impulse response of a spinor S acting on the e3 basis vector. Therefore,
the logarithm of this spinor gives access to both the amplitude and phase
information of the original signal. The spinor field which maps e3 basis vector
to the vector valued signal fy;(x) is es3fy;(x). Hence, according to equation
(2.87) and equation (2.88), local amplitude and local phase representation of
the monogenic signal are obtained as follow

A (x) = [ (x)| = exp(loglesfy (x)|) = exp((log(esfu (x)))o)  (3.82)
(eafar(x))2 . (|<esfM(X)>2|> (3.83)
[(e3fas (x))2] (esfr(x))o

According to the duality in 3D space, the dual of a bivector is a vector which
is perpendicular to the plane represented by the bivector. Hence, the local

rotation vector r of the monogenic signal can be defined as the dual of the
local phase representation

r(x) = (Pu(x))" = (log(esfy (x))); - (3.84)

Dpr(x) = (log(esfy(x)))2 =

Through the above mentioned geometric embedding, a geometric model for
the phase representation of the monogenic signal can be obtained as shown
in Fig. 3.8.
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The rotation vector always lies in the plane orthogonal to e;. At those
positions where fy;(x) = —|fy;(x)]es, the local rotation vector is not well
defined. Any vector lying in the plane e; A e; with magnitude 7 is a correct
solution. There exists a wrapping of the rotation vector of the 2D local phase.
Once a vector in a certain direction exceeds the amplitude 7, it is replaced
by the vector minus 27 times the unit vector in that direction, i.e. it points
in the opposite direction. The rotation vector r is orthogonal to the local
orientation of the 2D signal and its magnitude equals the local phase angle
¢, i.e. sign(r - e1)|r| represents the local i1D phase of the 2D signal.

Given the local amplitude and local phase representation, the monogenic
signal can be reconstructed by

frr(x) = Ay (x)exp(Par(x)) - (3.85)

Since the local amplitude and local phase representation are independent of
each other, like in the case of 1D analytic signal, the monogenic signal fulfills
the split of identity [47].

It is also possible to extend the monogenic signal to higher dimensions,
see [106, 70]. Hence, the monogenic signal can be regarded as a generalization
of the analytic signal in 2D and higher dimensions. The monogenic signal is
a novel model for i1D signals, however, it delivers no information about the
i2D parts of the 2D image.

3.6 Monogenic Scale-Space

Up to now, we only consider the 2D image signal f(x) = f(ze; + yes + ze3)
with z = 0. If we investigate the case for the half space z > 0, this signal
will become a smoothed version of the original signal (z = 0). Hence, z is
regarded as a scale parameter.

3.6.1 Definition and Local Features

Applying a Poisson kernel to the original signal results in smoothed signals
which form a Poisson scale-space

p(x;8) = (f* hp)(x), (3.86)

where s denotes the scale parameter, p(x;s) is the Poisson scale-space and
hp indicates the low-pass filter Poisson kernel, which is defined as

S

he(X) = 5o (3.87)
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ponogenic scale space

mMonogenic signaJ

Fig. 3.9: The structure of the monogenic scale-space [38]

and
F{hp} = exp(—27|uls), (3.88)

where F refers to the Fourier transform. The harmonic conjugate of the
Poisson scale-space reads

a(x;s) = (fx hg)(x) , (3.89)

where q(x; s) is the conjugate Poisson scale-space, h¢ denotes the conjugate
Poisson kernel which takes the following forms

B - res yess _ Xes
ha(x) = har () Hhax() = = e Il + seal)? - 2n(x + 5]
(3.90)
and u
Flhg} = m12_1(3}<p(—27r|u|s) . (3.91)

Combining the Poisson scale-space with its harmonic conjugate yields the
monogenic scale-space [38], which can be visualized in Fig. 3.9. When the
scale parameter is set to zero, the monogenic signal is obtained. From an
alternative point of view, the monogenic scale-space can also be built by
the monogenic signals at all scales, where the monogenic signals are formed
by the smoothed image signals and their Riesz transformed results, i.e. the
figure flows. In the monogenic scale-space, the figure flow and the smoothed
signal are in quadrature phase relation at each scale.

In the monogenic scale-space, expressions for the local amplitude Ay, (x; )
and local phase ®(x; s) have to be generalized accordingly as

Aulx;5) = Slos (Ip(x:s) + la(x;5)) (392)

;S :Marc an M
22 (%5) = 1] < ' >> ' (3.93)
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Accordingly, the local rotation vector in the monogenic scale-space is given
by
r(x;s) = (Par(x;8))" . (3.94)

3.6.2 DOP and DOCP Filters

As in the case of the well-known bandpass filter, difference of Gaussian
(DOG), it is also possible to build up two bandpass filters. They are the
difference of Poisson (DOP) and the difference of conjugate Poisson (DOCP).
Combining two Poisson kernels with a fixed ratio of scale parameters yields
a family of bandpasses with constant relative bandwidth, that is the DOP
bandpass filter. Its expressions in the spatial and the Fourier domains are
given as follows, respectively
So)\k S())\k_1

bsonk(X) = 27 (x2 + (s9\F)2)3/2 - 27 (X2 + (soAF—1)2)3/2 (3.95)

By ax(0) = exp(—27|u|so\*) — exp(—27|u|soA\* 1) | (3.96)
where A € (0,1) indicates the relative bandwidth, sy, denotes the coarsest
scale, and k € N is the bandpass number. When A\ = 0.5k, it results in the

octave sampling scheme.
The conjugate part of the DOP in the spatial domain is given by

Xes Xes
; = — . 3.97
C O,A,k(X) 27‘(’(X2 + (So)\k)2)3/2 27T(X2 4 (50)\1@71)2)3/2 ( )
Its corresponding frequency representation reads
u _
Cson k(1) = mIQ Lexp(—27|u|soA*) — exp(—27|u|seA" 1) . (3.98)

The triple consisting of the DOP and DOCP forms a Riesz triple. Accord-
ing to the definition of quadrature filter, the combined filter DOP+DOCP
yields also a generalized quadrature filter called the spherical quadrature
filter (SQF), see Fig. 3.10.

When compared with the Gaussian kernel, see [31], the peak of the Pois-
son kernel is sharper than that of the Gaussian kernel and the extent is
larger. The uncertainty of the Poisson kernel is only slightly worse than that
of the Gaussian. Hence, the monogenic scale-space is an interesting alter-
native to the Gaussian scale-space. The unique advantage of the monogenic
scale-space, compared with that of the Gaussian scale-space, is the figure flow
being in quadrature phase relation to the image at each scale. Therefore, the
monogenic scale-space is superior to the Gaussian scale-space if a quadrature
relation concept is required [38].
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Fig. 3.10: The spherical quadrature filter in the spatial domain. From left
to right are the DOP filter and the two components of the DOCP
filter. Note that the two components of the DOCP filter constitute
one single isotropic operator.

3.7 Summary

In this chapter, some fundamental knowledge of the signal processing for
computer vision was introduced. Local structures, which contain most im-
portant information of 2D images, are tightly related with the term local
intrinsic dimensionality. According to this local property of a signal, the 2D
image structure can be classified into three categories, that is the DC com-
ponent (i0D signals), lines or edges (i1D signals) and corners or junctions
(12D signals). Modeling of local structures is of high significance, since it is
the building block of high-level computer vision tasks. Analytic signals are
important models for local structures which enable the decomposition of the
original signal into two orthogonal parts, i.e. the local amplitude and local
phase. In contrast to the classical representation, 2D Fourier transform is
reinterpreted in terms of geometric algebra.

In the following chapters, the main contribution of this thesis will be
described. It is a general signal model for 2D image structures, which can be
constructed based on tensor representations. Hence, a brief overview of two
well known tensor approaches in the computer vision community was given.
The monogenic signal and the monogenic scale-space play very important
roles for the derivation of the general signal model. As a consequence, more
detail descriptions about them were given.



4. ROTATIONALLY INVARIANT 2D
QUADRATURE FILTER

4.1 Motivation and Background

Quadrature filters are well known issues in signal processing and low-level
computer vision. They make it possible to estimate the local amplitudes and
local phases of original signals. The local amplitude is a measure for the
local dynamics of a structure and the local phase describes the structure or
shape of the signal [85]. For 1D signals, the quadrature filter is obtained as a
bandpass filter and its Hilbert transform, they together form a pair of an even
and an odd filter. This Hilbert pair of filters can be used to detect peaks
and jumps of signals. Furthermore, the local phase allows to distinguish
detected structures, see the introduction in Chapter 3. The 2D generalization
of quadrature filters is far from being trivial. A further degree of freedom
for the features should be introduced, i.e. the orientation. For the detection
and classification of features it is reasonable to have a rotation invariant
approach since the orientation information neither affects the intensity nor
the classification of a feature.

There exist also some approaches trying to generalize 2D quadrature fil-
ters. One way is just to project 1D quadrature filters onto 2D space. The
partial Hilbert transform [48], obtained by projecting the frequency vector
onto a preference direction and applying the frequency response of the 1D
Hilbert transform to this scalar product, is used to create the odd filter.
Special cases of the partial Hilbert transform are the Hilbert transforms with
respect to the coordinate axes. Quadrature filters obtained from the partial
Hilbert transform are obviously not rotation invariant and are not adequate
for detecting i2D features. A second 2D extension of quadrature filters is
obtained by means of the total Hilbert transform [48], which is just the suc-
cessive application of the Hilbert transforms with respect to both coordinate
axes. Quadrature filters obtained from the total Hilbert transforms also have
the drawback of being not rotationally invariant and are not able to handle
i1D features. A further quadrature approach is obtained by combining the
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previous two methods. The resulting quadrature filter is only non-zero in the
first quadrant of the frequency domain [48]. Unfortunately, the reduction to
one quadrant yields a loss of information. Therefore, Hahn suggests [48] to
consider a second operator output which is non-zero either in the second or
in the fourth quadrant. However, this representation in two complex signals
is not totally satisfactory. Thus, Biillow and Sommer proposed to use the
quaternionic Fourier transform [19, 98]. The resulting quaternionic analytic
signal [20, 18] consists of four parts. Two parts correspond to the partial
Hilbert transforms with respect to the coordinate axes and one corresponds
to the total Hilbert transform. The phase approach of the quaternionic an-
alytic signal also reflects the intrinsic dimension to some extent.

The steerable quadrature filters proposed in [44] are rotation variant since
they are orientation adaptive. However, they are not capable to deal with
i2D signals either. The only non-steered, rotation invariant approach to
quadrature filters which occurred in the literature so far, is obtained from
the monogenic signal [36]. It is adequate for treating i1D signals but delivers
no information about the 2D part of a signal. The monogenic signal is based
on the Riesz transform which is a 2D generalization of the Hilbert transform.
The Riesz transform is antisymmetric with respect to the origin since its
frequency response is basically given by the normalized frequency vectors
[107]. Another generalization, called the structure multivector, is proposed
in [37, 31], where an i2D signal is split into two perpendicular parts and
the corresponding amplitudes and phases are evaluated. Quadrature filters
obtained from this approach are rotation invariant and allow to analyze i2D
signals. Unfortunately, only i2D patterns with 90° angle of intersection can
be correctly handled.

In this chapter, a new approach for designing a 2D rotationally invariant
quadrature filter will be presented. According to the previously discussed
related work, it is desirable to combine the rotation invariance of the mono-
genic signal with the symmetry decomposition of the quaternionic analytic
signal. The assumed signal model is a superimposed 12D pattern with flexible
angle of intersection. This approach also enables the extraction of local am-
plitude and local phase in a rotation invariant way. Moreover, it is capable
to correctly treat superimposed i2D patterns with flexible angle of intersec-
tion. The main idea is first to evaluate multi-orientation of local structures
by analyzing the eigensystem of a generalized structure tensor. Based on
estimated orientations, two i1D signals are separated and the corresponding
Riesz transform are evaluated. In accordance, quadrature filters can be de-
rived from this model. Hence, this novel approach can be regarded as an
extension of the structure multivector [37].

This chapter is organized as follows. Section 4.2 describes a way to evalu-
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ate multiple orientations of local structures. Based on the estimation, a rota-
tionally invariant 2D quadrature filter is designed in Section 4.3. Section 4.4
presents local features which can be obtained by using the newly developed
filter. Some experimental results and comparisons are also demonstrated.
The final section gives the summary of this chapter.

4.2 Estimation of Multiple Orientations

The design of the new quadrature filter is based first on the orientation esti-
mation of local structures. Hence, detecting multiple orientations at a local
neighborhood of the structure is introduced. Since the multiple orientation
can be estimated on the basis of a generalized structure tensor, the classical
matrix algebra is employed for better understanding of the estimation.

4.2.1 Orientation Estimation for 11D Signals

Assume f = f(x-n) is an i1D signal, where x = [z y]T and n is its orientation
vector, i.e. n = [cosf sin@]”. The monogenic signal as the novel model of
the i1D signal is able to capture simultaneously the local phase and local
orientation (i.e., the orientation of the Dirac line in the Fourier domain).
Hence, the constraint equation for this i1D signal then takes the form

n’fp =n’ (hz*f) =0, (4.1)

where fr represents the Riesz transformed signal and hp indicates the Riesz

kernel
T

x y
2m(a? +y?)2  2m(a® +y?)?

hr = [hryhra]" = [ (4.2)

Hence, the orientation vector can be estimated within a local neighborhood
() by minimizing the energy integral which is defined as

Eyp= / (nT (hg * f))2 dQ=n"Tin with n'n=1, (4.3)
Q

where the constraint n”’n = 1 excludes the trivial solution n = 0 and 7} is a
two by two symmetric tensor which is obtained as

T = /Q(hR*f)®(hR*f)dQ:/ﬂ(hR*f)(hR*f)TdQ (4.4)
(hpy * £)? (hgy % £)(hpo x )
/ﬂ[ (hry* £)(hro 5 £) (o + £)? ]dQ’
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where ® indicates the tensor product. Minimizing the energy FE;1p is equiv-
alent to find n such that

Tin=Xn with n'n=1, (4.5)

where A\ denotes the smallest eigenvalue of the tensor 77. For ilD signals,
the tensor 77 has a rank of 1. This implies that n is the null-eigenspace of
T7 and its eigenvector corresponding to the zero eigenvalue gives the best fit
of the orientation vector.

4.2.2 Multiple Orientation Estimation for 12D Signals

In contrast to i1D signals, i2D signals have a lot of degrees of freedoms. Due
to the diversity of i2D signals, the designed quadrature filter takes only the
double oriented pattern with flexible angle of intersection into consideration.
The double oriented pattern is formed by the superimpose of two differently
oriented 11D signals. Hence, it is necessary to detect exact orientations of
these two 11D signals which form the i2D pattern.

For a double oriented i2D pattern, it can be modeled as the superimpose
of two differently oriented i1D signals, that is

f(X) = fl(X . nl) + fQ(X . 1’12) s (46)

where n; = [cos6; sin6;]T and ny = [cos 0 sin B,]7 indicate two orientation
vectors.

Normally, to estimate the orientation of such an i2D neighborhood, it is
natural to consider the structure tensor [43, 59]. It can be considered in the
context of an approximation of the autocorrelation of the signal. Hence, the
two eigenvalues of the structure tensor are related to the principal curvatures
of the autocorrelation function, whereas the eigenvectors indicate the corre-
sponding coordinate system. Therefore, the structure tensor can be used to
estimate the local main orientation of a structure by means of the eigenvec-
tor which corresponds to the largest eigenvalue. The eigenvalues themselves
and their relation also provide a measure for the intrinsic dimension of the
signal. However, to handle the i2D pattern with flexible angle of intersection,
it is of great importance to evaluate exactly two orientations of the two i1D
signals instead of the local main orientation. For this purpose, we take the
idea which is similar to that in [1, 81]. First, the best fit for the mixture
of two 11D signal orientations is estimated, then the mixed information is
decomposed into two orientations of the i1D signals.

Similar as the i1D case, for two i1D signals of a double oriented pattern,
the following constraint is satisfied

l’l,{(hR * fl) = n2T(hR * fg) =0. (47)
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Hence, for the i2D neighborhood, the following relation holds
nj (hp* (njhp+f)) =N"J=0. (4.8)
with
N = [cosfcosly sin(f +65) sinbsin HQ]T (4.9)
J = [hgi*(hpi*f) hgo* (hgo*f) hgox (hgax£)]" ,  (4.10)

where N represents the mixed information of n; and ns.
In the spectral domain, this relation for i2D signals reads

(nTw)(nlw)F(w) =0, (4.11)

where w denotes the frequency vector and F(w) is the Fourier transform of
the original signal f. Since the i1D signal is an oriented line in the Fourier
domain, equation (4.11) indicates that the local spectrum of the i2D signal
must be zero for both lines, i.e. nfw =0 and nJw = 0.

Similar as the i1D signal case, the estimation of the mixed orientation
information N can be realized within a local neighborhood by minimizing
the following energy integral

Ejop = / (NTJ)?d = NTT,N . (4.12)
Q

To exclude the trivial solution, the constraint NN = a, a > 0 must be
imposed, where a works only as a scaling factor. Finding the best fit of the
mixed orientation N is equivalent to analyze the eigensystem of the tensor
T5, that is

ToN = AN, (4.13)
where T5 is defined as
Ty = /J ® JdS? (4.14)
Q
Ty Ty T3
= / Tor T Toz | dQ
Q| Ty Ty T
with
TH = (th * (th * f))2 (415)

Tio = To = (hgy * (hgy % f))(hgr1 * (hre *£))
Tis = T3 = (hgy % (hgy % f))(hgre * (hge *f))
Tyy = (hpo* (hg *1))?

Tos = T30 = (hga* (hgy % f))(hgre * (hge *f))
Tss = (hpgy* (hgy *f))?.
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In the ideal case of the i2D signal, T5 has only a rank of two. Hence, its null-
space indicates the best fit of the mixed orientation N. The eigenvector which
corresponds to the smallest eigenvalue of 75 indicates the mixed orientation
vector. In order to design a 2D quadrature filter which suits also double
oriented patterns with flexible angle of intersections, two explicit orientation
vectors n; and ns should be extracted from the mixed orientation N. Let N

be represented as
N=a b " =[cosbcosb sin(fy+6,) sinbsind]" ,  (4.16)

a 2 x 2 matrix M can be constructed based on the mixed orientation with
the following form

M= cos 6, cos 0y cos 8y sin Oy } _ { a zl] '

sin 64 cos @y sin f; sin O, Z9 C

(4.17)

It is obvious that z129 = ac and z; + 25 = b. Thereby, z; and 25 can be
obtained as the roots of the following polynomial, that is

f(2)=(z—2)(z — 2) =2 —bz+ac. (4.18)

Hence, two explicit angles ¢, and 6, are given as

f#, = arctan (ﬁ> = arctan e 0, € (—E, q (4.19)
c 29 272
z c Tom
0, = arctan (i) = arctan <Z—2> 0, € (—5, 5} . (4.20)
The corresponding angle of intersection 6 thus reads

4.3 Quadrature Filter Design

Based on the multiple orientation estimation, a rotationally invariant 2D
quadrature filter can be designed. In contrast to the structure multivector
[31, 37] which is only suited for the patterns superimposed by two perpen-
dicular i1D signals, this approach also fits for double oriented patterns with
flexible angle of intersections. In this section, we will switch to the geometric
algebra since it enables much simpler and compact representations.
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a4

Fig. 4.1: From left to right are 2D spherical harmonics from order 1 to 3
in the spatial domain, except for the zero order, every spherical
harmonic consists of two orthogonal components. White indicates
positive one and black represents negative one.

4.3.1 Basis Functions

In [44], 2D spherical harmonics are used to design steerable filters which
are orientation adaptive. Therefore, we take also 2D spherical harmonics
as basis functions to design the 2D rotationally invariant quadrature filter.
According to [31], only zero to three order spherical harmonics are employed
in order to avoid aliasing. To design the filter, the main concern is the angular
portions of spherical harmonics. Therefore, polar representation of spherical
harmonics are used instead of the Cartesian form stated in [31].

In the frequency domain, 2D spherical harmonics have much simpler rep-
resentations than those in the spatial domain. An nth order spherical har-
monic H,, in the spectral domain takes the following form

H,(a) = exp(nae;s) = cos(na) + sin(na)e;s (4.22)

where « denotes the angular part of the polar coordinate in the Fourier
domain, n refers to the order of the spherical harmonic. Every spherical
harmonic consists of two orthogonal components and the first order spherical
harmonic is basically identical to the Riesz kernel [36]. In order to decompose
the signal into its distinct frequency components, 2D spherical harmonics
are combined with radial bandpass filters. In this thesis, the difference of
Poisson (DOP) bandpass filter [31] is employed, see also Section 3.6.2. Fig.
4.1 illustrates spherical harmonics from order 1 to 3 in the spatial domain,
they have the same angular portions as those in the spectral domain.

4.3.2 2D Quadrature Filter

Intrinsically 2D signals have a much greater variety than the i1D signals.
This increase of possible signal realizations can be considered more formally
by means of symmetries. It is reported in [20, 18] that a 2D signal can be
split into even and odd parts along the x-axis and along the y-axis as well.
Hence, every 2D signal can be written in the form of f = f,, + £, + f,c + f,,,
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see also Chapter 3. In this case, an arbitrary 2D signal, according to the
quaternionic Fourier transform (see Section 3.2.3), can be represented by the
following basis functions

b1(x;u) cos(2mzu) cos(2myv (4.23)
ba(x; 1) cos(2mzu) sin(2mwyv)

bs(x;u) = sin(2mzu) cos(2myv)

by(x;u) = sin(2rzu)sin(27yv) .

These four basis functions are intrinsically 2D, which allows them to cap-
ture the i2D image structures. They indicate the even-even, even-odd, odd-
even and odd-odd symmetries with respect to the x and y axes. Obviously,
this representation lacks the property of rotation invariance. Hence, Felsberg
[31, 37] developed the so-called structure multivector to cover this drawback.
The signal model in his approach is the superimpose of two perpendicular
i1D signals which can be given by

f(x) = fi(x-n) +fr(x-nt), (4.24)
where n is a orientation vector, nt is the vector obtained by rotating n
by 7 anticlockwise. The structure multivector is also based on the four
symmetries, however, they are with respect to a new coordinate system n
and n' instead of the x and y axes. Unfortunately, this approach produces
errors if the i2D structure is composed of two non-perpendicular i1D signals.

The proposed 2D quadrature filter can be regarded as an extension of
the structure multivector since it can correctly handle the double oriented
patterns with flexible angle of intersections. In this case, a 2D signal is split
into two 11D signals which are not necessarily perpendicular to each other,
the signal model thus reads

f(x) = f1(x 1) + f2(x - my) | (4.25)

where n; = cosfie; + sin#1e; and ny, = cos e, + sin frey represent orien-
tation vectors of the two i1D signals which can be evaluated according to
the multiple orientation estimation approach. The main idea for designing
the 2D quadrature filter is to split an i2D signal as two i1D components
according to their orientations and then to evaluate the corresponding Riesz
transforms.

The starting point is still the four symmetries. However, the four symme-
tries in the current case should be attached to two new coordinate systems,
respectively, for the sake of two i1D signals. The two new coordinate systems
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Fig. 4.2: Two odd-odd symmetries with respect to two coordinate systems.
They are obtained from cos(2(6 —60;)) and cos(2(6 — 05)) (white:+1,
black:-1).

are decided by m;, m; and my, my which can be obtained from n; and n,
as follows

1

m; = §(n1 +n}) and my =m [, = §(n1 —nj) (4.26)
* 1 *
m, = 5( 2413 and my = myl, = §(n2 —nj),
where nj = —nje;; and nj = —nye;, are dual vectors of n; and ny, respec-

tively.

Spherical harmonics can be used as basis functions to create the desired
symmetry properties. The even-even symmetries for both coordinate sys-
tems are trivial and can simply be obtained from the zero order spherical
harmonic. Hence, even-even symmetries in the coordinate systems m;, m;
and my, my are represented as Pee; = Peez = Hy = 1. The odd-odd symme-
tries with respect to the new two coordinate systems are given by steering
and projecting the second order spherical harmonic onto the double-angle
orientation vectors, that is

Poor = (nieny) - (egHy) = cos(2(0 —6,)) (4.27)
Poo2 = (ngeiny)- (e Hy) = cos(2(0 —6s)) .

Fig. 4.2 indicates the acquired two odd-odd symmetries with respect to two
coordinate systems by using the second order spherical harmonic. Combing
these even-even and odd-odd symmetries, two angular windowing functions
Wi and W, are obtained to yield two oriented i1D signals, see also Fig. 4.3

Wi = Deet + Poot = 1+ cos(2(6 — 6,)) = 2cos*(0 — 6,) (4.28)
Wy Pee2 + Pooz = 1 4 cos(2(0 — 0)) = 2cos?(0 — ) .

After splitting the signal into its two i1D parts, the corresponding Riesz
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Fig. 4.3: Two angular windowing functions obtained from cos*(§ — ;) and
cos?(f — 63) (white:+1, black:0).

transforms [36] should be evaluated in order to obtain the phase informa-
tion. Because orientations of these two i1D signals are already known, it is
necessary to steer the Riesz transforms according to the two orientations.
Hence, for the i1D signal with orientation vector nj, the Riesz kernel can
be applied to the first angular windowing function W; which results in the
following form

W3 = e1n1H1W1 (429)

e;(cos e + sin 0e,)(cos § + sin fe;)2 cos? (6 — ;)

= %(3 COS(Q — 01) + sin(é’ — 01))812 + COS(S(Q — 01)) + Sln(?)(@ — 91))612 .

Accordingly, the Riesz transform of the second angular windowing function
is given by

W4 = e1n2H1W2 (430)

= e;(cosfhe; + sin Brey)(cos § + sin fe;)2 cos? (6 — )

= %(3 cos(0 — 0y) + sin(f — 05))e1s + cos(3(0 — 6s)) + sin(3(0 — 6;) e, .

The Riesz transformed parts of these two angular windowing functions consist
of odd order spherical harmonics. Hence, using spherical harmonics from
order zero to three as basis functions enables the extraction of two i1D signals
and their corresponding Riesz transformed results. This means that the
proposed 2D rotationally invariant quadrature filter response is equivalent to
two monogenic signals. As in the case of the monogenic signal, the original
signal is encoded by ez axis and its Riesz transformed part is encoded into
e; N\ e; plane. Hence, the angular windowing functions are multiplied by
es basis vector. Because their Riesz transforms are spinor valued, they are
multiplied by e; basis vector from the left side. Thus, the 2D rotationally
invariant quadrature filter () is finally the combination of two i1D quadrature
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filters which consist of the two angular windowing functions and their Riesz
transformed results, that is

Q= Q1+ Q= (esW) + e, W) + (esWWy + e, WWy) . (4.31)

4.4 Feature Extraction and Experiments

From the filter response of @), a rich set of local features which fulfill the
invariance-equivariance property can be extracted. For an es valued signal
f, the filter response r of the 2D quadrature filter reads

r = F'{QF} (4.32)
= FY[(esW1 + e Ws) + (esWs + e, W,)|F}
— (1'1 + I'g) + (1‘2 + 1'4) )

where F is the Fourier transform of f. Based on this, local amplitudes (Aj,
Ay) and local phases (1, 9) for two 11D signals are obtained as follows

A = /ri+r? (4.33)
Ay = y\/r3+12 (4.34)
¢ = arg(r; +r3) (4.35)
0y = arg(ry+ry), (4.36)

where arg means the argument of a expression.

In the following, some experiments are conducted to evaluate the perfor-
mance of the newly developed 2D quadrature filter. The first experiment uses
a synthetic image shown in Fig. 4.4, it is superimposed by two ilD signals
with orientations of % and 7. This pattern has obviously a non-90° angle
of intersection. According to the novel 2D rotationally invariant quadrature
filter, at those i2D points, double orientations will first be estimated, see
also Fig. 4.4. Based on the signal model, two i1D signals along different
orientations are extracted and the corresponding amplitudes and phases can
be correctly evaluated. Fig. 4.5 illustrates the estimated amplitudes and
phases. It can be shown that the proposed approach enables the correct
evaluation of local features of double oriented patterns. As a comparison,
feature extraction based on the structure multivector is also given in Fig.
4.6. As introduced in the background section, the signal model of the struc-
ture multivector is the superimpose of two perpendicular i1D signals. From
the feature extraction result of the structure multivector, one can easily see
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Bottom

row: the i2D pattern superimposed by the two i1D patterns and the
sampled orientation estimation by using the novel 2D rotationally

Fig. 4.4. Top row: two ilD patterns with different orientations.
invariant quadrature filter.

Fig. 4.5: Top row: local amplitudes of two i1D patterns. Bottom row: local
phases of two i1D patterns.
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Fig. 4.6: Top row: the synthetic image and the estimated main orientation
from the structure multivector. Middle row: local major and minor
amplitudes extracted by using the structure multivector. Bottom
row: local major and minor phases extracted by using the structure
multivector.

that this approach fails to extract correct local features once its signal model
is violated.

Another double oriented pattern is chosen for the second experiment, as
visualized in Fig. 4.7. The two i1D signals which form the i2D pattern are
not perpendicular to each other. Using the newly proposed 2D quadrature
filter, two orientations can be correctly estimated. Based on the orientation
information, corresponding local amplitudes and phases are extracted. From
Fig. 4.7, one can see that the proposed approach is able to correctly handle
those double oriented i2D patterns with flexible angle of intersections. In
contrast to this, due to the violation of the assumed signal model, the struc-
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Fig. 4.7: Top row: the synthetic image and the estimated main orientation
from the proposed 2D quadrature filter. Middle row: local ampli-
tudes extracted by using the proposed 2D quadrature filter. Bottom
row: local phases extracted by using the proposed 2D quadrature
filter.

ture multivector approach produces errors at those i2D points, see Fig. 4.8.
The third experiment aims to show that the newly developed 2D quadrature
filter can be considered as an extension of the structure multivector since it
is also able to handle i2D patterns superimposed by two perpendicular i1D
patterns. Fig. 4.9 illustrates the corresponding local features.

4.5 Summary

In this chapter, a novel 2D rotationally invariant quadrature filter was pre-
sented. The motivation of designing such a filter is based on an assumed
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Fig. 4.8: Top row: the synthetic image and the estimated main orientation
from the structure multivector. Middle row: local major and minor
amplitudes extracted by using the structure multivector. Bottom
row: local major and minor phases extracted by using the structure
multivector.

signal model which is the superposition of two differently oriented i1D sig-
nals. Those two 11D signals are not necessarily to be perpendicular to each
other. By constructing a tensor representation, two orientations of a i2D
point can be correctly estimated. According to the double orientation infor-
mation, at the i2D point, a signal is split into two oriented i1D signals and
the corresponding Riesz transforms are employed for the phase evaluation.
In contrast to this, the structure multivector approach works only for the
i2D signal which is superimposed by two perpendicular i1D signals. Hence,
the proposed 2D quadrature filter can be regarded as an extension of the
structure multivector since it is able to handle double oriented i2D patterns
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Fig. 4.9: Top row: the synthetic image and the estimated main orientation
from the proposed 2D quadrature filter. Middle row: local ampli-
tudes extracted by using the proposed 2D quadrature filter. Bottom
row: local phases extracted by using the proposed 2D quadrature
filter.

with flexible angle of intersections.



5. SIGNAL MODELING FOR
TWO-DIMENSIONAL IMAGE
STRUCTURES

Model based image representation plays an important role in many computer
vision tasks such as object recognition, motion estimation, image retrieval,
etc. Therefore, signal modeling for local structures is of high significance in
image processing. In this chapter, a novel image model for two-dimensional
image structures, called the monogenic curvature tensor, will be presented.
The first section introduces some mathematical preliminaries which include
the geometric embedding of the signal and basis functions employed to con-
struct the novel model. Detail information to construct the monogenic cur-
vature tensor is described in the second section. Section three focuses on
the interpretation of the generalized monogenic curvature signal, which is
derived from the monogenic curvature tensor as a local representation of i2D
image structures. The fourth section illustrates the parity symmetry analysis
of the generalized monogenic curvature signal. The generalized monogenic
curvature scale-space, generated from the monogenic curvature tensor, is in-
troduced in the fifth section. Summary of this chapter is given in the final
section.

5.1 Mathematical Preliminaries

5.1.1 Geometric Embedding of the Signal

The way we intend to design a general model for 2D structures is a general-
ization of the analytic signal. It cannot be realized in the domain of complex
numbers. Instead, a more powerful algebraic system should be taken into
consideration. Geometric algebras [73, 2, 53] constitute a rich family of al-
gebras as generalization of vector algebra [54]. Compared with the classical
framework of vector algebra, the geometric algebra makes available a tremen-
dous extension of modeling capabilities. By embedding our problem into a
certain geometric algebra, more degrees of freedom can be obtained, which
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makes it possible to extract multiple features of 2D structure. For the prob-
lem we are concerned, the 2D signal will be algebraically embedded into the
Euclidean 3D space R3. Hence, geometric algebra over 3D Euclidean space
R? (see Chapter 2 for details) is employed as the mathematical background
for signal modeling.

The scalar-valued real 2D image signal f(z,y) will be embedded into Rj
as a real-valued vector field, ie. f(x,y)es = f(x) = f(ze; + yes + ze3),
x € R3 and z = 0. Thus, rotating the signal f out of the e3 axis results in
a monogenic signal fy; [36], which is composed of the original signal and its
Riesz transformed part.

In terms of polar coordinates, the spatial and spectral domain represen-
tations of the Riesz kernel take the following forms

hgr(r,3) = (— cos(B)ess + sin(B)eas) (5.1)

272
Hg(p, o) = — cos(a)es + sin(a)e; . (5.2)

The vector-valued signal fj; in R3 can be considered as the impulse re-
sponse of a spinor S acting on the es basis vector, i.e. fj; = e35. The trans-
formation performed under the action of the spinor delivers access to both
the amplitude and phase information of the vector-valued signal £, [106]. To
make this clear, we will consider the spinor more in depth. The spinor can
be represented in polar coordinates as an exponential form. Therefore, from
the logarithm of the spinor, two parts can be obtained. They are the scaling
which corresponds to the local amplitude and the rotation which corresponds
to the local phase representation. The R3-logarithm of a spinor S € R takes
the following form

8(5) = (1o8(S)o + {log($)}z = log(15) + 112 ot (1512) - 5.3
[(S)2] (S)o
where atan is the arc tangent mapping for the interval [0, ). The scalar part
(log(S))o = log(|S]) illustrates the attenuation [38] as the logarithm of the
local amplitude. Hence, the local amplitude is obtained as the exponential
of it
1] = exp(log|S1) = exp((log($))o) (5.4)

The bivector part of log(.S) indicates the local phase representation

e, (S (1(S)
orE(S) = (loa(S): = ykat ( <S>O). (5.5)

It is also possible to extend the monogenic signal to higher dimensions, see
[106, 70]. Hence, the monogenic signal can be regarded as a generalization
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of the analytic signal in 2D and higher dimensions. The monogenic signal is
a novel model for i1D signals, however, it delivers no information about the
i2D parts of the 2D image.

If we investigate the case for the half space z > 0, this signal will become
a smoothed version of the original signal (z = 0). Hence, z is regarded as
a scale parameter. Applying a Poisson kernel to the original signal results
in a smoothed signal which, for all scale parameters s, results in a Poisson
scale-space p(x;s) [38]. The conjugate of the Poisson scale-space q(x;s) is
obtained by convolving the original signal with a conjugate Poisson kernel.
The monogenic scale-space is thus formed by the combination of the Poisson
scale-space and its conjugate part, see also Chapter 3 for details.

5.1.2 Basis Functions

In order to analyze 2D patterns, we choose 2D spherical harmonics as basis
functions according to the proposal in [31]. Actually, spherical harmonic is
a general term which denotes the harmonic oscillations on the unit sphere
of a multi-dimensional Euclidean space. However, in this thesis, only the
spherical harmonics of 2D space are employed, they are also called circular
harmonics. Due to the theory of Fourier series, one can approximate any
plane angular function (in Lo sense) by using 2D spherical harmonics.

In Chapter 4, because the angular behavior of a signal can be regarded
as band limited, only spherical harmonics of order zero to three are applied,
otherwise, aliasing would occur on a discrete grid around a location x. To
construct the general signal model of this chapter, 2D spherical harmonics
from zero to three orders are also employed. However, this choice is moti-
vated from the differential geometry. The proposed signal model, called the
monogenic curvature tensor, consists of a curvature tensor and its monogenic
extension. The curvature tensor is tightly related with the Hessian matrix
and its monogenic extension is obtained from the Riesz transform. Hence,
only 2D spherical harmonics from zero to three orders are needed.

To build the signal model, we are more concerned of the angular portions.
Therefore, we use the polar representation of spherical harmonics instead of
the Cartesian form applied in [31].

In the frequency domain, an nth order spherical harmonic H,, takes the
following form

Hy(p, o) = Hy(p)Hp(cv) (5.6)
with

H,(p) =1, H,(«a)=exp(naez) = cos(na) + sin(na)e;s , (5.7)
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where p and « denote the polar coordinates in the Fourier domain and n refers
to the order of the spherical harmonic. Every spherical harmonic consists of
two orthogonal components and the first order spherical harmonic is basically
identical to the Riesz kernel [36] which is well known in Clifford analysis
as the multidimensional generalization of the Hilbert kernel. Since H,, is
separable into radial part and angular variation, and its angular variation is
harmonic, according to the theorem in [24] (page 262), its angular variation
is preserved in the spatial domain while the radial function is the Hankel
transform of the radial part in the frequency domain. Therefore, the spatial
domain representation of an nth order spherical harmonic h,, reads

hin(r, B) = c(I3)"hy(r)hn(B) = c¢(I3)"hyp(r)[cos(nf) + sin(nfB)ers] , (5.8)

where ¢ indicates a constant, r and § are the polar coordinates in the spatial
domain, h,(r) represents the radial part which is obtained by the nth order
Hankel transform of H,(p).

In practice, 2D spherical harmonics are normally considered only as an-
gular parts which should be combined with radial bandpass filters. In this
thesis, the difference of Poisson (DOP) kernel [31] is employed as the radial
bandpass filter. As a result, local signal analysis can be realized in a multi-
scale approach in the monogenic scale-space [38]. The DOP is an isotropic
bandpass filter which in spectral domain takes the form

Hpop(p;s) = exp(—2mps1) — exp(—2mpsa) , (5.9)

where s; and s represent the fine and coarse scales parameters, respectively.
Therefore, an nth order bandpass bounded spherical harmonic reads

H,(p,a;s) = Hpop(p; s)H, () . (5.10)

Hence, H,(p, a; s) is separable into radial variation Hpop(p;s) and angular
variation H,(«). Since the angular portion is harmonic, according to the
theorem stated in [24], H,(p, «; $) is separable both in the spatial and spectral
domains. Thereby, we are able to obtain the spatial representation of the
bandpass bounded spherical harmonic as follows

FHH,(p,;8)} = c(I3)"h,(r; 5)(cos(nf) + sin(nB)ers) . (5.11)

The angular variation is preserved and the radial function h,(r;s) is the
Hankel transform of Hpop(p;s). Combined with the DOP bandpass filters,
spherical harmonics of order 1 to 3 in the spatial domain are illustrated in
Fig. 5.1, where the fine scale is one and the coarse scale takes two.
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Fig. 5.1: From left to right are 2D spherical harmonic bandpasses of order
1 to 3 in the spatial domain, every spherical harmonic consists of
two orthogonal components. White indicates positive one and black
represents negative one.

It is obvious that the amplitude of the spherical harmonic equals always
one, that is

|H2()| = /(cos(na))? + (sin(na))2 = 1. (5.12)

If the coordinate system rotates with the angle 6y, spherical harmonics will
rotate accordingly as

H) () = (cos(nbp) cos(na) + sin(nbp) sin(na)) + (5.13)

(— sin(nby) cos(na)) + cos(nby) sin(na))ers .
The amplitude of the rotated spherical harmonic is

|H? ()| = [(cos(nby) cos(na) + sin(nby) sin(na))? + (5.14)
1.

(— sin(nbp) cos(na) + cos(nby) sin(na))Q]% =

This results from the fact that no matter which angle the spherical harmonic
rotates, its amplitude is always one. Hence, the amplitude of any spherical
harmonic is independent of the angular argument. Therefore, using spherical
harmonics as basis functions gives access to a rotationally invariant signal
representation.

5.2 Signal Modeling for Two-dimensional Image
Structures

So far, we understood that the monogenic signal is derived from the mono-
genic extension of a scalar field. However, it is restricted to model only
the 11D signals because only a minimum of information, i.e. the scalar value
f(z), is taken into consideration. If 2D images are interpreted as surfaces in
R3, the first and second order fundamental theorems of differential geometry
would deliver the most general local signal model in the classic framework.
We will associate a curvature tensor instead of a scalar value to a location of
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interest. This results in a useful signal model for 2D image structures. For
the moment we are neglecting the metric tensor. Hence, our operators for
local signal analysis will be rotation invariant.

The proposed model can be regarded as the monogenic extension of the
curvature tensor. Motivated from the differential geometry, this curvature
tensor can be constructed. Therefore, a brief introduction to the differential
geometry is given.

5.2.1 Basic Concepts of Differential Geometry

Differential geometry [22] is a well known methodology in the disciplines
like physics, mechanical engineering and topography. Classical differential
geometry deals with the mathematical description of curves and surfaces. In
image processing field, Koenderink and van Doorn [63, 64] have introduced
methods from differential geometry to analyze the local properties of signals.
In such case, two dimensional intensity data can be represented as surfaces
in 3D Euclidean space. Such surfaces in geometrical terms can be written

as Monge patches. In the classic vector algebra, a Monge patch is a patch
f: U — R3 of the form

f(z,y) = (z,y, f(z,9)) , (5.15)

where U is an open set in R? and f : U — R is a differentiable function.
This notation of a surface is the most simple one for considerations in the
framework of differential geometry because it enables to express the men-
tioned tensors with entries built from first and second order differentials of
the image functions.

The second fundamental form of a Monge patch is given by

|:f9[:9[: fwy:|
fwy fyy H

CVIFEAE VIR RAR

where H represents the Hessian matrix. For a Monge patch, the Gaussian
curvature K and mean curvature M are obtained as the following

fxxf - 3
K = e = kiks (5.17)

A+ 2+ 1)

(L4 ) fow = 2fafyfoy + (L D)oy kit ke
2(1+ f2+ f2)2 ~ T2

where k; and ks, refer to the principal curvatures.

(5.16)

M = (5.18)
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Fig. 5.2: Top row: from left to right are the elliptic surface (K > 0) and
the hyperbolic surface (K < 0). Bottom row: from left to right
are the parabolic surface (K = 0, M # 0) and the plane surface
(K =0, M =0).

Because the determinant of the Hessian matrix equals the multiplication
of its two eigenvalues, and the sum of these two eigenvalues is twice of the
trace of the Hessian matrix, the Gaussian curvature and mean curvature can
also be approximated as

K ~ det(H) (5.19)
M ~ % (5.20)

According to the Gaussian and mean curvatures, surfaces can be classified
as four types (elliptic, hyperbolic, parabolic, plane) as shown in Fig. 5.2.

In the following, we will introduce basic concepts of differential geome-
try and the general 2D signal model in an algebraic framework with more
powerful geometric meanings than R3. Because we are interested in a tensor
representation of the image signal, our model will thus be represented in the
matrix geometric algebra M (2,R3) which results from the tensor product
R3 x Rj.

The matrix geometric algebra M (2, R3), see [103], is the geometric algebra
of 2 x 2 matrices with entities in R3. For example, a general element P in
this matrix geometric algebra can be written as

pP= [‘CL Z] , (5.21)

where P € M(2,R3) and a, b, ¢, d € Rs. Addition and multiplication of
matrices in M (2,R3) is the usual matrix addition and multiplication. The
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trace of this representation is

traceys (P) = trace [Z Z] =a+d (5.22)
and the corresponding determinant reads
det s (P) = dety, [(Z Z} = aadd + bbce — (@bdc + edba) (5.23)

where @, b, ¢ and d are the conjugations of a, b, ¢ and d, respectively.
In this new algebraic framework, the Monge patch is thus formulated as

x + f(x) = ze; + yes + f(z,y)es . (5.24)

The primary first order differential quantity for an image, represented by the
vector field f, is the gradient defined as

0 0
Vi =¢ 8_xf(x’ y)eg + e2a—yf($a y)eg = fre13 + fye23 . (5-25)

For the second order geometry, the matrix of second order derivatives or
Hessian H is given by

fy = | 55wt | {e%fmelg ezgfxelg} _ { fra€s  —foyerzs
8y8mf Wf e1g, fyexs e2g—yfye23 Jay€123  fyyes
(5.26)

The Hessian matrix is related to the curvature tensor, which describes the
local deviation of the signal f from the tangent plane of the surface.

According to the derivative theorem of Fourier theory [87, 11], in the
spectral domain, the second order derivative of f with respect to the z axis
is given by

1 + cos(2a)

F{fwes} = —4r?p® cos*(a)F = —4r?p? 5

F, (5.27)
where F denotes the Fourier transform of the original signal f = f(z,y)es.

Analogously, the other second order derivatives are obtained as

in(2
f{fxyel23} = —47T2p2 COS(C() Sin(O&)812F _ —471'2p2 Sln( Og)

e12F (528)

5 o1 — cos(2a)

F{fyes} = —4r’p*sin®(a)F = —4n’p 5 F. (5.29)
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Hence, in the spectral domain, the Hessian matrix reads

Y2 21+cos(2a)F Ar2 Qsin(2a)F
7T2 stin(Qo%) ( 3 g QIEcos(ng)el2 : (530)
(—4mp?™ 2 F)eyy, —4n’p’—%5"F

F{Hu} =
According to Eq. (5.23), the determinant of the Hessian in this algebraic
framework is obtained as

detM(HM) = [(fxxeS) (fyye3) - (_fzye123) (fzye123)]2 = [fzzfyy - x2y:| ’ :

(5.31)
This determinant is identical to the square of the classic Hessian determinant
in the vector algebra. In general, the determinant computation of the algebra
M (2,R3) can not be reduced to the original definition in the vector algebra.
However, in the current case, due to the particular basis elements, the original
definition of the determinant can still be used, see Appendix for details.
Hence, the determinant of the Hessian is reformulated as

detp(Hy) = (fras)(fyyes) — (= fuy€123) (fay€r23) = frafyy — [oy = Mha
(5.32)
where A\; and A\, are two eigenvalues of the real valued Hessian matrix, which
represent the principal curvatures. Thus, the Gaussian curvature K can be
approximated as

or

K? ~ dety (Hyy) (5.34)

The mean curvature M, obtained from the trace of the algebraically embed-
ded Hessian matrix, takes the following form

1 1 1
M ~ §traceM(HM) = 5(][1183 + fyyeg) = 5()\1 + )\2)83 . (535)

Hence, both the Gaussian curvature and the mean curvature give rise to
a rotation invariant local analysis of second order features. Combining the
Gaussian curvature and mean curvature, a complete classification of the local
structure into the types i2D (elliptic and hyperbolic regions), i1D (parabolic
region) and i0D (planar region) in principle can be done, see Tab. 5.1.

5.2.2 Monogenic Extension of the Curvature Tensor

In order to build a general model for 2D structures with phase information
contained, we follow the ideas of deriving the analytic or monogenic signal
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Tab. 5.1: Surface type classification based on Gaussian curvature K and
mean curvature M

Surface type M K

Elliptic (i2D) K >0
Hyperbolic (i2D) K <0
Parabolic (i1D) |M| #0 K =0
Planar (i0D) M| =0 K =0

from a real valued 1D or 2D image signal. The holomorphic (1D) or mono-
genic (2D) completion of the signal results in an additional component which
is in quadrature phase relation to the original signal. For a 2D image, every
image point is now associated with a curvature tensor which is related to the
Hessian matrix. It is necessary to find a conjugate matrix with quadrature
phase relationship to the curvature tensor. In the following, we will introduce
the general signal model based on 2D spherical harmonics.

As analyzed before, the Hessian matrix contains curvature information.
Based on it, i0D, i1D and i2D structures can be easily separated. It is obvi-
ous that angular parts of the derivatives are related to spherical harmonics
of even orders 0 and 2, see equations (5.27) to (5.30). These harmonics rep-
resent the even information of 2D structures. Therefore, we are motivated to
construct a tensor T, which is related to the Hessian matrix, for the signal
modeling. We will call T, as the curvature tensor, although it is different
to the curvature tensor of the second fundamental form of the differential
geometry. This curvature tensor indicates the even information of 2D struc-
tures and is obtained from a tensor-valued filter H, in the frequency domain,
i.e. T, = F ' {H, x, F}, where ! means the inverse Fourier transform and
X, indicates the geometric product between all elements of H, and F. Since
the original 2D signal f(x,y) is embedded as an es-valued signal, the tensor-
valued filter H., called the even Hessian operator, thus takes the following
form

H, = [H°+<H2>0 _<H2>2} (5.36)

(Ha)y  Ho— (Ha),

— N

1+ cos(2c) —sin(2a)ess cos?(a)  —isin(2a)er

- { sin(2a)e;; 1 — cos(20) }: { Lsin(2a)e;s sin?(av)

DO |

The entities of H, are obtained from Eq. (5.30). For the convenience of
analysis, the radial factors are ignored.

In this filter, the two elements cos?(a) and sin?(a) can be considered as
two angular windowing functions which are the same as those of the orienta-
tion tensor in [47]. From them, two perpendicular i1D components of the 2D
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o™y

Fig. 5.3: From left to right are the angular windowing functions of cos?

sin®(a), cos?(a — %) and sin*(a — T). White indicates posmve one

and black represents zero.

N

Fig. 5.4: From left to right are the test image, i1D signals result from the
angular windowing functions of cos?(«), sin*(a), cos’( — %) and

sin®(a — ), respectively.

image, oriented along the e; and e, coordinates, can be obtained. The other
component of the filter is also the combination of two angular windowing
functions, i.e. sin(2a) = 1(cos* (e — Z) — sin®(a — Z)). These two angular
windowing functions yield again two i1D components of the 2D image, which
are oriented along the diagonals of the plane spanned by e; and e;. These
four angular windowing functions, shown in Fig. 5.3, can also be considered
as four differently oriented filters, which are basis functions to steer a detector
for i1D structures [44]. They make sure that i1D components along different
orientations are extracted, see Fig. 5.4. Consequently, the even Hessian op-
erator H, enables the extraction of four differently oriented i1D components
of the 2D image. Hence, the superimpose of these four basis i1D signals will
result in a rotation-invariant extraction of any arbitrary but even symmetric
i1D signal.

The 2D quadrature filter, which was proposed in Chapter 4, employed also
2D spherical harmonics as basis functions. However, in that framework, the
angular windowing functions constructed from these spherical harmonics are
tightly related with the orientations of the two i1D signals which superimpose
the i2D pattern. This means that orientations of these two 11D signals should
first be estimated and then be used to steer two angular windowing functions
for extracting the corresponding two i1D signals. In contrast to this, the
curvature tensor consists of four entities, which can be regarded as angular
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windowing functions. They are tightly attached with the coordinate system.
In this way, rotationally invariant extraction of the i2D pattern is easy to be
implemented without steering.

The Riesz transform [36] is able to evaluate the corresponding conjugate
information of the i1D signal, which is in quadrature phase relation with the
i1D signal. Therefore, the odd representation of the curvature tensor, called
the conjugate curvature tensor T,, is obtained by employing the first order
spherical harmonic h; to elements of T,, which equals the Riesz transform of
the curvature tensor 7,. Besides, the conjugate curvature tensor 7, results
also from a tensor-valued filter H,, called the odd Hessian operator.

T,=hy % T.=F " {H, x, F} | (5.37)

where %, represents the convolution of all elements of T, with h;. The odd
Hessian operator H, equals the Riesz transform of the even Hessian operator,
i.e. H, = Hy X, H.. In the spectral domain, the odd Hessian operator thus
takes the following form

O R i R o B
with
H,u = (1cos(a)+sin(a)e12)(cos2(a)) (5.39)
= 2 [(3cos() + cos(30)) + (sin(a) + sin(3a))ens]
Hyp — — 012:(Cos(a)—l—sin(a)elg)(%sin(Qoz)eu) (5.40)

[(cos(a) — cos(3ar)) + (sin(a) + sin(3ar))eqs)
os(a) + sin(a)e;s)(sin’(a)) (5.41)
[(cos(ar) — cos(3ar)) + (3sin(a) — sin(3a))eqs] -

H022 =

N

It is obvious that this tensor-valued filter consists of odd order spherical
harmonics. Hence, the Riesz transform of the curvature tensor T, gives its
corresponding odd representation T,. Combing the curvature tensor and its
conjugate representation forms the general signal model of local 2D image
structures,

T(x) = Tu(x) + T)(x) . (5.42)

This signal model can also be regarded as the monogenic extension of the
curvature tensor. Hence, it is called the monogenic curvature tensor.
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In fact, the monogenic curvature tensor is an element of M (2,R3) with
monogenic entries. This representation is much more powerful than the
monogenic signal. There for each pixel a real signal is extended to a Clifford
valued signal. In our case, a Clifford valued tensor representation is gained
with quadrature relations in each element of the tensor. There are different
ways of evaluating the monogenic curvature tensor. One way is to evaluate
the quadrature relationship of the tensor pair (7., T,) separately, the other
way is to evaluate the quadrature relation of the elements of T' =T, + T,.
We will present in this thesis the first way.

5.2.3 Local Representations for 11D and 12D Image
Structures

Analogous with the real valued differential geometry approach, in our Clifford
valued approach, 2D image structures can be classified by computing the
Gaussian curvature and the mean curvature of the tensor pair 7T, and T, see
also Tab. 5.1. Since the non-zero Gaussian curvature indicates the existence
of i2D structure, the even and odd parts of i2D structures are correspondingly
obtained according to Eq. (5.33). The even part of i2D structures reads

d. = detp(Te)es = (Te1Tea2 — Ter2Teon)es (5.43)

O
f{[(z 2 F)z( )
(). ()

= Aeg,

where T.;;, i,j = 1,2 are the corresponding components of the curvature
tensor T,. Because detg(T,) is scalar valued, similar as the monogenic signal,
the even part of i2D structures is embedded as the ez component in the 3D
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Euclidean space. The odd part of i2D structures is given by

d, = edetp(T,) =ei1(Ton1Tvo2 — To12T001) (5.44)

_ {61 KHl(Ho ;r (H2>0)F> . <H1(H0 ; <H2>0)F>

B (H1(<§f2>2)F) . (—Hl(;H2>2)F) ]}

= Be; +Cey,

where Tp;;, 4,7 = 1,2 are the corresponding components of the conjugate
curvature tensor 7T,. Because detg(T,) is spinor valued, i.e. detgr(T,) €
span{l, ey}, by multiplying the e; basis vector from the left, d, takes a
vector valued representation. A local representation for i2D structures is
obtained by combining the even and odd parts of i2D structures. This local
representation for i2D structures is called the generalized monogenic curva-
ture signal and it takes the following form

fZ‘QD = de + do = Ae3 + Be1 + Ceg . (545)

The original signal f(x),x € R? is thus mapped to fi2p(x),x € R? as a local
representation of i2D signals. The generalized monogenic curvature signal
can be considered as a monogenic representation of the Gaussian curvature
in real valued differential geometry.

The parabolic and planar surface patches, corresponding to i1D and i0D
structures, have zero Gaussian curvatures. In order to separate them with
each other, the trace of the tensor pair T, and T, is computed. Non-zero
trace illustrates the existence of the i1D structure. Therefore, the combina-
tion of traces of T, and T, can be considered as the local representation of
i1D structures. According to the combination and certain embedding, this
representation is obtained as

fiip = tracey (T.) + tracey (71,)es (5.46)
= F 'tracey (H, x, F) + tracey (H, x, F)ey}
= F '{[tracer (H.) + (—ez)tracey (H,)|F}
with
tracep (He) + (—ea)tracen (H,) 1+ (—e9)H, (5.47)
1+ (—eg)(cos(a) + sin(a)es)
= 1+ cos(a)(—ey) +sin(a)e; =1+ Hp ,
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where Hp refers to the Riesz kernel in the spectral domain, see Eq. (5.2).
Plugging Eq. (5.47) into Eq. (5.46), we will get the i1D structure represen-
tation as

fip = F '{[tracey (H,) + (—ey)tracey (H,)|F} (5.48)
= F YA+ HpF}=f+hgxf=fi(x)es+ fi(x)e; + fo(x)ey,

where hpg is the spatial representation of the Riesz kernel and f refers to
the e valued original signal. The obtained Eq. (5.48) is identical to Eq.
(3.78) and Eq. (3.81), which indicates that the local representation for i1D
structures, obtained from the general signal model, is the combination of
the original signal and its Riesz transform. This means that the derived
i1D structure representation is just the monogenic signal as proposed in [36].
Hence, the proposed signal model includes the monogenic signal as a special
case, which is a monogenic measure of the mean curvature. In addition to
this, it constitutes also the local representation for i2D structure. Therefore,
the signal model of the monogenic curvature tensor is a general representation
for 2D structures of any intrinsic dimension.

The current analysis of this novel model is based on only the combined
traces and determinants of two separate tensors. It is very promising that
more local features can be extracted via the component-wise eigensystem
analysis of the monogenic curvature tensor.

5.2.4 Comparison with Some Related Work

The monogenic curvature tensor is a novel model for 2D image structures.
However, there exist also some tensor-based approaches in the literature for
image analysis. In this section, we will compare the proposed new method
with some related work. For better understanding, all the formulations are
presented in the classic vector algebra framework.

The structure tensor [43] is a well-known approach for local image anal-
ysis. It is constructed as the averaged outer product of the spatial gradient
with itself. From it, local energy and orientation of the image structure can
be easily obtained. Unfortunately, the structure tensor is not phase invariant
since it reacts differently to edges and lines. Besides, it contains no phase
information of local structures. A different approach, called the orientation
tensor, was proposed in [47], see also Chapter 3 for a brief introduction. The
authors are interested in i1D image structures, which are called simple sig-
nals. In the case of i2D structures, it is still unclear exactly how this tensor
will behave. In contrast to the structure tensor, this method has the property
of phase invariance. But it still lacks the capability of phase evaluation.
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In [30], an extension of the orientation tensor was presented for non-simple
signal orientation estimation, which takes the following form

T = AAT + ybb" | (5.49)

where A is a symmetric matrix which captures information about the even
part of the signal (excluding the DC component), b is a vector which extracts
information about the odd part of the signal. Details of the construction can
be found in [30]. Possibilities for the construction include local polynomial
fits, facet models, moment filters and Gaussian derivative filters. The choice
of ~ is problematic, which means it is impossible to find a single value that
works well on the entire image. Consequently, no matter how A and b are es-
timated, this tensor is only phase invariant for a single frequency determined
by ~. Same as the structure tensor, it also delivers no phase information.

The boundary tensor introduced in [65] integrates i1D and i2D structures
detection into one framework. It is built based on a new generalization
of quadrature filters to 2D using the Riesz transform. This tensor turns
out to be structurally equivalent to the polynomial-based orientation tensor
definition, but with a uniquely determined parameter v = 1. It has the
property of phase invariance for all frequencies in the same way as that of
the quadrature filter.

Similar to the monogenic curvature tensor, 2D spherical harmonics are
also employed as basis functions to construct the boundary tensor. They
are combined with bandpass filters to form polar separable filters. However,
the difference of Gaussian (DOG) is used instead of the difference of Poisson
(DOP), which results in the loss of harmonic conjugate information. Besides,
only up to second order 2D spherical harmonics are considered.

The polar separable filters used in this approach in the Fourier domain
read

K(p, ) = Ko(9) K, (p) (5.50)

where p, ¢ denote the polar coordinates in the frequency domain, K,(¢) are
the angular parts which have the forms of cos(ny) or sin(ng) with n being
the order of the 2D spherical harmonic, K,(p) indicates the DOG. In the
spatial domain, the polar separable filters are given by

hﬁ”’ = F {cos(np)K,(p)} = 4Z—ZQ cos(nd) k™ (r) (5.51)
WY = F {sin(ng) K, (p)} = % SnmOkM (), (5.52)

where r and 6 are polar coordinates in the spatial domain. The radial func-
tions k" are obtained by the nth order Hankel transform of K,(p). The
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filter response from these polar separable filters thus reads

(m) (m)
om = (G~ | Fxm (5.53)
s f* hy

where f refers to the image signal. Based on this, the boundary tensor is
constructed as

T = Teven + Tpygq = AA" + bb" (5.54)
with

_C(O) + 0(2) 0(2)

A = ! 2 (5.55)
o co—¢P
_C(l)

b= | 5.56
o (5.56)

The structure of the boundary tensor looks very similar to the monogenic
curvature tensor. They all consist of even and odd tensors. Looking into
details, A can also be obtained from a tensor-valued filter H 4. Ignoring the
radial parts results in a representation of H, as the following

1+ cos(2p)  sin(2¢p)

sin(2¢) 1 —cos(2¢p) (5.57)

= |

This is exactly two times the outer product of the Riesz kernel. It is obvious
that H, is the even Hessian operator (up to a factor), which is used in the
monogenic curvature tensor. In the boundary tensor, A is called the gener-
alized Hessian. But in our framework, this is named as the curvature tensor
since it contains rich curvature information. In contrast to the monogenic
curvature tensor, the even part of the boundary tensor is given by AAT.
Elements of this even tensor thus represent signal energies instead of filter
responses, which makes it difficult to explore the corresponding harmonic
conjugate information.

The construction of the odd part has big difference between the boundary
tensor and the monogenic curvature tensor. Only the first order spherical
harmonic is used in the boundary tensor, but the odd part of the monogenic
curvature tensor is built based on the combination of the first and third order
spherical harmonics. This delivers the possibility of detecting local structures
with higher angular resolution. In addition to this, the odd part bbT of the
boundary tensor contains only the energy information. In such case, how the
phase information can be extracted is not explicit at all.
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By computing the trace of the boundary tensor, the boundary energy is
obtained, which contains the energy information of i1D and i2D structures.
According to the eigenvalue decomposition, energies for these two kinds of
structures are able to be distinguished. Hence, they are directly used for
detecting i1D and i2D structures. Unfortunately, due to the lack of phase
information, the detection can not be implemented by the means of phase
congruency. As a comparison, computing the trace of the monogenic curva-
ture tensor results in a totally different entity, that is the monogenic signal.
Besides, the interpretation of the determinant of the boundary tensor is still
not well investigated. On the contrary, the determinant of the monogenic
curvature tensor results in the generalized monogenic curvature signal as a
novel model for i2D image structures.

It was reported in [66] that the boundary tensor exhibits very similar
behavior as the derivative-based gradient energy tensor [32, 35]. The energy
tensor is able to extract the phase information of i1D structures, however,
it still delivers no information about the i2D parts. Compared with the
boundary tensor and the energy tensor, the monogenic curvature tensor con-
tains much rich information. In addition to the local energy and orientation
information, local phases of i1D and i2D structures can also be estimated,
which is a remarkable advantage compared with these previously mentioned
tensor-based approaches.

5.3 Interpretation of the Generalized Monogenic
Curvature Signal

Because the monogenic signal has been discussed in [36] in detail, we are more
interested in the interpretation of the i2D structure representation, i.e. the
generalized monogenic curvature signal.

5.3.1 Geometric Model and Feature Extraction

In the light of the introduction in Section 5.1.1, local features of the gener-
alized monogenic curvature signal can be defined using the logarithm of R; .
The spinor field which maps the es basis vector to the generalized monogenic
curvature signal fop is given by esfiap. According to Eq. (5.4) and Eq. (5.5),
the local amplitude A(x) and local phase representation ®(x) are obtained
as

A(x) = |fiap(x)| = exp(log(|esfiap(x)])) = exp((log(esfip(x)))o)  (5.58)
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Fig. 5.5: The geometric model for the generalized monogenic curvature sig-
nal. Here, Aes indicates the even information of the i2D structure,
Be; and Ce; are the two components of the odd part. The phase
is represented by ¢, 260 denotes the main orientation in terms of
double angle representation, r indicates the rotation vector.

®(x) = arg(fiap(x)) = (log(esfiap(x)))2 (5.59)
_ (esfiop(x))2 ¢ <|<egfi2D(X)>2|)

esfan (X)) \ (esfan (X))

where arg(-) denotes the argument of the expression and atan(-) € [0, 7). As
the bivector part of the logarithm of the spinor field esf;sp, this local phase
representation describes a rotation from the ez axis by a phase angle ¢ in the
oriented complex plane spanned by f;>p and es, i.e. f;op Aez. The orientation
of this phase plane indicates the local main orientation. Therefore, the local
phase representation of the generalized monogenic curvature signal combines
local phase and local orientation of i2D structures, just as in the case of the
monogenic signal for i1D structures. Since the local phase representation
®(x) is a bivector, its dual in Ry is a rotation vector that can be defined as

r(x) = (®(x))" = (log (esfian (x))); - (5.60)

The rotation vector r is orthogonal to the local orientation. The length of
the rotation vector |r| indicates the phase angle ¢ of the i2D structure and its
direction illustrates the rotation axis. According to the proposed algebraic
embedding, a geometric model for the generalized monogenic curvature signal
can be visualized as shown in Fig. 5.5. The geometric model is an ellipsoid,
which looks very similar to that of the monogenic signal. However, each
axis encodes totally different meaning. The even part of the i2D structure is
encoded within the e3 axis, and the odd part is encoded within the e; and
e; axes. The angle ¢ represents the phase and 26 is the main orientation in
a double angle representation form. The rotation vector r lies in the plane
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orthogonal to e;. Combining the local amplitude and local phase represen-
tation, the generalized monogenic curvature signal for i2D structures can be
reconstructed as

fZ‘QD = |fi2D|eXp (arg (fZQD)) . (561)

Having a definition for the i2D local phase, we recognize that the local phase
representation contains additional geometric information, i.e. local orienta-
tion. Since local amplitude, local phase and local orientation are orthogonal
to each other, the generalized monogenic curvature signal performs a split of
identity.

From an alternative point of view, local amplitude, phase and orienta-
tion can also be obtained according to the relationship of the even and odd
components in spherical coordinates. The local amplitude is computed as

|fi2D| =V A2 + B2 + 02 . (562)

The local main orientation is given by

™ T

—5 5] , (5.63)

1
0= §atan2(B, C) e (

where atan2(-) € (—m, 7). And the local phase reads
¢ = atan2 (sign(Be; + Ces)|Be; + Cey|, A) o€ (—m,m . (5.64)

Fig. 5.6 illustrates bandpassed local features extracted from the general-
ized monogenic curvature signal. A synthetic image which consists of a su-
perposition of an angular and a radial modulation is used as the test image.
The blobs in this test image are considered as i2D structures. The energy
output of the generalized monogenic curvature signal, i.e. d?> + d2, can be
regarded as i2D structure strength to detect points of interest. Besides, it
also illustrates the rotation invariance property of the generalized monogenic
curvature signal. The even and odd outputs also indicate the existence of i2D
structures. Local main orientation of the generalized monogenic curvature
signal denotes the main orientation of the i2D structure. Its minor orienta-
tion is simply perpendicular to the main orientation. Local phase contains
the structure information. At the positions where the main orientation and
the minor orientation wrap from zero to m, the estimated phase is inverted.
This is called the orientation-phase wrapping. For another synthetic image,
the corresponding local features are demonstrated in Fig. 5.7.

To show the difference between the monogenic signal and the general-
ized monogenic curvature signal, some experimental results are given in Fig.
5.8 and Fig. 5.9. Two patterns as the line and edge like intersections are
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Fig. 5.6: Bandpassed local features. Top row: from left to right are the
original image and the energy output of the generalized monogenic
curvature signal. Middle row: even and odd parts of the general-
ized monogenic curvature signal. Bottom row: the estimated main
orientation and phase.

employed as test images. Local energy output and phase information from
the monogenic signal and the generalized monogenic curvature signal are
extracted, respectively. These results indicate that the monogenic signal en-
ables feature estimation of i1D signals, however, it delivers no information
for the i2D part of the original signal. The generalized monogenic curvature
signal in contrast gives access to local feature evaluation of i2D structures.
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Fig. 5.7: Top row: the test image and its local main orientation estimation
from the generalized monogenic curvature signal. Bottom row: the
estimated energy and phase information.

. \
o
i

Fig. 5.8: Top row: test image, the energy of the monogenic signal and its
phase. Bottom row: energy and phase of the generalized monogenic
curvature signal.
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Fig. 5.9: Top row: test image, the energy of the monogenic signal and its
phase. Bottom row: energy and phase of the generalized monogenic
curvature signal.

5.3.2 Properties of the Generalized Monogenic Curvature
Signal

According to Eq. (5.43), in the spectral domain, the even part of the gener-
alized monogenic curvature signal d. can be interpreted as

F{d) = Fldetp(T,)es) (5.65)
= ((He(a)Hpor(p; s)F) * (Heaa() Hpop(p; s)F)
—(He2(o)Hpop(p; 8)F) * (Hear (o) Hpop(p; s)F))es

where H.;j(a), i,j = 1,2 are the corresponding components in the tensor-
valued even Hessian operator H.. Only if Eq. (5.65) delivers a non-zero out-
put, the existence of i2D structures is indicated. For i0D and i1D structures,
the result of Eq. (5.65) is zero. The i1D signals in the frequency domain are
straight lines through the origin, therefore, the two dimensional convolutions
in Eq. (5.65) can be reduced to 1D convolutions along the properly oriented
axis, indicated by the fixed angle ag. Then, Eq. (5.65) can be rewritten as

Fde} = ([Henr (o) Heaz(a)] [(Hpor(p; 8)F) x (Hpopr(p; s)F)] —
[Her2(c) Hear (co)] [(Hpor(p; $)F) * (Hpor(p; s)F)])es . (5.66)

To ensure F{d.} to be zero for an i1D signal, the condition should be

Hen(Oéo)He22(Oéo) = HelQ(Oéo)Hem(Oéo) . (5-67)
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Hence, Eq. (5.67) makes sure that the even part is selective to the i2D struc-
tures and it was called the compensation equation in [122]. In the case of
the generalized monogenic curvature signal, for its even part, we have

1
Heu(Oéo)Hegg(O[()) = COSQ(Oé()) Sin2(010) = 1 Sin(2060) (568)
L. L. 1.
Heo(ag)Heai () = 5 sm(20¢0)§ sin(2qy) = 1 sin(2aqy) . (5.69)
Therefore, the compensation Eq. (5.67) is satisfied and can be rewritten as
1 1
cos?(ag) sin?(ap) = 5 sin(2a0)§ sin(2aqy) . (5.70)

This equation decides that the even part of the generalized monogenic cur-
vature signal is selective to the i2D structure and the i1D structure can be
suppressed.

Analogously, the odd part of the generalized monogenic curvature signal
d, in the Fourier domain reads

f{do} = f{eldetR(To)} (571)
= ei((Hon(a)Hpop(p; s)F) * (He(a) Hpor(p; s)F)
—(Hoz(a) Hpor(p; s)F) * (Hoo1 () Hpor(p; 5)F)) .

In order to make sure F{d,} is zero for an i1D signal, the compensation
equation for the odd part of the generalized monogenic curvature signal with
the following form should be satisfied

Hoi1(ag) Hogo () = Hopra(ag) Hoor () (5.72)

where H,;;,%,7 = 1,2 indicates the corresponding components in the tensor-
valued odd Hessian operator H,. Hence, we are able to obtain

Ho1 () Hoza () = cos(2aq) [cos?(ap) sin®*(ag)] + (5.73)

sin(2aq) [cos®(ap) sin’(ag)] €12

H12(cg) Hor (cg) = cos(2ay) E sin(20¢0)% sin(QQO)} + (5.74)

1 1
sin(2ap) {5 sin(2a0)§ sin(2a0)} e .

It is obvious that the compensation Eq. (5.72) is satisfied and the odd part of
the generalized monogenic curvature signal does only respond to i2D struc-
tures. Consequently, the generalized monogenic curvature signal is regarded
as the local representation of the i2D structure.



5. Signal Modeling for Two-dimensional Image Structures 93

Since the odd part of the generalized monogenic curvature signal has two
components, the compensation of the odd part can in accordance be split
into two parts, that is

cos(2ayp)[cos®(ap) sin® ()] = Cos(2a0)[% sin(ZaO)% sin(2ay)] (5.75)

sin(2ayg )[cos®(ap) sin®(ag)]ern = sin(2a0)[§ sin(2ag) = sin(2ap))ers . (5.76)

These two parts, which are derived from detr(T,) = Tp11To22 — To12T0o1,
determine the two components of the odd part Be; and Ces, respectively.
Comparing the compensation equations (5.70),(5.75) and (5.76), it is shown
that the determinant of the conjugate curvature tensor 7, is obtained from
the curvature tensor T, by convolving it with the second order spherical
harmonic, that is

detg(T,) = he * detg(T,) . (5.77)

Therefore, the odd part of the generalized monogenic curvature signal d, can
be derived from the even part d. by employing the second order spherical
harmonic operator, which means

fiQD = det(Te)eg + eldet(To) = de -+ do (578)
= de -+ (elhgeg) * de = Ae3 + Be1 + CQQ .

The angle between Be; and C'e, indicates the local main orientation in a dou-
ble angle representation just as in the case of the structure tensor [43, 47].
It is introduced in Section 3.9 that the odd part of the monogenic signal
is obtained from the even part by employing the Riesz transform, which is
basically equivalent to the first order spherical harmonic. In case of the gen-
eralized monogenic curvature signal, we have comparable relations between
the even and odd parts. Only the second order spherical harmonic occurs
as a new operator which is another generalization of the Hilbert transform.
This enables us to state that the Riesz transform is able to generalize the
Hilbert transform with respect to ilD signals and the derived generalized
Hilbert transform (the second order spherical harmonic) realizes the same
with respect to i2D signals. This is valid for any dimension of the signal.
Furthermore, this gives rise to the conjecture that a third order spherical
harmonic will be responsible for generalizing the Hilbert transform in the
case of i3D signals in the 3D case. Recently, several types of generalized
Hilbert transforms have been derived in [13, 14]. Indeed, the second order
spherical harmonic belongs to one of the considered types.
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According to the Parseval theorem, the energy of the odd and even parts
of the generalized monogenic curvature signal are related by

Eo - ((e1h2e3)*de)2://|61H263D6|2dpd04 (579)
= //|cos(2a)e13+sin(204)e23\2|De|2dpd04

_ / / (cos*(20) + sin®(20))|D,|?dpda = E, |

where D, represents the Fourier transform of d.. It can be shown that the
energy of the odd part equals that of the even part. Hence, the amplitudes
of even and odd part are equivalent, i.e. |d.| = |d,|.

As a good local representation for the i2D signal, it requires that the
generalized monogenic curvature signal has the property of rotation invari-
ance. To analyze this property, we should start from Eq. (5.33). Hence, the
determinant of the Hessian matrix can be rewritten as

K = fuesfyes — (—foes)(foyei2s) (5.80)
= i[(fxa:QS + fyyei*»)z - ((fa:a:eS - fyye3)2 + (fzy)2)]

1 2 2
Z[(Af) € ] )

where Af is the Laplacian of the signal and ¢ indicates the eccentricity. Be-
cause Eq. (5.80) must be zero for the i0D and i1D signals, the compensation
equation of it now changes as

(cos?(a) + sin®(a))? = cos®(2a) + sin®(2a) . (5.81)

Since 10D and i1D structures are suppressed, what left is the i2D structure.
Hence, spherical harmonics which serve as the angular portions, decide the
rotation invariance of the i2D structure output. As stated in Section 5.1.2,
the amplitude of the nth order spherical harmonic is rotationally invariant.
Thus, the filter response from an nth order spherical harmonic has the prop-
erty of rotation invariance. Therefore, the left and right sides of Eq. (5.81)
determine two isotropic operations. The determinant of the Hessian matrix
thus can be considered as the difference of two isotropic operation outputs,
which proves that the property of rotation invariance is fulfilled.

A similar analysis applies to the even part of the generalized monogenic
curvature signal, that is

d. = (TbiTexs — TeaoTeon)es (5.82)

1
= 1 [(Tell + Tin2)® — ((Ter1 — Tean)® + TelQTeQI))} es .
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The compensation for d. now takes the same form as the compensation
Eq. (5.81). Therefore, d. is rotationally invariant. According to equations
(5.78) and (5.79), the odd part is obtained by convolving the even part with
the second order spherical harmonic and the energy of them are equivalent.
Therefore, the amplitude of the odd part d, is also rotationally invariant.

Hence, we can conclude the properties of the generalized monogenic cur-
vature signal as follows

e [t enables the simultaneous estimation of the local amplitude, local
main orientation and local phase of i2D structures.

e [t is rotationally invariant and no steering is needed.

e The odd part is transformed from the even part by the second order
spherical harmonic, i.e. d, = (ejhqe3) * d..

e The energy of the even part is equal to that of the odd part, i.e. d* = d2.

e Since the local amplitude and local phase representation are indepen-
dent of each other, the generalized monogenic curvature signal fulfills
the split of identity.

5.4 Parity Symmetry Analysis

5.4.1 Preliminaries

Parity symmetry, as an important local feature of qualitative signal analysis,
is strongly related to the local phase of the signal [106]. In image processing,
parity symmetry is a cue for the line-like or edge-like quality of a local image
structure. Parity refers to the invariance of a process with respect to a
reflection operation. It is well known that any real signal f : R® — R at any
location x € R™ can be decomposed into an even and odd part, i.e. f(x) =
fe(x)+ fo(x) [47]. A real signal has even symmetry if f(—x) = f(x) and odd
symmetry if f(—x) = —f(x) for all x € R™.

In 1D, the local phase of a signal is defined as the angular part of its
analytic signal. If the local energy is zero, no phase analysis is available. Once
the local energy exceeds a certain threshold, the parity symmetry would then
enable a local structure analysis. The relation between the local structure and
local phase is illustrated in Fig. 5.10. At a signal position with locally even
symmetry, only the real valued even part of the quadrature filter matches.
Thus, the phase is 0 for a peak like signal and 7 for a dip like signal. A
similar reflection reveals the odd case for edge like signals. Only the odd,
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Fig. 5.10: The relation between the local signal structure and local phase in
1D case.

Fig. 5.11: Four components of the quaternionic Gabor filter.

and thus the imaginary, filter component matches the signal. Therefore, the
signal structure has a phase of § for decreasing slope and —7 for increasing
slope. For i1D signals, the monogenic phase also indicates the even and odd
symmetry as line and edge like structures in a rotation-invariant manner. The
line-like structure is even symmetric with respect to its orientation vector,
hence, the odd output of the monogenic signal is zero. The edge-like structure
is pure odd symmetric with respect to its orientation vector. Therefore, no
even output from the monogenic signal exists.

A phase concept of i2D signals has been investigated by Biilow and Som-
mer [20, 18]. In this approach, a two-dimensional signal is split into even and
odd parts along the z-axis and along the y-axis, i.e. f =f.. + f,. + f., + f.0.
Here, f.. denotes the part of f that is even with respect to x and y, f,. rep-
resents the part which is odd with respect to z and even with respect to
y and so on. These four symmetries are obtained by convolving the signal
with four components of a quaternionic Gabor filter which are shown in Fig.
5.11. Those four components have the even-even, odd-even, even-odd and
odd-odd symmetries with respect to the coordinates. The estimated phase
information can, to some extent, illustrate the intrinsic dimensionality of lo-
cal structures. Unfortunately, this approach has the drawback of being not
rotation invariant.
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5.4.2 Parity Symmetry of the Generalized Monogenic
Curvature Signal

The generalized monogenic curvature signal also enables the rotation invari-
ant extraction of a phase for i2D signals. The presented phase interpretation
strongly depends on the way the monogenic curvature tensor is analyzed.
Here, we study only the relations between its even and odd components.
The parity symmetry involved in our case can be analyzed from the even
and odd parts of the generalized monogenic curvature signal, respectively.
As indicated in Section 5.2, the even part is computed as,

d. = (TenTe22 - T612T621)e3 = A A\q€e3 . (5-83)

According to [31], the eigenvalues \; and Ay can be considered as a cos?-
decomposition of the local amplitude. Hence, these two eigenvalues can be
obtained from two angular windowing functions cos?(3 — 6y) and cos*(3 —
(6o +7%)) = sin®(8—6p), which are oriented along the principal axes. Here, 6,
refers to the local main orientation. These two angular windowing functions
are even with respect to the principal axes oriented along 0y and 0y + 7,
respectively. Thus, d, has the even-even symmetry with respect to the prin-
cipal axes.

The odd part of the generalized monogenic curvature signal is computed
as

do =€ (T011T022 — T012T021) = (elhzeg) * de = Be1 =+ CQQ . (584)

Hence, the two components of d, are obtained by convolving the second
order spherical harmonic with the even part. Therefore, the symmetry of
the odd part can be determined by the second order spherical harmonic.
As visualized in Fig. 5.12, the two components of the second order circular
harmonic, cos(2/3) and sin(23), are odd-odd symmetric with respect to ey,
e, axes and the diagonals of the plane e; A ey, respectively. These two
components together decide the local main orientation. Thus, the odd part
of the generalized monogenic curvature signal, i.e. the vector sum of Be; and
Ce,, has an odd-odd symmetry with respect to the principal axes.

Unlike the 11D signals, i2D signals have more degrees of freedom. There
is no general way to completely specify the parity symmetry of an arbitrary
i2D structure by applying a pre-defined phase model. Because the odd part
of the generalized monogenic curvature signal has only odd-odd symmetry,
the derived phase information can only be used to classify some specific
i2D structures, even though the generalized monogenic curvature signal is a
general local representation for all i2D structures. It can be assumed that a
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Fig. 5.12: Two orthogonal components of the bandpass bounded second order
circular harmonic, cos(23) and sin(2/3) (white: +1, black: -1).

Fig. 5.13: Some i2D Structures: from left to right are the line-like intersec-
tion, edge-like intersection and a mixture of them.

component wise evaluation of the monogenic curvature tensor will result in
a more detailed specification of the parity symmetry.

For any superimposed i2D signal, as shown in Fig. 5.13, there exist pat-
terns such as the line-like intersection, the edge-like intersection and a mix-
ture of them. The local neighborhood where two lines/edges intersect is con-
sidered as the i2D structure. It corresponds to elliptic or hyperbolic region
with positive or negative Gaussian curvature, see also Tab. 5.1. Therefore,
for the i2D neighborhood where two lines intersect, it belongs to the elliptic
region which denotes local extreme. Hence, the even output of the general-
ized monogenic curvature signal is positive, i.e. d. > 0. Because the second
order spherical harmonic cannot match the line-like intersection structure, in
this case, the odd output would vanish, i.e. d, = 0. Therefore, the estimated
local phase has a value of zero

¢ = atan2(d,,d.) = 0. (5.85)

Edge-like intersection structures are saddle points which correspond to
hyperbolic regions. Therefore, the generalized monogenic curvature signals
in such case have negative even outputs, i.e. d. < 0. Because the even parts
are filtered results from original signals, in this case, edges in original signals
will appear as peak or dip like structures. Thus, odd parts of the general-
ized monogenic curvature signals are non-zero since second order spherical
harmonics could match the even outputs. Hence, due to the intersection of
edges, the generalized monogenic curvature signal has not only even but also
non-zero odd outputs. As mentioned before, the energy of the even part is
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Fig. 5.14: Local phase and corresponding i2D structures. The horizontal axis
is the real axis, the vertical axis indicates the imaginary axis.

identical to that of the odd part. Thereby, the amplitude of the even output
equals that of the odd part, i.e. |d.| = |d,|. Hence, the absolute phase value

|p| reads

3
ol = atan2(|d,|, d.) = f : (5.86)

The sign of the phase depends on the direction of d,.

The i2D structure which is the mixture of the line-like and edge-like
intersection, has also a positive even output since it corresponds to the local
extreme. Due to the edge-like intersection, its odd output is also non-zero.
Therefore, the even part of the generalized monogenic curvature signal is
positive, i.e. d. > 0. And the odd part of it is also equivalent to the even part,
i.e. |de| = |d,|. Thereby, for the mixture pattern, its local phase absolute
value is obtained as -

lo| = atan2(|d,|, d.) = 1 (5.87)

Its sign also relies on the direction of d,. Consequently, some specific struc-
tures can be classified on the basis of the newly developed phase information.
On the oriented complex plane, shown in Fig. 5.14, phase values clearly de-
note what kind of structure it is. The local phase is able to distinguish
between line-like, edge-like intersection structures and the mixture pattern
of them.

The two superimposed i1D signals are not necessarily to be perpendicular
to each other. This is a meaningful extension of the structure multivector
model as proposed in [31]. If the phase has a value of zero, the corresponding
structure is indicating line-like intersection. A phase absolute value of %f or
7 implies that the corresponding local structure is edge-like intersection or a
mixture pattern.

Fig. 5.15 illustrates the evaluated phase information for two superimposed
patterns with flexible angle of intersections. In the case of very bright blobs,
they can be regarded as line-like intersections, hence, their phases take zero
values. For those blobs which are a bit darker than the bright blobs, they
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4

Fig. 5.15: Top row: two test images. Bottom row: corresponding phases of
the two test images.

indicate edge-like intersections with phases of %TF or —%T”. It can be assumed
that an extensive analysis of the inner structure of the monogenic curvature
tensor will yield more degrees of freedom. Thus, more phase angles will be
obtained which can further help specifying i2D patterns.

5.5 Generalized Monogenic Curvature Scale-Space

5.5.1 Definition and Local Features

In Section 5.1.1, the way to embed a 2D signal into a 3D space has been
introduced. So far, we discussed only the case with z = 0 for our general
model. The half space z > 0 for the monogenic signal is the monogenic scale-
space [38] which has already been investigated in detail. Now, we will sketch
in this section the generalized monogenic curvature signal in the half space
z > (0. Similar as in the case of the monogenic signal, z works as a scale
parameter. Applying Poisson filtering to the monogenic curvature tensor
results in a generalized monogenic curvature scale-space which enables the
multi-scale processing of local structures. Since the generalized monogenic
curvature signal consists of even and odd parts, the generalized monogenic
curvature scale-space can also be formed by the Poisson curvature scale-space
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Fig. 5.16: The generalized monogenic curvature scale-space.

and the conjugate Poisson curvature scale-space as illustrated in Fig. 5.16.

Combining the Poisson kernel with 2D spherical harmonics forms damped
spherical harmonics which are basis functions to build the generalized mono-
genic curvature scale-space. An nth order damped spherical harmonic in the
frequency domain is given by

H,(p,a;s) = exp(naejs)exp(—2mps) , (5.88)

where p, o indicates the spectral domain polar coordinates, s denotes the
scale parameter. When s equals zero, the first order damped spherical har-
monic is basically identical to the Riesz kernel. Let r, 5 be the polar coor-
dinates in the spatial domain, the curvature tensor T,(r, 3; s) results from a
scale dependent tensor valued filter which in the Fourier domain reads

Ho(p, a; s) + (Ha(p, @; s))o —(Ha(p, @ 5))2
(Ha(p, ; 5))2 Ho(p, o; s) — (Ha(p, @; 5))o
(5.89)
The monogenic extension of the curvature tensor in the scale-space results
in its conjugate part, i.e. T,(r, 3;s). In this case, the conjugate part can be
considered as the result of applying the conjugate Poisson filtering to the
curvature tensor

H.(p,a;s) =

TO(T,ﬁ; S) = hl(raﬁ; S) *r Te(raﬁ; S) ) (590)

where hy(r, 3; s) indicates the conjugate Poisson kernel in the spatial domain.
As an alternative, T,(r, 3;s) can also be obtained from a scale dependent
tensor valued filter H,(p, «; s), that is

To(r, B;s) = F ' {Ho(p,a;s) X, F(p,a)} (5.91)
= F ' {Hi(p.a;s) x: Ho(p, ;) x; F(p,a)} .
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Hence, the filter H,(p, c; s) results from the conjugate Poisson filtering of the
filter H.(p, a; s),

Hon(p,o;8) Hoa(p, s 8)

H,(p,a;s) = Hi(p,;s) X Ho(p,a;8) =

(p ) 1o ) (p ) Hooi(p, o;8)  Hoza(p, s s)

(5.92)

with
Hoi(p,a;8) = Hi(p, ; 8)(Ho(p, c; 8) + (Ha(p, ; $))o) (5.93)
HolQ(pa Q; S) = - 012(/% Qa S) = Hl(pa o S)(_<H2<p7 Qg S))Z) (594)
Hopa(p, o5 8) = Hi(p, a; s)(Ho(p, ;) — (Ha(p, @; 8))o) - (5.95)

Once the monogenic curvature tensor is unified within a scale-space frame-
work, the computation of its trace delivers access to a scale-space which
characterizes the i1D structures. This scale-space is given by

£ (r, 05 s) = trace(T.(r, B; s)) + trace(T,(r, B; s))es . (5.96)
In terms of the Cartesian coordinate, it takes the following form

£p(x;s) = trace(T.(x;s)) + trace(T,(x; s))es (5.97)
= p(x;s) +alxs) .

This means that the scale-space derived from the trace computation of the
scale unified monogenic curvature tensor is exactly the monogenic scale-space
[38]. From it, three orthogonal scale-spaces including the local amplitude,
orientation and phase can be obtained for further image analysis.

By computing the Gaussian curvature of T,(r, 3; s), the Poisson curvature
scale-space can be obtained as

dc(r, B;5) = detr(T.(r,3;5))es (5.98)
= (Tou(r, B; 8)Teoa(r, B;5) — Teaa(r, B 8)Tear (1, B; 5))es
A(r, B;s)es .

Hence, the conjugate Poisson curvature scale-space is given by

d,(r,B;s) = eidetr(To(r,0;s)) (5.99)
= e (Tor(r, B; 8)Tona(r, B3 8) — Tora(r, B; ) Toa1 (1, 35 5))
B(r, B;s)e; + C(r, B; s)ey .
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Combining the Poisson curvature scale-space and the conjugate Poisson cur-
vature scale-space, the generalized monogenic curvature scale-space can be
obtained, which in terms of Cartesian coordinates is given as

fp(x;8) = de(x;8) + do(x; ) - (5.100)

According to the analysis in Section 5.1.1, local amplitude and local phase
representation of the generalized monogenic curvature scale-space are ex-
tracted as

A(x;s) = [£5p(x; 5)| = exp(log(|f5p (x5 5)])) = exp((log(esfp (x5 5)))o)
(5.101)

O(x; 5) = arg (fop(x; 5)) = (log (esfzp(x; 5))); - (5.102)

As the dual of the local phase representation, the local rotation vector is
defined as

r(x; s) = arg (f5p (x; 5))" = (log (esfiap(x; 3))); . (5.103)

The length of the rotation vector r(x;s) indicates the angle of phase at a
certain scale, and it is also perpendicular to the local main orientation. In-
stead of the generalized monogenic curvature scale-space, local amplitude,
main orientation and phase form three orthogonal scale-spaces which should
be applied for real applications. Fig. 5.17 illustrates local energies and local
phases extracted from a synthetic image at three scales in the generalized
monogenic curvature scale-space. For the feature extraction of the band-
passed version in the generalized monogenic curvature scale-space, one may
refer to Fig. 5.6. All the extracted features are scale dependent, however,
local amplitude, phase and orientation are still independent of each other at
each scale. Hence, the split of identity is still preserved in the generalized
monogenic curvature scale-space.

To investigate these local features in detail, two real images, shown in Fig.
5.18, are employed for feature extraction in the generalized monogenic curva-
ture scale-space. In the real applications, only the local feature scale-spaces
are considered for the analysis. Figs. 5.19 and 5.20 illustrate the correspond-
ing three orthogonal scale-spaces. At the finer scale, structures are much
more clear and easy to be detected. Hence, local features represent rich in-
formation of the image but sensitive to the noise. With the increase of the
scale, less structures can be identified, and the curvature information is cor-
respondingly changed. Thus local features are blurred and locations varied
with respect to the scale. Using multi-scale processing strategy, many ap-
plications such as shape description, image segmentation, matching, pattern
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Fig. 5.17: Top row: local energies extracted at three scales in the general-
ized monogenic curvature scale-space. Bottom row: local phases
evaluated at three scales.

Fig. 5.18: Two test images.

recognition and so on can be well implemented in the generalized monogenic
curvature scale-space.

Up to now, we understand how the local features vary with respect to the
scale. But when the scale changes, what would happen to the properties of
local structures is still unclear. To this end, a synthetic image representing
line-crossing is used for the investigation. Besides, the relation between the
angle of intersection variation and the type of local structures is also inves-
tigated. Fig. 5.21 demonstrates the test image and the confidence measure
with respect to the scale and angle of intersection variation. The confidence
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Fig. 5.19: From top row to the bottom row are the local features extracted at
four different scales. Column one represents the local amplitude,
local phase and main orientation are shown in columns two and
three. Note that the local phase and orientation are thresholded
according to the energy information.

measure is computed according to the local energy. Zero indicates that the
local structure is i1D, where for the i2D structure, the confidence measure
takes one. It is shown that the original i2D local structure is gradually
changed as the 11D structure with the increase of the scale. This is because
of the blurring effect resulting from the scale increase. When the angle of
intersection is 90°, the two lines are perpendicular to each other. Hence, the
local energy at the crossing point is very strong which denotes a confidence
measure of one. With the decreasing of this angle of intersection, two lines
are becoming much close to each other. Thus the local energy at the crossing
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Fig. 5.20: From top row to the bottom row are the local features extracted at
four different scales. Column one represents the local amplitude,
local phase and main orientation are shown in columns two and
three. Note that the local phase and orientation are thresholded
according to the energy information.
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Fig. 5.21: Top row: the test image. Bottom row: confidence measure with
respect to the scale and angle of intersection variation.

point decreases correspondingly and finally the confidence measure reaches
a value of zero.

5.5.2 Comparison with the Gaussian Curvature
Scale-Space

Since the generalized monogenic curvature signal is derived from the Gaus-
sian curvature, the scale-space representation of the generalized monogenic
curvature signal is sensitive to the curvature of local structures at the chosen
scale. A similar concept is the Gaussian curvature scale-space [79], which is
also suitable for recovering invariant geometric features of a signal at multiple
scales.

Instead of considering the surface curvature, the Gaussian curvature scale-
space focuses on the planar curve curvature. A planar curve is a set of points
whose position vectors are the values of a continuous vector-valued function,
which can be represented by a parametric vector equation

r(u) = (z(u), y(u)) . (5.104)

From the planar curve, the isophote curvature is defined as

_ 2 (wy"(u) — y'(u)" (u)
M) = = (5.105)
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By convolving with a Gaussian kernel g(u, o), an evolved version of the planar
curve can be obtained as

r(u,o0) = (z(u,0), y(u,0)), (5.106)

where x(u,0) = z(u) * g(u,0) and y(u, o) = y(u) * g(u, o).
Hence, the evolved isophote curvature of the planar curve reads

T (Uy O) Y (U, ) — Yo (U, 0) T (1, 0)
(u(u, 0)? + yu(u, 0)?)3/2

k(u, o) = (5.107)

with

ru(u,0) = z(u) * g, (u,0) yu(u,o)=y(u)* g,(u,o) (5.108)

Tuu(U,0) = x(u) * guu(U, 0)  Yuu(u, 0) = y(u) * guu(u, o) ,

where g, (u,0) and g,,(u,0) denote the first and second derivatives of the
Gaussian kernel, respectively. The solution of the equation

k(u,0) =0 (5.109)

thus forms the Gaussian curvature scale-space image of the planar curve.
Compared with the generalized monogenic curvature scale-space, the Gaus-

sian curvature scale-space has a totally different curvature definition. In ad-
dition to this, it applies a Gaussian smoothing kernel instead of a Poisson
kernel which results in the loss of harmonic conjugate information. Hence,
the unique advantage of the generalized monogenic curvature scale-space is
the odd part being in quadrature phase relation to the even part at each
scale. Besides, local amplitude, phase and orientation, which are unified
with the scale concept, can be simultaneously estimated. These advantages
give access to a multi-scale phase-based processing in many computer vision
tasks.

5.6 Summary

A general signal model for 2D image structures was proposed in this chap-
ter. In order to obtain more degrees of freedoms for modeling, a 2D signal is
embedded into a certain geometric algebra of the Euclidean 3D space. Cou-
pling methods of tensor algebra, differential geometry, monogenic signal and
quadrature filter, we are able to design a curvature tensor and its monogenic
extension. The monogenic extension of the curvature tensor contains rich in-
formation for 2D structures as the generalization of the analytic signal to 2D
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case. Therefore, it is regarded as the general model for 2D image structures.
Based on it, local representations for i1D and i2D structures are obtained
as the monogenic signal and the generalized monogenic curvature signal by
computing the mean and Gaussian curvatures of the general model. Hence,
the monogenic signal for i1D structures can be considered as a special case
of the proposed general model.

From the generalized monogenic curvature signal, three features can be
extracted. They are the local amplitude, local phase and local orientation.
These features are independent of each other, hence, the generalized mono-
genic curvature signal performs a split of identity. The local amplitude de-
rived from that model represents the energetic information and it indicates
the existence of i2D structures. Structure information of i2D structures is
contained in the local phase, and some specific types of i2D structures can be
classified by the local phase. Local orientation denotes the main orientation
and it illustrates the geometric information of i2D structures. Compared
with other approaches for the i2D structure representation, the generalized
monogenic curvature signal has the remarkable advantage of simultaneous
estimation of local amplitude, local phase and local orientation in a rotation-
invariant manner.

A generalized monogenic curvature scale-space is built by applying the
Poisson kernel to the monogenic curvature tensor. The local amplitude, local
phase and local orientation are scale dependent, but they are still independent
of each other at every scale. In contrast to the Gaussian curvature scale-
space, not only the energetic but also the structure and geometric information
can be extracted at the same time in a multi-scale way. This advantage
delivers access to various applications of the generalized monogenic curvature
signal in computer vision tasks.



6. SCALE-SPACE BASED IMAGE
ANALYSIS

To understand more about the presented theoretic framework, some scale-
space based image analysis applications are demonstrated in this chapter.
The first one is about image reconstruction using the phase partial informa-
tion. The second one describes detecting i2D image structures using local
phase information. The last one illustrates phase based optical flow estima-
tion.

6.1 Phase Based Image Reconstruction in the Monogenic
Scale-Space

In this section, image reconstruction based on the partial information of
phase in a scale-space framework will be introduced. The presented approach
is simple and robust, which outperforms other related approaches by showing
the comparisons.

6.1.1 Motivation and Background

In the past decades, signal reconstruction from partial information has been
an active area of research. Partial information such as zero crossing, Fourier
magnitude and localized phase are considered to represent important features
of the original signal. Therefore, we are able to reconstruct the original signal
based on only the partial information. The variety of results on signal re-
construction has a major impact on the research fields like image processing,
communication and geophysics.

Reconstruction from zero crossings in the scale-space is investigated by
Hummel [57]. He has demonstrated that reconstruction based on zero cross-
ings is possible but can be unstable, unless gradient values along the zero
crossings are added. In [85], it is proved that many features of the original
image are clearly identifiable in the phase only image but not in the magni-
tude only image, and reconstruction from Fourier phase is visually satisfying.
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However, the application of this approach is rather limited in practice due
to the computational complexity. Behar et al. have stated in [8] that image
reconstruction from localized phase only information is more efficient and
faster than that from the global phase. The reconstruction errors produced
by this method can be very small. However, compared with this approach,
the way of image reconstruction presented in this paper is more easier and
faster.

In this chapter, we present an approach of image reconstruction from
the local phase vector in the monogenic scale-space. Image reconstruction
is easy, fast, accurate and stable when compared with the above mentioned
approaches. In [36], Felsberg and Sommer proposed the first rotationally
invariant 2D analytical signal. As one of its features, the monogenic phase
vector preserves most of the important information of the original signal. The
local phase vector contains not only the local phase but also the orientation
information of the original signal, which enables the evaluation of structure
and geometric information at the same time. The embedding of local phase
and local orientation into monogenic scale-space improves the stability and
robustness. However, in the Gaussian scale-space, there is no common filter
set which could evaluate the local orientation and local phase simultaneously.
To show the advantage of our approach, we replace the Gaussian kernel with
the Gabor filter [45] for phase evaluation, the reconstruction results of these
two approaches are also compared in this thesis.

6.1.2 Relationship Between the Local Attenuation and
the Local Phase Vector

The relationship between 1D attenuation and phase was reported in [87],
which indicates that for a minimum-phase system, the attenuation and the
phase response are related by the Hilbert transform. In this context, a
minimum-phase system is defined by having no zeros and poles in the posi-
tive half-plane of the Laplace domain. Under certain conditions, this relation
could also be generalized to 2D.

For a 2D signal with an intrinsic dimension of one, if the scale-space
representation has no zeros in the half space with s > 0, then the local
attenuation a and the local phase vector r form a Riesz triplet [3§]

r(x;s) ~ (hg*xa)(x;s) . (6.1)

In practice, images are in general not globally i1D signals. However, they
commonly have lots of i1D neighborhoods which makes the reconstruction
from the local phase vector available. In most practical applications zeros
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occur in the positive half-space, but as we can see from [38], the influence of
the zeros can mostly be neglected.

6.1.3 Image Reconstruction Based on the Monogenic
Phase

To recover the amplitude information from only the phase vector information,
we take the inverse Riesz transform of the local phase vector. By definition,
the Riesz transform of the local phase vector is DC free. This means that
the transformed output has no DC component. Consequently, the DC-free
local attenuation in the scale-space is approximated by the following form

a(x;s) —a(x;s) ~ —(hg *7)(x; ) , (6.2)

where @(x;s) indicates the DC component of the local attenuation that
should be calculated beforehand. Hence, the original image reconstruction
based on the local phase vector reads

f(x) = exp(a(x;0))exp(—(hg *r)(x;0))cos(|r(x; 0)|) + Cpc (6.3)

where Cpe denotes a further DC correction term corresponding to a gray
value shift. To reconstruct a real image, we use only the real part of the
local phase vector cos(|r(x;0)|). The above introduction indicates that im-
age reconstruction from the local phase vector can be easily and quickly
implemented, no iterative procedure is needed.

In order to improve the reconstruction robustness and stability, a scale
pyramid structure, see [21], is employed for investigating the image recon-
struction in the monogenic scale-space. Fig. 6.1 shows the diagram of the
reconstruction in the monogenic scale-space. Given an input image, the
differences of monogenic signals at adjacent scales are first computed as the
bandpass decomposition at different frequencies in the monogenic scale-space.
The information of different bandpasses forms a Laplacian like pyramid. Lo-
cal phase vectors of the corresponding bandpass information are considered
as the partial information. Signals can thus be reconstructed in the scale-
space by a coarse to fine way. Let ¢(®) denote the representation of the image
in the pyramid at scale s, then the one scale higher representation reads
¢gtY . By interpolation, ¢t is expanded as g*tY) = T;¢¢*tY) | where T
refers to the operation of interpolation and §@**!) has the same size of ¢(*),
The difference of adjacent scales can then be computed as

1) = g(&) _ GletD) = ¢ _ TpglstD) (6.4)



6. Scale-Space Based Image Analysis 113

gl

Criginal image Blurred sequences

" Reconstruction 4

~ from local phase

Subsampling

BIerg

Reconstructed pyramid

Zoarser scale U

g -
A 4

Reconstmcted Image Laplacian pyramid

Fig. 6.1: The image reconstruction process based on the monogenic phase in
the monogenic scale-space.

where [*) can be regarded as a bandpass decomposition of the original image.
Based on only the local phase vector of the intermediate representation, the
reconstruction at different scales can be implemented as follows

1) = exp(a(x; s))exp(—(hr * 1)(x; 5))cos(|r(x; s)|) + Che | (6.5)

where [®) describes the reconstructed result at a certain scale. By means of a
coarse to fine approach, all the scale-space images can be combined together
to make the final reconstruction of the original image. Starting from the
most coarse level, the recovery of one scale lower image takes the following
form

~(5) _ ’lv(s) +T g(s—f—l) . (6 6)

This is an iterative procedure. It will end until s goes to zero, hence, §(®
indicates the final reconstruction.

6.1.4 Image Reconstruction Based on the Gabor Phase

In contrast to the monogenic scale-space, there is not common filter set in
the Gaussian scale-space which enables the simultaneous evaluation of the
local phase and local orientation. However, phase information can be esti-
mated when the Gaussian kernel is replaced by the Gabor filter [45]. As a
comparison, image reconstruction based on the Gabor phase is also included.
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Fig. 6.2: Imaginary parts of 2D Gabor filters with orientations of 0°, 45°, 90°
and 135,

Gabor filters have been shown to be a useful tool in different image pro-
cessing and analysis tasks. They are quite useful wherever one is interested
in local properties of a signal. The main advantage of the Gabor filter is its
optimal localization with respect to the uncertainty principle in the spatial
and the frequency domain simultaneously [45]. In this section, phases of the
Gabor filtered images are extracted as partial information to reconstruct the
original image.

Let x = ze; + ye; and u = ue; + vey be the spatial and Fourier domain
coordinates, respectively. A two dimensional Gabor filter is a linear shift
invariant filter with the following impulse response

h(x,u,0,,0,) = g(z,y)exp(i2m(zu + yv)) (6.7)

1 1 (2% +9?
9(z,y) = 5_—zexp [—5 < g : (6.8)

where ¢ is the standard derivation. The orientation of the Gabor function is
obtained as 6 = atan(?).

Let w denote the angular frequency, 2mu and 27v can thus be replaced
by wl and w2. If the research emphasis lies on Gabor wavelets, w should
be substituted by ¢ with ¢ being a constant [18]. The reason is that Gabor
filter does not change its shape when o varies while ¢ is fixed. Thus, all
Gabor filters with the same value ¢ can be derived from one filter by scaling.
To satisfy the wavelet property, DC response must be subtracted from the

Gabor filter. Hence, the impulse response of such a 2D Gabor filter reads

st [ (2 o (252) - ()]

Fig. 6.2 illustrates the imaginary parts of 2D Gabor filters with orientations
of 0°, 45°, 90° and 135°. By convolving a 2D image with the Gabor filter,
local phases are estimated. Based on the partial information of local phases,

with
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Fig. 6.3: Three test images.

the original image is able to be constructed. The signal reconstruction is to
estimate the original form of a signal in a functional space from partial infor-
mation, i.e. the Gabor phase. It is based on an iterative procedure, which
has a similar form with Gerchberg Saxton algorithm [58]. By alternatively
imposing constrains in the spatial and frequency domains, the original im-
age can be reconstructed according to the local Gabor phase in an iterative
way. As for the reconstruction in a multi-scale way, a similar reconstruction
process as in the case of monogenic scale-space is used.

6.1.5 Experimental Results

In this section, some experiments are presented to check the performance
of image reconstruction based on the local phase vector in the monogenic
scale-space. Three images (lena, bird and circles) used for the experiment
are shown in Fig. 6.3.

The performance evaluation criteria is the normalized mean square error
(NMSE) which is defined as

2
N—

1 S; :9\2
NMSE = Z , (6.10)

N—-1~9

where N denotes the total number of pixels in the image, s; and s; indi-
cate the signal intensity of pixel ¢ in the original and reconstructed images,
respectively. Image reconstruction of the lena image in the monogenic scale-
space is illustrated in Fig. 6.4. Although pyramid structures are used for
scale-space reconstruction, the results shown at different scales are scaled to
the same size as the original one. The top row shows the original image and
its smoothed versions at three different scales. Bottom row demonstrates the
reconstructed images at different scales. The corresponding absolute error
images multiplied by a factor of 10 are shown in the middle row. The left
image in the bottom row is the final result, which is reconstructed by a coarse
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Fig. 6.4: Top row: the original image and its smoothed versions of three
different scales. Middle row: absolute error images (multiplied by a
factor of 10) at different scales. Bottom row: reconstructed images
at different scales.

to fine way. The final reconstruction has a NMSE of 0.0018 when compared
with the original one. This demonstrates that image reconstruction can be
implemented accurately from the local phase vector. For the bird image, the
reconstructed results are illustrated in Fig. 6.5, the corresponding NMSE is
0.005. A successful reconstruction from partial information requires a stable
output. To investigate the performance of reconstruction from the local phase
vector, another experiment is conducted by adding noise to contaminate the
input images and checking the outputs. Fig. 6.6 demonstrates the reconstruc-
tion for noisy images. Additive Gaussian noise with the signal noise ratio
(SNR) of 3 and 15 is added to the lena and bird images, respectively. The
corresponding reconstructed results indicate that the reconstruction based
on the monogenic phase in the scale-space is still stable to some extent. For
a quantitative measurement, the reconstruction under the noise environment
is investigated in depth. Additive Gaussian noise with SNR from zero to 20
is added to both the lena and bird images, the corresponding NMSEs are
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Fig. 6.5: Top row: the original image and its smoothed versions of three
different scales. Middle row: absolute error images (multiplied by a
factor of 10) at different scales. Bottom row: reconstructed images
at different scales.

measured to plot the relationship between the reconstructed results and the
added noise, see Fig. 6.7. The NMSEs increase when the signal noise ratio is
reduced. However, for both cases, the proposed approach results in limited
reconstruction errors even the SNR is set to zero. The results indicate that
reconstruction based on the local phase vector is a stable process, hence, the
local phase vector can be regarded as a stable representation of the orig-
inal signal. In contrast to this, reconstruction from only zero crossings is
proved to produce unstable results [57], unless the gradient data along the
zero crossings are combined for reconstruction.

There is no common filter set in the Gaussian framework to evaluate
the phase and orientation simultaneously. However, phase information can
be estimated when the Gaussian kernel is replaced by the Gabor filter. To
show the advantage of the proposed approach, we compare the results of
the proposed method with that of the Gabor phase based case. A certain
orientation must be assigned to the Gabor filter beforehand. In this case,
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Fig. 6.6: Top row: noise contaminated original images. The first and third
columns are images added with Gaussian additive noise (SNR=3).
The second and fourth columns are images added with Gaussian
additive noise (SNR=15). Bottom row: reconstructed results for
the noise contaminated images.
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Fig. 6.7: Normalized mean square error with respect to the signal noise ratio.

the orientation is independent with the scale-space, local orientation esti-
mation does not change when the scale is changed. Superior to the Gabor
phase, the monogenic phase vector enables the estimation of structural and
geometric information simultaneously at each scale-space. In the monogenic
scale-space, local phase vector and local attenuation form a Riesz triplet,
which means that the amplitude can be easily recovered from the local phase
vector simply by using the inverse Riesz transform. Unfortunately, the Ga-
bor phase and the local amplitude do not have such relationship. Hereby,
we have to employ an iterative algorithm to reconstruct the image based on
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Fig. 6.8: Top row: from left to right are the original image, the reconstructed
result based on the monogenic phase and the sum of the reconstruc-
tions from Gabor phases with orientations of 0, 45°, 90° and 135°.
The corresponding NMSEs are 0.0014 and 0.0132. Bottom row:
from left to right are reconstructed results based on Gabor phases
with orientations of 0, 45°, 90° and 135°, respectively. The corre-
sponding NMSEs are 0.0812, 0.0833, 0.0815 and 0.0836.

local Gabor phases. The iterative reconstruction procedure is similar to the
Gerchberg Saxton algorithm [58]. By alternatively imposing constrains in
the spatial and frequency domains, an image could be reconstructed in an it-
erative way. The comparison results are illustrated in Fig. 6.8, four channels
with orientations of 0°, 45°, 90° and 135° are considered, the correspond-
ing normalized mean square errors are 0.0812, 0.0833, 0.0815 and 0.0836,
respectively. The sum of these four reconstructions shows a much better
performance with a NMSE of 0.0132. It is obvious that Gabor phase only
preserves the information at the given orientation, however, the monogenic
phase results in an accurate and isotropic outcome with an NMSE of 0.0014.
Due to the rotation invariant property of the monogenic signal, signals can
be well reconstructed in the isotropic way.

6.1.6 Conclusions

A novel approach to reconstruct an image in the monogenic scale-space based
on the local phase vector was presented. According to the estimated local
structural and geometric information, an image can be easily and quickly
reconstructed in the monogenic scale-space by a coarse to fine way. Exper-
imental results show that accurate reconstruction is available. In contrast
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to the reconstruction from zero crossings, a stable reconstruction can be
achieved based on the local phase vector. Furthermore, the very nice prop-
erty of local orientation adaptivity can result in a much better reconstruction
when compared with that of the orientation selective Gabor phase.

6.2 Detecting Intrinsically Two-dimensional Image
Structures Using Local Phase

This section mainly depicts a novel approach towards detecting i2D image
structures based on only local phase information. The presented method
shows better performance when compared with the classic approaches.

6.2.1 Motivation and Background

Local image structures play important roles in many computer vision tasks.
They can be associated with the term intrinsic dimensionality [121], which, as
a local property of multidimensional signal, expresses the number of degrees
of freedom necessary to describe local structures. For 2D images, there exist
three type of structures. The intrinsically zero dimensional (i0D) structures
are constant signals. Intrinsically one dimensional (i1D) structures represent
lines and edges. Corners, junctions, line ends, etc. are all intrinsically two
dimensional (i2D) structures which all have certain degree of curvature. It
is well known that these i2D structures are of high significance in object
recognition, motion estimation, image retrieval, etc. Consequently, correct
detection of i2D structures under image deformations is very important.

There exists a lot of work concerning the detection of i2D structures
based on intensity information, see [7, 62, 43, 49, 102]. These intensity based
approaches are sensitive to variations in image illumination. Hence, it is
necessary to find some features of local structures which are invariant with
respect to image brightness change for a robust and reliable detection. Phase
is such a good candidate, which carries most essential structure information of
the original signal and has the advantage of being invariant to illumination
variation [85]. Detecting local structures can be realized by means of the
phase congruency. Using phase congruency to detect edges has been reported
in [67, 38]. However, i2D structure detection based on its local phase has not
yet been well investigated, although Kovesi proposed to use i1D local phase
to detect i2D points by constructing the phase moments [68].

In this section, we will present a novel approach to detect i2D image
structures using local phase information. The local phase of the i2D struc-
ture is derived from a curvature tensor and its conjugate part in a rotationally
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Fig. 6.9: Two 1D signals and their corresponding phases. The solid line in-
dicates the signal, its phase is represented by the dashed line.

invariant way. By employing 2D damped spherical harmonics as basis func-
tions, the local phase is unified with a scale concept. The i2D structures can
be detected as points of stationary phases in this scale-space by means of the
so called phase congruency. Experimental results illustrate that the proposed
approach outperforms Harris and Susan detectors under illumination change
and noise contamination.

6.2.2 Phase Congruency

Since the local phase is independent of the local amplitude, it thus has the
advantage of being not sensitive to illumination change. Hence, detecting i2D
image structures can be done by looking for points of stationary phases in the
scale-space. This approach is commonly called phase congruency and is based
on comparisons of the local phase at certain distinct scales [93, 67]. Phase
congruency is a very appealing concept for general feature detection because
it permits detection independent of the actual feature type. The reason is
that phase is constant or congruent over some scales at the location of what
the human visual system would perceive. This means those feature points
are all in phase as shown in Fig. 6.9. There exist two 1D signals (indicated by
the solid lines) at different scales and their corresponding phases (represented
with the dashed lines). It is obvious that at those places where the signal
peak, dip, increasing slop and decreasing slop exist, phases are all the same
for each type of feature.

For the phase congruency, we take a similar idea as those reported in [67,
68]. However, there are some differences. First, our local phase information
can be evaluated in a rotation-invariant manner. Therefore, no orientation
sampling is required. Second, the local phase directly indicates the phase
information of the i2D structure. Thus, there is no need to construct principal
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moments of the phase congruency to determine i2D structures.
Morrone and Owens [80] define the phase congruency function in terms
of the Fourier series expansion of a signal at a local position x as

Zn An COS(¢n - ¢)

>0 An ’
where A,, represents the amplitude of the nth Fourier component, ¢,, denotes
the local phase of the Fourier component at position x and ¢ is the amplitude
weighted mean local phase angle of all the Fourier terms at the position
being considered. The measure has a value between zero and one. A phase
congruency of value one means that there is an edge or a line, zero phase
congruency indicates there is no structure. However, this measure results in
poor localization and is also sensitive to noise. Hence, Kovesi [67] developed
a modified version of the phase congruency. In this measure, the local phase
is obtained from the logarithmic Gabor wavelet. Due to its lack of rotation
invariance, orientation sampling must be employed to make sure that features
at all possible orientations are treated equally. Hence, the new measure of
phase congruency reads

PC — Zo Zn Wo LAno(COS<¢no - ¢o) — | Sin(¢no - 50)') B TOJ
S A te ’

where n and o refer to the scale parameter and the index over orientations,
respectively. And W, denotes a factor that weights for frequency spread
along certain orientation and ¢ is added to avoid division by zero. The terms
Ao and ¢, are the local amplitude and local phase at a certain scale and
orientation, respectively. The mean local phase at a certain orientation is
represented as ¢,. Only energy values that exceed the estimated noise influ-
ence T, can be taken into consideration. The symbols | and | indicate that
the enclosed entity equals itself when its value is positive and zero otherwise.
This new phase congruency measure produces a more localized response and
it also incorporates noise compensation. However, the estimated local phase
is only valid for the i1D signal. Hence, using phase congruency to detect
i2D structures requires the construction of principal moments of the phase
congruency [68].

According to the classical moment analysis, the following entities are
computed based on the phase congruency of i1D structures:

a = ) (PC(6)cos(h))” (6.13)
b = 2 (PC(6)cos(0))(PC(6)sin(6)) (6.14)
¢ = > (PC(H)sin(0))*, (6.15)

(6.12)
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where PC(#) refers to the phase congruency value determined at the orienta-
tion #, and the sum is performed over the discrete set of all the orientations
used. The maximum and minimum moments are then obtained as

M = %(c—l—a—i— bQ+(a—c)2> (6.16)
m = %<c+a— b2+(a—c)2). (6.17)

If the minimum moment is bigger than a given threshold, then the corre-
sponding point is indicated as the i2D structure.

In contrast to this, we have now a rotationally invariant evaluation of the
local phase for the i2D structure, no orientation sampling is needed. Hence,
the computation of phase congruency can be simplified as the following

. Zs WLAS(COS(qu - 5) - | Sin(¢s - $)| - T)J
Pe = S A +e ’

where s denotes the scale parameter, W is also a factor weighting for fre-
quency spread, A, and ¢, represent the local amplitude and local phase of
the 12D structure point, respectively. This new measure can be directly ap-
plied to detect i2D image structures. Any point with a phase congruency
value higher than a certain threshold can be considered as an i2D point.

The above mentioned phase congruency approaches are based on compar-
isons of the local phase at certain distinct scales. Nevertheless, there exist
some drawbacks. Since local features are scale relative, an algorithm using
distinct scales has to contain heuristics to judge whether the structure is
present or not if the phase is only congruent in some of the considered scales.
Besides, it is not straightforward, how to map at different scales estimated
phases to a certainty measure. Hence, a new method called the differential
phase congruency was proposed [38] to detect i1D structures in a more sim-
ple and efficient way. Those points in the monogenic scale-space, where the
differentials of their phase vectors are zeros, are called points of differential
phase congruency and then identified as i1D structures.

Let r(x; s) be the local phase vector of a monogenic scale-space represen-
tation, see also Chapter 3, its scale derivative reads

(6.18)

L p(x58)0q(x;5) — q(x55)0sp(x; 5)
O () = s+ i )P

Points where Jr(x;s) = 0 are of differential phase congruency and hence
considered as i1D structures. To find those points, one has to find the zeros
of the two components of the numerator in Eq. (6.19). By a linear regres-
sion, these zeros are easily obtained with subpixel accuracy. The differential

(6.19)
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phase congruency is quite useful since it yields a higher accuracy and a signif-
icant speedup of the derivative computation compared to a finite difference
approximation.

Following this approach, it is very natural to extend our approach of
detecting i2D structures by means of differential phase congruency of i2D
structures. Let ®(x;s) be the i2D phase representation in the generalized
monogenic curvature scale-space. Points where 0;®(x; s) = 0 are of differen-
tial phase congruency and regarded as i2D structures. In comparison to Eq.
(6.19), the definition now has some differences
de(x; S)asdo(x; 8) B do(x; S)asde(x; S) o0

=0 if —=0
d.(x;9)% 1 |, (x; 5) 2 bos
(6.20)

where 6 indicates the local main orientation. The corresponding components
are replaced with the i2D entities. In this way, i2D structure points can be
detected by finding the zeros of the two components of the numerator in the
above equation.

0s®(x;5) =

6.2.3 Performance Evaluation Criteria

In the literature, many detectors are designed for detecting i2D image struc-
tures. However, most of them show only qualitative experimental results.
Because computer vision tasks require more robust and reliable detection
results, there has been an increasing emphasis on quantitative performance
evaluation. There also exists a number of research for assessing the detector
performance. The measure suggested by Schmid et al. [100] is based on
the idea of repeatability. Rockett [95] and Martinez-Fonte et al. [75] pro-
posed a more empirical method for accessing. In their research, examples
of true corners and non-corners are provided. For each threshold level, the
corner detection probability and the false alarm rate are estimated to plot
an ROC curve. In [23], Carneiro et al. assessed the detector performance by
two measures, namely, the precision and recall rates.

The repeatability evaluation delivers the number of points repeated be-
tween two images with respect to the total number of detected points. How-
ever, this measure does not consider those correctly or wrongly detected
points which do not repeat at all. The ROC curve plots the relation between
the detection rate and false alarm rate with respect to the threshold varia-
tion, but it is not easy to show the detection performance with respect to
image deformations like illumination change, rotation change and so on. In
this thesis, we follow the measures in [23].

The recall rate measures the probability of finding an i2D point in a de-
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Fig. 6.10: Two test images (blox and blocks) and one frame of a boxes image
sequence.

formed image given that it is detected in the reference image. The definition
of the recall rate is given by

TP

R:TP+FN’

(6.21)
where T'P denotes the true positive and F'N is the false negative. Since it is
not easy to identify the ground truth, in this case, the true positive means the
number of correctly matched points. Given a point x; in the reference image
and a point x; in the deformed image, let M(-) represent the deformation
transform, if the Euclidean norm condition is satisfied, i.e. ||M(x;) — x,|| <
1.5, then these two points are correctly matched. False negative is the number
of points in the reference image which cannot be matched with any points in
the deformed image.

The precision rate indicates the probability that an i2D point detected
in a deformed image is actually an i2D point in the reference image. Its
definition reads

TP
P_TP+FP’ (6:22)
where F'P is false positive, it means the number of points in the deformed
image which cannot be matched with any points in the reference image. Both
the recall and precision rates have values between zero and one. If the rate

is higher, the detection performance is better.

6.2.4 Experimental Results

In this section, some experimental results are presented. As shown in Fig.
6.10, two test images and one image sequence are employed for the experi-
ments. The first experiment aims to illustrate some qualitative comparison
results between our approach and the well-known Harris detector. The blox
image is used for detection under the rotation change and the additive Gaus-
sian noise contamination (standard derivation is 10). For the illumination
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change, we use the blocks image to show the detection difference. Fig. 6.11
demonstrates the detection results of our approach and the Harris detec-
tor under the rotation change, the noise contamination and the illumination
change. According to the false positives and false negatives, it can be shown
that our approach performs better than the Harris detector when the illumi-
nation changes and the noise is added to some degree.

The second experiment is to show some quantitative comparison results.
We follow the evaluation criteria of recall and precision rates to compare
the performances of the i2D differential phase congruency method, the im-
proved i2D phase congruency, the phase moment approach [68], the Harris
detector and also the well-known Susan detector. Ten frames of the boxes
image sequence are employed for this experiment. Image deformations of
rotation change, additive Gaussian noise contamination and the illumination
variation are considered. For each deformation, the averaged values of ten
frames are recorded to plot the recall and precision rates. Fig. 6.12 demon-
strates comparison results between these five approaches according to the
performance assessment criteria of recall and precision rates. Here, Normal
PC means the improved i2D phase congruency, Differential PC represents
the i2D differential phase congruency and Phase Moment is the approach
proposed in [68]. Note that recall and precision rates have different scales for
different image deformations.

The top row shows detection results under the rotation change. Normal
PC and Differential PC have comparable results with the Harris detec-
tor, Phase Moment performs worse than these three approaches and the
Susan detector gives the worst result. It is obvious that all approaches pro-
duce lower recall and precision rates at the rotation angles of 45 and 135°.
This is because of the bigger discretization errors at these two angles. The
second row are recall and precision rates for the illumination change. The
phase congruency is a dimensionless quantity which is in theory invariant
to the illumination change, although it is not absolutely invariant to bright-
ness variation in practice, it is still less sensitive to the illumination variation
than those intensity based approaches. Results indicate that phase based
approaches perform much better than the Harris and Susan detectors es-
pecially in the case of higher illumination change. Due to the advantage
of differential phase congruency, Differential PC is more robust with re-
spect to brightness variation. Bottom row shows the additive Gaussian noise
contaminated results. Since the phase congruency takes several scales into
consideration and it also incorporates noise compensation, phase based ap-
proach demonstrates a better performance than that of the Harris detector.
Differential PC is more sensitive to the noise compared with Normal PC
because of the computation of scale derivative. And the Harris detector is
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less sensitive to the noise when compared with that of the Susan detector
due to the Gaussian smoothing in the local neighborhood.

6.2.5 Conclusions

A novel approach towards detecting i2D image structures using local phase
information was presented. The local phase of the i2D structure can be de-
rived from a curvature tensor and its conjugate part in a rotation invariant
manner. The i2D image structures are detected as those points with station-
ary phases in the scale-space by means of the improved phase congruency
and differential phase congruency. The recall and precision rates are em-
ployed as detection performance assessment criteria. Experimental results
illustrate that our approach outperforms the phase moment approach, the
Harris and Susan detectors when the illumination changes and the images
are contaminated by the additive Gaussian noise. For the deformation of
rotation change, our approach shows a comparable result with the Harris
detector.

6.3 Optical Flow Estimation from the Monogenic
Curvature Tensor

This section describes a novel optical flow estimation approach based on the
local phase information derived from the monogenic curvature tensor. By
replacing the intensity information with the phase in the constancy assump-
tion, the estimated optical flow fields demonstrate very good performance of
this new method. Compared with the intensity based approach, it performs
outstandingly under the illumination change situation.

6.3.1 Motivation and Background

Optical flow estimation is one of the key problems gathering the interest of
researchers for decades in the computer vision community. It has a wide
application in motion estimation, object recognition, tracking, surveillance
and so on.

Various approaches have been proposed to estimate the optical flow. Sig-
nificant improvements [16, 88] have been obtained since the pioneering work
of Horn and Schunck [56] and Lucas and Kanade [74]. In [6], Barron et al.
made the performance evaluation of optical flow techniques. The local phase-
based method [40] was proven to be the best performed due to its subpixel
accuracy and its robustness with respect to smooth contrast changes and
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Fig. 6.11: Top row shows the detection results using our approach for the
original image, the rotated image and the Gaussian noise contam-
inated image. The second row demonstrates the results from the
Harris detector for the original image, the rotated one and the noise
contaminated one. Results shown in the third row are detections
for the original image and the illumination varied one by using our
approach. Bottom row illustrates results from the Harris detector
for the original image and the illumination changed one.
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Fig. 6.12: First column: from top to bottom are recall rates under the ro-
tation change, illumination variation and the additive Gaussian
noise contamination. Second column: from top to bottom are pre-
cision rates under the rotation change, illumination variation and
the additive Gaussian noise contamination.
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affine deformations. Differential methods, on the other hand, have become
the most frequently used techniques for optical flow estimation because of
the simplicity and good performance. Among the differential methods, there
exist two classes. They are local methods such as that of the Lucas and
Kanada and global methods such as that of the Horn and Schunk. Local
methods are known to be more robust under noise, while global approaches
yield 100% dense flow fields. Hence, Bruhn et al. [17] proposed the combined
local-global (CLG) approach to yield dense optical flow fields which is robust
against noise.

In order to have accurate and robust estimation of dense optical flow
fields against noise and brightness variation, we propose a novel approach
based on the monogenic curvature tensor, a new image model. In contrast
to the classical phase computation in [40], the monogenic curvature tensor
can generate multi-scale local phases of image structures in a rotation in-
variant way. Thus, the proposed approach combines the advantages of the
phase-based method and the CLG method. Experiments with synthetic and
real image sequences demonstrate the favorable performance of the proposed
method when compared with the related work.

6.3.2 Local Amplitudes and Phases of Image Structures

As mentioned in Chapter 5, the monogenic curvature tensor is a novel 2D
image model, from which multi-scale local phases of image structures can
be obtained in a rotation invariant way. It is well known that the phase
has the advantage of being invariant to the illumination change [85]. In this
application, we will adapt the CLG method to this framework for the dense
optical flow estimation.

Similar as the Hessian matrix, we are able to compute the trace and de-
terminant of the curvature tensor 7, and its harmonic conjugate part T, for
knowing the existence of the intrinsically one dimensional (i1D) and intrin-
sically two dimensional (i2D) structures.

Consequently, a novel model for the i1D structures is obtained by combing
the traces of T, and T, this is exactly the monogenic scale-space, as proposed
in [38]

fiip(x;s) = trace(T.(x; s)) + trace(T,(x; s))es . (6.23)

Hence, the multi-scale local amplitude and local phase vector for i1D struc-
tures are given by

a(x;s) = \/traceQ(Te(x; s)) + trace?(T,(x; s))es (6.24)
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trace(T,(x; s))ez [trace(T,(x; s))es|
i s) [trace(T,(x; s))ez| atan trace(T.(x; s)) ’ (6:25)
where LACCTo05s)e2 jopbteq the local orientation of the i1D structure.

[trace(T,(x;s))ea|
Correspondingly, combing the determinants of T, and T, results in a novel

model for the i2D structure, which is called the generalized monogenic cur-
vature scale-space fiop(X; s),

fiop(x; s) = det(T.(x; s))es + erdet(T,(x; s)) . (6.26)

From it, the local amplitude for the i2D structure is obtained as

\/det (x; 5))es + ejdet®(T,(x; s)) (6.27)
and the local phase vector takes the following form

- det(e/T,(x;5)) lerdet(T5(x; s))|
d(x;s) = det(e, T, (x: S))|atan( det(T, (x; 5))es > ; (6.28)

det(elTo(x;s))
 |det(ei T, (x;9))] _ . _ _ .
Since the local phase information of the i1D and i2D structures contains

not only phase information but also the local orientation, the evaluation can
be done in a rotation-invariant way.

where decides the local main orientation of the i2D structure.

6.3.3 Dense Optical Flow Estimation

Differential methods have become the most widely used techniques for optical
flow computation. By combining the advantages of local methods and global
methods, Bruhn et al. [17] proposed a new method (CLG), which could yield
flow fields with 100% density and have the robustness against noise. Since the
phase-based approach was shown to perform very good with the advantage of
being robust against brightness change [40, 6], it is very natural to combine
the advantages of the phase-based approach and the CLG method. In this
section, we will adapt the CLG method into our model framework to estimate
two-frame optical flow fields.

2D Combined Local-Global (CLG) Method

Many differential methods are based on the assumption that the grey values
of image sequences f(xe; + ye; + tes) = fie; + fres + fies in subsequent
frames do not change over time

f((x+u)er + (y+v)es+ (t+ 1)es) = f(ze; + yes + tes) (6.29)
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where the displacement field u = ue; + ve, denotes the optical flow. Follow-
ing this, the spatial CLG method aims to minimize an energy function for
estimating the flow field

B(w) = / (n (W (V)W) + ain(|Vw[2) )derdy (6.30)

Q

with

V = elﬁx -+ e28y (631)
V3 = elax + egay + egat (632)
W = uej +ves+ e3 (6.33)
Vw|*: = |Vue > + |Vve,|? (6.34)
J,(Vsf) 1 = K, (V3fVsfT) | (6.35)

where (2 denotes the image domain, o serves as regularization parameter, K,
means a Gaussian kernel with standard deviation p, 1;(-) and v(+) indicate
two nonquadratic penalisers with the following form

S

Wi(s%) = 2037 1+;2 ie{1,2} (6.36)

with (; and (3, as scaling parameters to handle outliers.

For the spatial temporal CLG method, more than two image frames are
considered. In such case, the 3D energy function to estimate the flow field
replaces Vw with Viw, other components remain the same as the 2D case.
Hence, the 3D CLG approach aims to minimize the following energy function

B(w) / (n (W, (V5E)w) + (| Vsw|2) ) dadyd (6.37)

New Energy function with Phase Constraints

In order to combine the phase-based approach with the 2D CLG method,
the classical brightness constancy assumption will be replaced by new phase
constraints. Two local phase vectors of i1D and i2D structures can be derived
from the monogenic curvature tensor, one can assume that local phases of
image sequences in subsequent frames do not change over time. This results
in the following new constancy assumptions

p((r+u)er+ (y+v)ea+ (t+ 1)es) = (ze; +yes +tes) (6.38)
O((z+u)e;+ (y+v)es+ (t+1)es) = P(ve; +yes +tes) . (6.39)
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For small displacements, we may perform a first order Taylor expansion yield-
ing the optical flow constraints:

P uer +p,ve; +pes = 0 (6.40)
o, ue; + P ve; + Preg = 0. (6.41)

Hence, we propose to minimize the following energy function

B(w) = [ (W (Vi +99:0)w) + v Vwl)dody  (642)

with
Mll M12 M13
J)(Va +1V3®) = K, % | My Myy My (6.43)
M3z Mszs  Mss
Mu = |g,|* +|2. [ (6.44)
Mz = Mo =@, - @y + 7Py - Oy (6.45)
Mz = Mz = |p, @] + 7Py - (6.46)
My = |p,|+7|®, (6.47)
My = |,y + [Py - D (6.48)
Mz = [py|* +7|® [ . (6.49)

In this energy function, « is employed to adjust the trade-off between the i1D
and 12D structures. According to the new energy function, the minimizing
flow field u will satisfy the following Euler-Lagrange equations

div (¢4 (|Vw|*) Vue;) — (6.50)
L
awl (WTJp(v;g(P + ”ngCI))W)(JHuel + Jlg’l}ez + J13e3) =0
div(h(|Vw[*) Voey) — (6.51)

1
~UL (W (Ve + 7 Vs®)w)(Jorves + Joguer + Jyses) = 0

with
Pi(s?) = i€ {l,2}. (6.52)

1
J1+ 5

The estimation of optical flow field can thus be obtained iteratively by using
an SOR [111] scheme.
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Computation of Phase Derivatives

In order to avoid phase wrapping, phase derivatives are computed from the
filter responses in the monogenic scale-space and generalized monogenic cur-
vature scale-space. Let t, = trace(T.(x;s)), t, = trace(T,(x;s))es, d. =
det(T.(x;s)) and d, = ejdet(T,(x; s)), the spatial derivatives of i1D and i2D
local phase vectors are thus given by

t.-Vt, — tIVTt,

Vo — 6.53

® 12 + |t,|? (6.53)
d.vd, —dTv7d

b = 0 °. 54

v d2 + |d,|? (6.54)

The temporal derivatives of these local phase vectors read

R N e A

Y = |ttt — | (ttttJrl Tt .ttﬂ) (6.55)
dtdt—i-l _ dt+1dt dtdt'H . dt_Hdt

@t € o e o at | e o e o‘ : (656)
[dedit — dirdg] T \didi !+ dj - i

where t£, t!, d., d! denote the filter responses of the image frame at time ¢
and tHH 8L diHLdPH are the filter responses of the next image frame.

Multi-scale Optical Flow Estimation

The linearized optical flow constraint, stated in Section 6.3.3, is based on the
phase constancy assumption. As a consequence, it requires that v and v are
relatively small so that the linearization holds. However, this is not always
the case for an arbitrary sequence. Hence, multi-scale optical flow estimation
technique should be employed to deal with large displacements.

In this thesis, we use an incremental coarse to fine strategy. In contrast to
the classical multi-scale approach, the estimated flow field at a coarse level
is used to warp the image sequence instead of serving as initialization for
the next finer scale. This compensation results in a hierarchical modification
which requires to compute only small displacement. Once this is done from
coarse to the finest scale, much more accurate estimation will be obtained.

Let dw® denote a displacement increment at scale s. For the coarsest
scale (s = ), the initial data of the optical flow field is assigned to be zero.
Hence, dw? is given by minimizing the following energy function

Bldw') = [ (rl(aw) " (Vaploc+ w°) + 7 Vablx+ w) o)
+  athy(|V(W + dw®)[}))dzdy , (6.57)
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where x = ze; + ye, + tes and w*t! = w* + dw*. Note that local phase
vectors will be warped as ¢(x+w*) and ®(x+w?*) via bilinear interpolation.
The final result will be obtained when the minimization is done to the finest
scale.

6.3.4 Experimental Results

In order to evaluate the performance of the proposed approach, optical flow
estimations on both synthetic and real-world image data are given in this
section. We use the so-called average angular error (AAE) [6] as the quanti-
tative quality measure. Given the estimated flow field u, = u.e; + v.es and
the ground truth u. = u.e; + v.e,, the AAE is defined as

N
1 Ueilei + VeiVei 1 1
AAE = — E arccos ) (6.58)
N (x/ ( >

ng + U?i + 1)(“@ + Ugi +1)

where N denotes the total number of pixels.

The Yosemite sequence with clouds created by Lynn Quam [92] is em-
ployed as the synthetic data for the experiment. This sequence combines
divergent and translational motion under varying illumination and hence is
usually regarded as a benchmark for the optical flow estimation. Fig. 6.13
demonstrates the ground truth, the estimated magnitudes and optical flow
fields from our approach and the 2D CLG model. It is obvious that our
approach produces more accurate result than that of the 2D CLG method.
Especially in the clouds region, where the illumination varies, the proposed
approach shows more stable estimation. Even if we compare with 2D CLG
where the intensity is replaced by the gradient, our approach also performs
better.

Detail comparisons with other approaches according to the measurement
AAE are given in Tab. 6.1, where STD indicates the standard deviation. Our
approach demonstrates much better performance with lower AAE and STD
when compared with the related methods. When v = 0, only i1D phase
information is included for the constraint, the AAE now takes 3.37°, which
is 1.49° lower than that of the 2D CLG method. Interestingly, this result is
even lower than that of the 3D CLG method. When 7 is set to non-zero, the
i2D phase is also contained to strengthen the constraint. One optimal value
of ~ is 0.1, which is obtained from several experiments. Hence, estimation
with even lower error can be obtained. For this experiment, we also extend
the two-frame estimation to multi-frame by adding the temporal information.
Results also indicate the good performance of the proposed approach.
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Fig. 6.13: Top row: from left to right are one frame of the Yosemite im-
age sequence, the magnitude and flow field of the ground truth.
Middle row: from left to right are the magnitude and flow field
estimated from our approach. Bottom row: from left to right are
the magnitude and flow field estimated from the 2D CLG method.

Even much better results have been reported in [16, 88]. However, they
do not perform a first order Taylor expansion of the intensity assumption to
yield the optical flow constraint. Thus, it is very promising that our approach
can also yield comparably good results by using the non-linearized constancy
assumption.

For the following experiments, we simply focus on two-frame flow field
estimation. To investigate the robustness of our approach against noise, the
8th frame of the Yosemite sequence is degraded with additive Gaussian noise.

The noise contaminated image (signal noise ratio: SNR=10dB) and the
estimated flow field are shown in Fig. 6.14. It is obvious that the original
image is seriously degraded, nevertheless, the estimation also shows good
performance with AAE=14.16°. More detail information can be found in
Fig. 6.15. When the SNR decreases from 40dB to 10dB, much more noise
is added to the original image. However, the estimated result is still not
very sensitive to noise. This indicates that employing the local method and
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Tab. 6.1: Optical flow estimation comparisons between different approaches
(100% density). AAE (average angular error), STD (standard de-

viation).
Approach AAE | STD
Horn/Schunck (Barron et al., 1994) [6] | 31.69° | 31.18°
Nagel (Barron et al., 1994) [6] 10.22° | 16.51°
Uras et al. (Barron et al., 1994) [6] 8.94% | 15.61Y
2D CLG (2005) [17] 1.860 | 8.48°
Mémin and Pérez (1998) [77] 4.69° | 6.89"
3D CLG (2005) [17] 4170 | 7.720
Our 2D approach (y = 0) 3.370 | 8.27°
Our 2D approach (y =0.1) 3.25% | 8.22°
Our 3D approach (y = 0) 2.74% | 7.17°
Our 3D approach (y =0.1) 2.67° | 7.12°

iiiiiiiiiiiiiiiiiiiiiiiiiiii [ e

/////
//////
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Fig. 6.14: From left to right are the noise degraded image (SNR=10dB),
ground truth and the estimated flow field (AAE=14.16°,
STD=12.76°).

multi-scale technique into our approach does result in a robust estimation
against noise.

As mentioned in [40], the phase-based approach has the advantage of be-
ing not sensitive to the illumination variation. And the proposed approach
adapts the CLG method into the framework of the monogenic curvature ten-
sor. As a consequence, this new method combines the advantages of phase-
based approach and the CLG method. In this way, our approach should
also be robust under illumination change within some limits. To this end,
another experiment is conducted to test the performance of our approach for
the brightness variation. Fig. 6.16 shows the performance comparison be-
tween our approach and the 2D CLG method under brightness change. The
8th frame of the synthetic sequence is degraded with brighter and darker
illumination changes of 50%, respectively. Experimental results denote that
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Fig. 6.15: The estimated results with respect to additive Gaussian noise

change.

our approach is much more robust against illumination variation when com-
pared with that of the 2D CLG method. To evaluate the performance of
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Fig. 6.16: Top row: from left to right are frame 8 degraded with brighter il-
lumination change of 50%, estimated flow fields from the 2D CLG
(AAE=46.94°, STD=39.97°) and our approach (AAE=13.50°,
STD=17.42°). Bottom row: from left to right are frame 8 degraded
with darker illumination variation of 50%, optical flow estimations
from the 2D CLG (AAE=52.14°, STD=46.63") and our method
(AAE=15.83", STD=19.717).

the proposed approach under illumination change in detail, the 8th frame
are degraded with different brighter and darker brightness variations. The
estimated AAEs with respect to the relative grayvalue changes are shown in

Fig. 6.17.
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Fig. 6.17: The estimated results with respect to illumination change.

Results indicate that our approach is very robust against illumination
change. However, the 2D CLG method is very sensitive to it.

The last experiment aims to examine the performance of the proposed
approach for real image sequences. In this experiment, two sequences are
used. They are the well-known Hamburg taxi sequence and the Ettlinger
Tor traffic sequence [84]. Estimated flow fields are illustrated in Fig. 6.18,
it is clear that the proposed approach also yields realistic optical flow for
real-world data.

6.3.5 Conclusions

We have presented a novel approach for estimating two-frame dense optical
flow field in this section. This new approach adapts the CLG approach
to the monogenic curvature tensor, a new framework which enables multi-
scale local phase evaluation of i1D and i2D image structures in a rotation
invariant way. Hence, our approach takes both the advantages of phase-
based approach and the CLG approach. In this way, the proposed method
produces accurate estimations with 100% density and is robust against noise.
Compared with the intensity based approach, our method performs much
better under illumination variation.

6.4 Summary

In this chapter, some scale-space based image analysis were presented to
demonstrate the applications of the newly developed theoretic framework.
They include the phase-based image reconstruction, detecting i2D image
structures using local phase and optical flow estimation from the monogenic
curvature tensor. Since the remarkable advantage of the proposed image
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Fig. 6.18: Top row: one frame of the Hamburg taxi sequence and the esti-
mated optical flow from our approach. Bottom row: one frame
of the Ettlinger Tor traffic sequence and the flow field from our
approach.

model lies in the phase evaluation of local image structures. All of these phase
based applications show much better performance when compared with the
related work.



7. CONCLUSIONS

In this chapter, a summary of the proposed theoretic framework and some
applications will be given. Open problems and future possible work will also
be discussed.

7.1 Summary

This thesis aims to introduce novel signal representations for image analy-
sis in the scale-space. In the past literatures, there exists a bunch of work
for representing image information based on intensity information. Unfor-
tunately, most of these intensity based approaches suffer seriously from the
illumination change and hence perform usually unstable. Phase information,
on the other hand, has the advantage of being invariant to brightness varia-
tion. As a consequence, it is desirable to take both the intensity and phase
information into consideration to develop novel image representation with ro-
bust performance. In the past decades, there exists also some research work
related to this purpose. For example, the analytic signal, quadrature filter,
partial and total Hilbert transform, quaternionic analytic signal, monogenic
signal and so on. However, these previously presented approaches either lack
the property of rotation invariance or have the drawback of being able to
handle all 2D image structures.

Combing the rotation invariance of the monogenic signal and the symmet-
ric decomposition of the quaternionic analytic signal, a rotationally invariant
2D quadrature filter was first proposed as a novel image representation to
extract the local amplitudes and phases of the signal. The assumed signal
model is valid for the i2D signal superimposed by two differently oriented
i1D signals. This means that the two i1D signals are not necessarily to be
perpendicular to each other. Hence, it is regarded as an extension of the
structure multivector, since the i2D pattern with a flexible angle of intersec-
tion can be correctly handled. However, this approach requires a previously
estimated orientation to steer the corresponding quadrature filter.

Consequently, a more powerful image representation framework was pro-
posed. This novel image model is rotationally invariant and is able to handle
all 2D structures within a multi-scale framework. It is called the monogenic
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curvature tensor, consisting of the curvature tensor and its harmonic conju-
gate part. Coupling methods of differential geometry, tensor algebra, mono-
genic signal and quadrature filter, the monogenic curvature tensor can be
derived. Motivated from the second fundamental theorem of the differential
geometry, the curvature tensor is constructed from even order spherical har-
monics using a so-called hybrid matrix geometric algebra. The corresponding
harmonic conjugate part is obtained by employing the Riesz transform. From
the monogenic curvature tensor, the monogenic scale-space can be obtained
by computing the trace as the i1D signal model. Combining determinants
of the curvature tensor and its conjugate part results in a generalized mono-
genic curvature scale-space. Interestingly, the odd part of it can be obtained
from the even part via the convolution with the second order spherical har-
monic. Hence, the second order spherical harmonic can be interpreted as a
generalization of the Hilbert transform for the i2D case. From the general-
ized monogenic curvature scale-space, local amplitude, orientation and phase
are extracted in a multi-scale way. Hence, the property of split of identity
is completely fulfilled. Compared with the related work, this novel image
representation has remarkable advantage of rotationally invariant estimation
of local phase information for all 2D image structures. This delivers access
to many phase-based computer vision applications.

Several computer vision applications were presented in this thesis. Ex-
periential results demonstrate the favorable performance of the presented
framework when compared with the related work.

7.2 OQutlook

The newly developed monogenic curvature tensor is a powerful representa-
tion of the 2D image. However, the current investigation ignores the metric
tensor, which should also be taken into consideration for further analysis.
Besides, the monogenic scale-space and the generalized monogenic curvature
scale-space are derived by combing the traces and determinants of the cur-
vature tensor and its conjugate part. The component-wise analysis of the
monogenic curvature tensor should be explored since it may contain much
rich information of local image structures. Furthermore, elements of the
monogenic curvature tensor may be fed into an artificial neural network to
find out more information via different connections of those components. The
presented framework has the capability to handle all 2D image structures,
however, to model 3D images, further extension is needed. To this end, the
construction of the curvature tensor should be based on the Riemann ten-
sor, its conjugate part is also gained from the Riesz transform. The above
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mentioned aspects are all open problems and can be further developed in the
future for more advanced image analysis.
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.1 Eigenvalues of Commutative Hypercomplex Matrices

Commutative hypercomplex algebras (HCA) are the hypercomplex algebras
which have similar construction rules as the Clifford algebra but with com-
mutative multiplication rules.

In [25], Davenport proposed the four dimensional commutative hyper-
complex algebras (HCA,). It was shown that HCA, are isomorphic to the
two-fold tensor product and the Cartesian product of the complex algebras
C?. Later on, Felsberg et al. [33] extended the HCA to any 2" dimensions
and proved that the 2"-dimensional HCA are isomorphic to C2"~ . The four
dimensional commutative hypercomplex algebras are also isomorphic to the
reduced biquaternions which are used for the signal processing [101, 89].

A four dimensional commutative hypercomplex number is defined as

2 =21+ 290 + 237 + zuk = (21 + 220) + (23 + 247)7 (0.1)
where 7, 7, k are unit basis which obey the following rules,
ij=ji=k jk=kj=idik=ki=—j,i*=k=-1,72=1.  (0.2)

In contrast to the definition in [25], only the square of j is chosen to be
positive one, which results in more simple computations.
According to the above rules, z can be reformulated as

2= {(m 4 2) +iles+ )} [1%] +{(z1 = za) + iz — 20))} [1%-7}
= &ry+nry (0.3)
with
£ = (z21+23) +i(z2+ 24) (0.4)
= (12;—‘]'23)“(22—24) (0.5
no= 1 (0.6)
ry — 1% (0.7)

Correspondingly, a four dimensional commutative hypercomplex matrix
Mpyca, can be represented as the linear composition of two complex matrices
with the following form

Muca, = M¢ry + Myry (0.8)
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For an n x n Muca, matrix, there are n eigenvalues of each of the corre-
sponding complex matrix. Hence, there are n? eigenvalues for this Myca,
matrix.

In the following, we restrict ourselves to the eigenvalues computation of
a 2 x 2 matrix. Let Mg, A2, A and Ap be the eigenvalues of complex
matrices M and M, respectively, then the eigenvalues of the commutative
hypercomplex matrix are given by

Moo= Aari + Aare (0.9)
Ao = Aari + Aprs

Az = Agri+ A

A = Agari 4+ At .

For example, given an 2 X 2 Myca, matrix

o [ fo o] L], [
HOA = g k| T o of Tl T T -1 )
= M§r1+Mnr2. (010)

The eigenvalues of matrices Mg and M, are respectively obtained as fol-
lows

/\51:07 /\52:1+Z, A»,ﬂ:O, /\ngzl—i. (011)
Hence, according to Eq. (0.9), the four eigenvalues of the commutative hy-
percomplex matrix read

1—2 1—1. 1+¢ 147

.2 Eigenvalue Computation of the Hessian Matrix

According to the definition of the 4D commutative hypercomplex number,
we can identify its unit basis ¢, 7 and k with the following basis elements in
R;

17— €19 j — €3 k — €123 . (013)
The property of the unit basis based on the chosen elements can be checked
as follows

2 = (612)2 =k = (8123)2 =-1 j*= (33)2 =1 (0.14)
@] = epe3 = jl = €3€12 = €193 = k
Jk =esejn3 =kj =ejpzes=ep =1

1k = ejpe193 = ki = ejg3€19 = —€3 = —J .
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Hence, the Hessian matrix in the algebraically extended framework can be
considered as a commutative hypercomplex matrix, that is

fxxeS _fx e123:| |:fxxj _fz k:|
Hy = 4 = Lo 0.15

M |:fxye123 fnyS fzyk fyy] ( )
The above equation can further be written as

| = + . . 0.16
{fxyk e U R P e (0.16)
Two corresponding complex matrices M and M, are obtained as follows
M, = . Y M, = . i 0.17
¢ {fwyl fuy | ! —fayl —Jyy ( )
The eigenvalues of M, read
)\51 =m )\52 =nNn. (018)

These two eigenvalues are equivalent to those of the real valued Hessian
matrix Hpg, that is

H = {fm fzy} with  detgr(H) = mn . (0.19)
fl?y fyy
Accordingly, eigenvalues of M,, are given by
)\771 = —"Nn )\772 = —m. (020)

Combining eigenvalues of the two matrices M, and M,,, the four eigenvalues
of the algebraically extended Hessian matrix are

m-—n m-+n m-—m m+m
A= A = | =mj 21
1 5 + 5 7 A 5 + 5 j=mj (0.21)
n—n n4+n n—m n+m
A3 = i =n] M= . 0.22
3 st i = M 5t (0.22)

Hence, the determinant of the Hessian in the extended algebraic framework
reads

2
detM(HM) = [(f1183)<fyy63) - (_fzy8123)(fxye123)]2 = [fxa:fyy - ff‘y}
= )\1)\2)\3)\4 = (mn)2 = (detR(HM))2 . (023)
It can be concluded that the determinant computation of the Hessian in this
framework can be reduced to the determinant definition as the one in the
vector algebra.

The corresponding trace of the Hessian equals half of the sum of eigen-
values

1
traceM(HM) = fmeg%—fyyeg = 5()\1+)\2+>\3+>\4) = (m+n)j = (m—l—n)eg .
(0.24)
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