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Abstract. This paper presents a novel approach towards detecting in-
trinsically two-dimensional (i2D) image structures using local phase in-
formation. The local phase of the i2D structure can be derived from a
curvature tensor and its conjugate part in a rotation-invariant manner.
By employing damped 2D spherical harmonics as basis functions, the
local phase is unified with a scale concept. The i2D structures can be de-
tected as points of stationary phases in this scale-space by means of the
so call phase congruency. As a dimensionless quantity, phase congruency
has the advantage of being invariant to illumination change. Experiments
demonstrate that our approach outperforms Harris and Susan detectors
under the illumination change and noise contamination.

1 Introduction

Local image structures play important roles in many computer vision tasks. They
can be associated with the term intrinsic dimensionality [1], which, as a local
property of multidimensional signal, expresses the number of degrees of freedom
necessary to describe local structures. For 2D images, there exist three type
of structures. The intrinsically zero dimensional (i0D) structures are constant
signals. Intrinsically one dimensional (i1D) structures represent lines and edges.
Corners, junctions, line ends, etc. are all intrinsically two dimensional (i2D)
structures which all have certain degree of curvature. It is well know that these
i2D structures are of high significance in object recognition, motion estimation,
image retrieval, etc. Consequently, correct detection of i2D structures under
image deformations is very important.

There exist a lot of work concerning the detection of i2D structures based on
intensity information, see [2–6]. These intensity based approaches are sensitive
to variations in image illumination. Hence, it is necessary to find some features
of local structures which are invariant with respect to image brightness change
for a robust and reliable detection. Phase is such a good candidate, which carries
most essential structure information of the original signal and has the advantage
? This work was supported by German Research Association (DFG) Graduiertenkolleg

No. 357.



2 Di Zang and Gerald Sommer

of being invariant to illumination variation [7]. Detecting local structures can be
realized by means of the phase congruency. Using phase congruency to detect
edges has been reported in [8, 9]. However, i2D structure detection based on its
local phase has not yet been well investigated, although Kovesi proposed to use
i1D local phase to detect i2D points by constructing the phase moments [10].

In this paper, we present a novel approach to detect i2D image structures
using local phase information. The local phase of the i2D structure is derived
from a curvature tensor and its conjugate part in a rotationally invariant way.
By employing damped spherical harmonics as basis functions, the local phase
is unified with a scale concept. The i2D structures can be detected as points of
stationary phases in this scale-space by means of the so called phase congruency.
Experimental results illustrate that our approach outperforms Harris and Susan
detectors under illumination change and noise contamination.

2 Phase Estimation of Intrinsically Two-dimensional
Image Structures

The local phase of an i2D structure can be derived from a tensor pair, namely,
the curvature tensor and its conjugate part. By employing damped 2D spherical
harmonics [11, 12] as basis functions, the local phase is unified with a scale-space
framework. An nth order damped 2D spherical harmonic Hn has a much simpler
representation in the spectral domain than that of the spatial domain. It takes
the following form

Hn(ρ, α; s) = exp(inα)exp(−2πρs) = [cos(nα) + i sin(nα)]exp(−2πρs) (1)

where ρ and α denote the polar coordinates in the Fourier domain, s refers
to the scale parameter. The damped 2D spherical harmonics are actually 2D
spherical harmonics exp(inα) combined with the Poisson kernel exp(−2πρs)
[9]. The first order damped 2D spherical harmonic is basically identical to the
conjugate Poisson kernel [9]. When the scale parameter is zero, it is exactly
the Riesz transform [13]. In order to evaluate the local phase information, the
curvature tensor and its conjugate part are designed to capture the even and odd
information of 2D image structures. Designing the curvature tensor is motivated
by the second order fundamental theorem of the differential geometry, that is
the second derivatives or Hessian matrix which contains curvature information
of the original signal. Let f be a 2D signal, its Hessian matrix is correspondingly
given by

H =
[

fxx fxy

fxy fyy

]
(2)

where x and y are the Cartesian coordinates. According to the derivative theorem
of the Fourier theory [14, 15], the Hessian matrix in the spectral domain reads

F{H} =

[
−4π2ρ2 1+cos(2α)

2 F −4π2ρ2 sin(2α)
2 F

−4π2ρ2 sin(2α)
2 F −4π2ρ2 1−cos(2α)

2 F

]
(3)
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where F is the Fourier transform of the original signal f . It is obvious that
angular parts of the second order derivatives in the Fourier domain are related to
2D spherical harmonics of even order 0 and 2. Hence, these harmonics represent
the even information of 2D structures. Therefore, we are motivated to construct a
tensor Te, which is related to the Hessian matrix. This tensor is called a curvature
tensor, because it is similar to the curvature tensor of the second fundamental
form of the differential geometry. This curvature tensor Te indicates the even
information of 2D image structures and can be obtained from a tensor-valued
filter He in the frequency domain, i.e. Te = F−1 {FHe}, where F−1 means the
inverse Fourier transform. Hence, the tensor-valued filter He, called the even
filter reads

He =

[
H0+real(H2)

2
imag(H2)

2
imag(H2)

2
H0−real(H2)

2

]
=

[
1+cos(2α)

2
sin(2α)

2
sin(2α)

2
1−cos(2α)

2

]
exp(−2πρs) (4)

=
[

cos2(α) 1
2 sin(2α)

1
2 sin(2α) sin2(α)

]
exp(−2πρs)

where real(·) and imag(·) indicate the real and imaginary parts of the expression.
In this filter, two components cos2(α) and sin2(α) can be considered as two

angular windowing functions. These angular windowing functions provide a mea-
sure of the angular distance, which is the same as the one of the structure ten-
sor in [16]. From them, two perpendicular i1D components of the 2D image,
oriented along the x and y coordinates, can be obtained. The other compo-
nent of the filter is also the combination of two angular windowing functions,
i.e. 1

2 sin(2α) = 1
2 (cos2(α − π

4 ) − sin2(α − π
4 )). These two angular windowing

functions yield again two i1D components of the 2D image, which are oriented
along the diagonals. These four angular windowing functions can also be con-
sidered as four differently oriented filters, which are basis functions to steer a
filter [17]. They make sure that i1D components along different orientations are
extracted. Consequently, the even filter He enables the extraction of differently
oriented i1D components of the 2D image.

The conjugate Poisson kernel, which evaluates the corresponding odd infor-
mation of the i1D signal, is in quadrature phase relation with the i1D signal.
Therefore, the odd representation of the curvature tensor, called the conjugate
curvature tensor To, is obtained by employing the conjugate Poisson kernel to
elements of Te. Besides, the conjugate curvature tensor To results also from a
tensor-valued odd filter Ho, i.e. To = h1 ∗ Te = F−1 {H1HeF} = F−1 {HoF},
where h1 denotes the conjugate Poisson kernel in the spatial domain. Hence, the
odd filter Ho in the spectral domain is given by

Ho =
1
2

[
H1(H0 + real(H2)) H1(imag(H2))

H1(imag(H2)) H1(H0 − real(H2))

]
(5)

Similar as the Hessian matrix, we are able to compute the determinant of Te

and To for knowing the existence of the i2D structure. Combing the determinants
of Te and To results in a novel model for the i2D structure, which is called the
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monogenic curvature scale-space fi2D(x; s),

fi2D(x; s) = det(Te(x; s)) + det(To(x; s)) (6)

From it, the local amplitude for the i2D structure is given by

a(x; s) =
√

det2(Te(x; s)) + det2(To(x; s)) (7)

and the local phase can be obtained as

ϕ(x; s) =
det(To(x; s))
|det(To(x; s))|atan

( |det(To(x; s))|
det(Te(x; s))

)
(8)

where det(To(x;s))

|det(To(x;s))| decides the local main orientation of the i2D structure. Hence,
the local phase information of the i2D structure contains not only phase infor-
mation but also the local main orientation. Therefore, the evaluation of the i2D
structure can be realized in a rotation-invariant way.

3 Phase Congruency

Since the local phase is independent of the local amplitude, it thus has the
advantage of being not sensitive to illumination change. Hence, detecting i2D
image structures can be done by looking for points of stationary phase in the
scale-space. This approach is commonly called phase congruency and is based
on comparisons of the local phase at certain distinct scales [18, 8]. In this paper,
we take a similar idea as those reported in [8, 10]. However, there are some
differences. First, our local phase information can be evaluated in a rotation-
invariant manner. Therefore, no orientation sampling is required. Second, the
local phase directly indicates the phase information of the i2D structure. Thus,
there is no need to construct principal moments of the phase congruency to
determine i2D structures.

Morrone and Owens [19] define the phase congruency function in terms of
the Fourier series expansion of a signal at a local position x as

PC = maxφ∈(0,2π]

∑
n An cos(φn − φ)∑

n An
(9)

where An represents the amplitude of the nth Fourier component, φn denotes
the local phase of the Fourier component at position x and φ is the amplitude
weighted mean local phase angle of all the Fourier terms at the position being
considered. The measure has a value between zero and one. A phase congruency
of value one means that there is an edge or a line, zero phase congruency indicates
there is no structure. However, this measure results in poor localization and is
also sensitive to noise. Hence, Kovesi [8] developed a modified version of the phase
congruency. In this measure, the local phase is obtained from the logarithmic
Gabor wavelet. Due to its lack of rotation invariance, orientation sampling must
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be employed to make sure that features at all possible orientations are treated
equally. Hence, the new measure of phase congruency reads

PC =
∑

o

∑
n WobAno(cos(φno − φo)− | sin(φno − φo)|)− Toc∑

o

∑
n Ano + ε

(10)

where n and o refer to the scale parameter and the index over orientations,
respectively. And Wo denotes a factor that weights for frequency spread along
certain orientation and ε is added to avoid division by zero. The terms Ano and
φno are the local amplitude and local phase at a certain scale and orientation,
respectively. The mean local phase at a certain orientation is represented as φo.
Only energy values that exceed the estimated noise influence To can be taken into
consideration. The symbols b and c indicate that the enclosed entity equals itself
when its value is positive and zero otherwise. This new phase congruency measure
produces a more localized response and it also incorporates noise compensation.
However, the estimated local phase is only valid for the i1D signal. Hence, using
phase congruency to detect i2D structures requires the construction of principal
moments of the phase congruency, see [10].

In contract to this, we have now a rotationally invariant evaluation of the
local phase for the i2D structure, no orientation sampling is needed. Hence, the
computation of phase congruency can be simplified as the following

PC =
∑

n W bAn(cos(φn − φ)− | sin(φn − φ)| − T )c∑
n An + ε

(11)

where n denotes the scale parameter, W is also a factor weighting for frequency
spread, An and φn represent the local amplitude and local phase of the i2D
structure point, respectively. This new measure can be directly applied to detect
i2D image structures. Any point with a phase congruency value higher than a
certain threshold can be considered as an i2D point.

4 Performance Evaluation Criteria

In the literature, many detectors are designed for detecting i2D image structures.
However, most of them show only qualitative experimental results. Because com-
puter vision tasks require more robust and reliable detection results, there has
been an increasing emphasis on quantitative performance evaluation. There also
exists a number of research for assessing the detector performance. The measure
suggested by Schmid et al. [20] is based on the idea of repeatability. Rockett [21]
and Martinez-Fonte et al. [22] proposed a more empirical method for accessing.
In their research, examples of true corners and non-corners are provided. For
each threshold level, the corner detection probability and the false alarm rate
are estimated to plot an ROC curve. In [23], Carneiro et al. assessed the detector
performance by two measures, namely, the precision and recall rates.

The repeatability evaluation delivers the number of points repeated between
two images with respect to the total number of detected points. However, this
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measure does not consider those correctly or wrongly detected points which
do not repeat at all. The ROC curve plots the relation between the detection
rate and false alarm rate with respect to the threshold variation, but it is not
easy to show the detection performance with respect to image deformations like
illumination change, rotation change and so on. In this paper, we follow the
measures in [23].

The recall rate measures the probability of finding an i2D point in a deformed
image given that it is detected in the reference image. The definition of the recall
rate is given by

R =
TP

TP + FN
(12)

where TP denotes the true positive and FN is the false negative. Since it is
not easy to identify the ground truth, in this case, the true positive means the
number of correctly matched points. Given a point xi in the reference image and
a point xj in the deformed image, let M(·) represent the deformation transform,
if the Euclidean norm condition is satisfied, i.e. ‖M(xi)− xj‖ < 1.5, then these
two points are correctly matched. False negative is the number of points in the
reference image which cannot be matched with any points in the deformed image.

The precision rate indicates the probability that an i2D point detected in a
deformed image is actually an i2D point in the reference image. Its definition
reads

P =
TP

TP + FP
(13)

where FP is false positive, it means the number of points in the deformed image
which cannot be matched with any points in the reference image. Both the recall
and precision rates have values between zero and one. If the rate is higher, the
detection performance is better.

5 Experimental Results

In this section, we present some experimental results. As shown in Fig. 1, two
test images and one image sequence are employed for the experiments. The first

Fig. 1. Two test images (blox and blocks) and one frame of a boxes image sequence.

experiment aims to illustrate some qualitative comparison results between our



Detecting Intrinsically Two-dimensional Image Structures Using Local Phase 7

approach and the well-known Harris detector. The blox image is used for detec-
tion under the rotation change and the additive Gaussian noise contamination
(standard derivation is 10). For the illumination change, we use the blocks image
to show the detection difference. Fig. 2 demonstrates the detection results of our
approach and the Harris detector under the rotation change, the noise contam-
ination and the illumination change. According to the false positives and false
negatives, it can be shown that our approach performs better than the Harris
detector when the illumination changes and the noise is added to some degree.

The second experiment is to show some quantitative comparison results. We
follow the evaluation criteria of recall and precision rates to compare the perfor-
mances of our approach, the Harris detector and also the well-known Susan de-
tector. Ten frames of the boxes image sequence are employed for this experiment.
Image deformations of rotation change, additive Gaussian noise contamination
and the illumination variation are considered. For each deformation, the aver-
aged values of ten frames are recorded to plot the recall and precision rates. Fig.
3 demonstrates comparison results between our approach, the Harris detector
and the Susan detector according to the performance assessment criteria of re-
call and precision rates. Note that recall and precision rates have different scales
for different image deformations. The top row shows detection results under the
rotation change. Our approach has a comparable result with the Harris detector,
and the Susan detector performs worse than these two approaches. The second
row are recall and precision rates for the illumination change. The phase congru-
ency is a dimensionless quantity which is in theory invariant to the illumination
change, although it is not absolutely invariant to brightness variation in practice,
it is still less sensitive to the illumination variation than those insensity based
approaches. Results indicate that our approach performs much better than the
Harris and Susan detectors especially in the case of higher illumination change.
Bottom row shows the additive Gaussian noise contaminated results. Since the
phase congruency takes several scales into consideration and it also incorporates
noise compensation, our approach demonstrates a better performance than that
of the Harris detector. And the Harris detector is less sensitive to the noise when
compared with that of the Susan detector due to the Gaussian smoothing in the
local neighborhood.

6 Conclusions

We present a novel approach towards detecting i2D image structures using local
phase information. The local phase of the i2D structure can be derived from a
curvature tensor and its conjugate part in a rotation invariant manner. The i2D
image structures are detected as those points with stationary phases in the scale-
space by means of phase congruency. The recall and precision rates are employed
as detection performance assessment criteria. Experimental results illustrate that
our approach outperforms the Harris and Susan detectors when the illumination
changes and the images are contaminated by the additive Gaussian noise. For
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Fig. 2. Top row shows the detection results using our approach for the original im-
age, the rotated image and the Gaussian noise contaminated image. The second row
demonstrates the results from the Harris detector for the original image, the rotated
one and the noise contaminated one. Results shown in the third row are detections for
the original image and the illumination varied one by using our approach. Bottom row
illustrates results from the Harris detector for the original image and the illumination
changed one.
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Fig. 3. First column: from top to bottom are recall rates under the rotation change,
illumination variation and the additive Gaussian noise contamination. Second column:
from top to bottom are precision rates under the rotation change, illumination variation
and the additive Gaussian noise contamination.



10 Di Zang and Gerald Sommer

the deformation of rotation change, our approach shows a comparable result
with the Harris detector.
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