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ABSTRACT

This paper presents a novel approach towards two-dimensional (2D) image structures
modeling. To obtain more degrees of freedom, a 2D image signal is embedded into a
certain geometric algebra. Coupling methods of differential geometry, tensor algebra,
monogenic signal and quadrature filter, we can design a general model for 2D structures
as the monogenic extension of a curvature tensor. Based on it, a local representation for
the intrinsically two-dimensional (i2D) structure is derived as the monogenic curvature
signal. From it, independent features of local amplitude, phase and orientation are si-
multaneously extracted. Besides, a monogenic curvature scale-space can be built by
applying a Poisson kernel to the monogenic curvature signal. Compared with the other
related work, the remarkable advantage of our approach lies in the rotationally invari-
ant phase evaluation of 2D structures in a multi-scale framework, which delivers access
to phase-based processing in many computer vision tasks.
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1. INTRODUCTION

Model based image representation plays an important role in many computer vision
tasks such as object recognition, motion estimation, image retrieval, etc. Therefore, sig-
nal modeling for local structures is of high significance in image processing. There are
bulk of researches for intensity-based modeling, see [18, 27, 29, 12, 13]. However, those
approaches are not stable when the illumination varies. Therefore, that intensively in-
vestigated area of research is not adequate to model local structures. On the other hand,
phase information carries most essential structure information of the original signal
[34]. It is invariant with respect to illumination changes. Consequently, modeling of lo-
cal structures should take both the intensity and phase information into consideration.

In one dimensional (1D) signal processing, the analytic signal [20] is an important
complex valued model which can be used for speech recognition, seismic data analy-
sis, airfoil design and so on. The polar representation of the analytic signal yields the
local amplitude and local phase, which are measures of quantitative and qualitative
information of a signal, respectively. In 1D case, there exist four types of structures,
they are the peak, pit, decreasing slope and increasing slope. The local amplitude is in-
variant with respect to local structures and it indicates the energetic information of the
signal. The local phase allows to distinguish structures and it is invariant with respect
to the local amplitude. If the local structure varies, the local phase will correspondingly
change. Local amplitude and local phase are independent of each other and they fulfill
the properties of invariance and equivariance. Invariance means that a feature value is
not changed by a certain group acting on a signal. Opposite to invariance, equivariance
means there is a monotonic dependency of a feature value on the parameter of the group
action. If a set of features includes only invariant and equivariant features, it thus has
the property of invariance-equivariance. In addition to satisfying the requirement of
invariance and equivariance, if a set of features is at the same time a unique description
of the signal, it then performs a split of identity [21]. The split of identity indicates that
different features represent mutually different properties of the signal and the whole set
of features describes completely the signal. Hence, the analytic signal performs a split
of identity.

In 2D images, there exist infinite many types of structures. These can be classi-
fied with different features such as their intrinsic dimensions, the number and shape
of junctions, or the type of curvature in a differential geometric setting. According to
their intrinsic dimensionality, 2D images can locally belong to the intrinsically zero di-
mensional (i0D) signals which are constant signals, intrinsically one dimensional (i1D)
signals representing straight lines and edges and intrinsically two dimensional (i2D)
signals which do not belong to the above two cases. The i2D structures are composed
of curved edges and lines, junctions, corners and line ends, etc. Intrinsic dimensionality
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[40] is a local property of a multidimensional signal, which expresses the number of
degrees of freedom necessary to describe local structure. The term intrinsic dimension
used in image processing corresponds to the term codimension in mathematics. In [40],
a discrete concept of the intrinsic dimensionality has been proposed and it was later
extended to a continuous one by Krüger and Felsberg [30]. The i1D and i2D structures
carry most of the important information of the image, therefore, correct characterization
of them has great significance for many computer vision applications.

Many approaches have been proposed for the signal representation of local image
structures. The structure tensor [18] and the boundary tensor [27] estimate the main ori-
entation and the energy of the i2D signal. However, the split of identity is lost, because
the phase is neglected. In [29], a nonlinear image operator for the detection of locally
i2D signals was proposed, but it captures no information about the phase. There are lots
of papers concerned with applications of the analytic signal for image analysis. But they
have serious problems in transferring that concept from 1D to 2D in a rotation-invariant
way. The partial Hilbert transform and the total Hilbert transform [22] provide some
representations of the phase in 2D. Unfortunately, they lack the property of rotation
invariance and are not adequate for detecting i2D features. Bülow and Sommer [6] pro-
posed the quaternionic analytic signal, which enables the evaluation of the i2D signal
phase, however, this approach also has the drawback of being not rotationally invari-
ant. For i1D signals, Felsberg and Sommer [14] proposed the monogenic signal as a
novel model. It is a rotationally invariant generalization of the analytic signal in 2D and
higher dimensions. In [28], the 3D monogenic signal has been used for image sequence
analysis. From the monogenic signal, the local amplitude and a local phase represen-
tation can be simultaneously extracted. They deliver an orthogonal decomposition of
the original signal into amplitude, phase and orientation. Thus, the monogenic signal
has the property of split of identity [14]. However, it captures no information of the i2D
part. A 2D phase model is proposed in [10], where the i2D signal is split into two per-
pendicularly superposed i1D signals and the corresponding two phases are evaluated.
The operator derived from that signal model takes advantage of spherical harmonics
up to order three. It delivers a new description of i2D structure by a so-called structure
multivector. Unfortunately, steering is needed and only i2D patterns superimposed by
two perpendicular i1D signals can be correctly handled. Quite another approach of lo-
cal signal analysis is based on differential geometry of curves and surfaces [25, 26]. The
main points of concern are some invariance properties of signal analysis and regional
symmetry with respect to certain combinations of Gaussian and mean curvatures of lo-
cal surface patterns in a Gaussian multi-scale framework [17, 16]. We will pick up the
differential geometry model of surfaces. But instead of a Gaussian blurring operator,
we will apply a Poisson blurring operator as a consequence of the algebraic embedding
we use.

Our purpose is to build a general model for all 2D structures without necessarily
delivering all parameters for describing the local structure. This model should contain
both the amplitude and phase information of 2D structures in a rotation-invariant man-
ner. In other words, the new model should be an extension of the analytic signal to
the 2D case. In this paper, we present a novel signal model which covers 2D structures
of all intrinsic dimensionalities. By embedding our problem into a certain geometric
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algebra, more degrees of freedom can be obtained to derive a complete representation
for the 2D structure. Based on the differential geometry, we are able to design that gen-
eral model for 2D structures in a rotation-invariant manner by coupling the methods
of tensor algebra, monogenic signal and quadrature filter. The proposed model can be
considered as the monogenic extension of a curvature tensor. From this model, a local
signal representation for i1D structures is obtained. It is exactly the monogenic signal
[14] as a special case of this general model. The local representation for i2D structures,
referred as the monogenic curvature signal, can also be derived based on the proposed
model.

From the monogenic curvature signal, three independent local features can be ex-
tracted. They are the amplitude, phase and orientation just like in the case of the mono-
genic signal. Hence, the monogenic curvature signal also performs the split of identity,
i.e., the invariance-equivariance property of signal decomposition. The energy output
(square of the amplitude) can be regarded as a junction strength for detecting the points
of interest. The estimated orientation represents the local main orientation of the struc-
ture and the phase feature can be used to classify some specific i2D structures.

The amplitude, orientation and phase are coupled to a scale concept in one single
framework which is called the monogenic curvature scale-space. The monogenic cur-
vature scale-space is the scale-space of the monogenic curvature signal. But instead of
considering that unifying framework, the orthogonal scale-spaces for amplitude, phase
and orientation can also be studied separately for local signal analysis. These features
are scale dependent, but they are still independent of each other at each scale space. The
monogenic curvature scale-space is completely different to the well-known Gaussian
curvature scale-space [33, 32]. Both the definition of curvature and the scale generating
operator are different. Compared with the related research work, our main contribution
is the derivation of a general signal model for 2D structures, which enables us to simul-
taneously extract local features in a multi-scale way. The remarkable advantage lies in
the possibility of evaluating the 2D structure phase information in a rotation-invariant
manner, which gives access to many phase-based processing in computer vision tasks.

The rest of this paper is organized as follows. Section 2 introduces the mathemati-
cal preliminaries, which includes geometric algebra, basis functions and the monogenic
scale-space. In Section 3, a brief introduction to the differential geometry is given and
the general signal model for 2D image structures is presented. Section 4 gives a de-
tailed interpretation of the monogenic curvature signal. Parity symmetry analysis of
the monogenic curvature signal is given in Section 5. In Section 6, we introduce the
monogenic curvature scale-space. Finally, we conclude this paper in Section 7.



2. MATHEMATICAL PRELIMINARIES

The way we intend to design a general model for 2D structures is a generalization of
the analytic signal. It cannot be realized in the domain of complex numbers. Instead, a
more powerful algebraic system should be taken into consideration. Geometric algebras
constitute a rich family of algebras as generalization of vector algebra [24]. Compared
with the classical framework of vector algebra, the geometric algebra makes available
a tremendous extension of modeling capabilities. By embedding our problem into a
certain geometric algebra, more degrees of freedom can be obtained, which makes it
possible to extract multiple features of 2D structure. For the problem we are concerned,
the 2D signal will be algebraically embedded into the Euclidean 3D spaceR3. Therefore,
in this section, we give a brief introduction to the geometric algebra over 3D Euclidean
space (R3). For the detail information, please refer to [31, 1, 23].

2.1 Geometric algebra of 3D Euclidean space R3

The Euclidean space R3 is spanned by the orthonormal basis vectors {e1, e2, e3}. The
geometric algebra of the 3D Euclidean space (R3) consists of 23 = 8 basis elements,

R3 = span{1, e1, e2, e3, e23, e31, e12, e123 ≡ I3} (2.1)

Here e23, e31 and e12 are the unit bivectors and the element e123 is a unit trivector or
unit pseudoscalar. A general combination of these elements is called a multivector,
e.g. M = a + be1 + ce2 + de3 + ee23 + fe31 + ge12 + hI3. The basic product of the
geometric algebra is the geometric product. The geometric product of two multivectors
M1 and M2 is indicated by juxtaposition of M1 and M2, i.e. M1M2. The multiplication
results of the basis elements are shown in table 1. The geometric product of two vectors
x = x1e1 + x2e2 and y = y1e1 + y2e2 can be decomposed into their inner product (·) and
outer product (∧),

xy = x · y + x ∧ y (2.2)

where the inner product of x and y is x · y = x1y1 + x2y2 and the outer product is
x ∧ y = (x1y2 − x2y1)e12.

Due to the orthogonality of basis vectors, their outer product is equivalent to their
geometric product.

e1 ∧ e2 = e1e2 ≡ e12 (2.3)
e2 ∧ e3 = e2e3 ≡ e23 (2.4)
e3 ∧ e1 = e3e1 ≡ e31 (2.5)
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The k-grade part of a multivector is obtained from the grade operator 〈M〉k. A blade of
grade k, i.e. a k-blade Bk, is the outer product (∧) of k independent vectors x1, ...,xk ∈
R3,

Bk = x1 ∧ ... ∧ xk = 〈x1...xk〉k (2.6)

Hence, 〈M〉0 is the scalar part of M , 〈M〉1 represents the vector part, 〈M〉2 indicates the
bivector part and 〈M〉3 is the trivector part, which commutes with every element of R3.
The dual of a multivector M is defined to be the product of M with the inverse of the
unit pseudoscalar I3

M∗ = MI−1
3 = −MI3 (2.7)

The modulus of a multivector is obtained by |M | =

√
〈MM̃〉0, where M̃ is the reverse

of a multivector defined as M̃ = 〈M〉0 + 〈M〉1 − 〈M〉2 − 〈M〉3. The main automorphism
of R3 is the grade involution

M̂ = 〈M〉0 − 〈M〉1 + 〈M〉2 − 〈M〉3 (2.8)

Combining the grade involution and reversion will yield the conjugation

M =
̂̃
M = 〈M〉0 − 〈M〉1 − 〈M〉2 + 〈M〉3 (2.9)

A versor is any multivector that can be expressed as the geometric product of invert-
ible vectors, for example,

U = xk...x2x1 (2.10)

where the choice of vectors is not unique, but there is a minimal number k ≤ n with
n denoting the dimension of the vector space. The parity of U is even (odd) for even
(odd) k. An even versor R is called a spinor if

RR̃ = |R|2 (2.11)

where R̃ indicates the reversion of the even versor R. In the case of |R|2 = 1, the spinor
is called a rotor.

In R3, an even grade multivector is called a spinor,

S = a + ee23 + fe31 + ge12 with SS̃ = |S|2 (2.12)

All spinors form a proper subalgebra of R3, that is the even subalgebra R+
3 . A spinor

represents a scaling-rotation, i.e. S = rexp(θB), where B is a bivector indicating the
rotation plane, θ is the rotation angle within that plane and r refers to the scaling factor.
There exist isomorphisms between the algebra of complex numbers and the subalgebras
of R3 , which are generated by {1, I3} or {1, B

|B|} with B
|B| being a normalized bivector. It

is shown in table 1 that the square of the bivectors or trivector equals -1, therefore, the
imaginary unit i of the complex numbers can be substituted by a bivector or a trivector,
yielding an algebra isomorphism.
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Tab. 2.1: The geometric product of basis elements of R3

1 e1 e2 e3 e23 e31 e12 I3

1 1 e1 e2 e3 e23 e31 e12 I3

e1 e1 1 e12 −e31 I3 −e3 e2 e23

e2 e2 −e12 1 e23 e3 I3 −e1 e31

e3 e3 e31 −e23 1 −e2 e1 I3 e12

e23 e23 I3 −e3 e2 -1 −e12 e31 −e1

e31 e31 e3 I3 −e1 e12 -1 −e23 −e2

e12 e12 −e2 e1 I3 −e31 e23 -1 −e3

I3 I3 e23 e31 e12 −e1 −e2 −e3 -1

2.2 Geometric embedding of the signal

The scalar-valued real 2D image signal f(x, y) will be embedded intoR3 as a real-valued
vector field, i.e. f(x, y)e3 ≡ f(x) = f(xe1 + ye2 + ze3), x ∈ R3 and z = 0. Thus, rotating
the signal f out of the e3 axis results in a representation fM which contains additional
non-real components. Hence, fM takes the following form

fM(x) = f1(x)e1 + f2(x)e2 + f3(x)e3 (2.13)

This representation of a 2D signal is called a monogenic signal [14], as the rotation-
ally invariant generalization of the analytic signal. The vector-valued signal fM in R3

can be considered as the impulse response of a spinor S acting on the e3 basis vector,
i.e. fM = e3S. The transformation performed under the action of the spinor delivers
access to both the amplitude and phase information of the vector-valued signal fM [39].
To make this clear, we will consider the spinor more in depth. The spinor can be rep-
resented in polar coordinates as an exponential form. Therefore, from the logarithm of
the spinor, two parts can be obtained. They are the scaling which corresponds to the
local amplitude and the rotation which corresponds to the local phase representation.
The R3-logarithm of a spinor S ∈ R+

3 takes the following form

log(S) = 〈log(S)〉0 + 〈log(S)〉2 = log(|S|) +
〈S〉2
|〈S〉2|atan

( |〈S〉2|
〈S〉0

)
(2.14)

where atan is the arc tangent mapping for the interval [0, π). The scalar part 〈log(S)〉0 =
log(|S|) illustrates the attenuation [15] as the logarithm of the local amplitude. Hence,
the local amplitude is obtained as the exponential of it

|S| = exp(log|S|) = exp(〈log(S)〉0) (2.15)

The bivector part of log(S) indicates the local phase representation

arg(S) = 〈log(S)〉2 =
〈S〉2
|〈S〉2|atan

( |〈S〉2|
〈S〉0

)
(2.16)

The algebraically embedded Fourier transform of a 2D signal f(x), see [10], is defined
as

G(u) =

∫ ∞

y=−∞

∫ ∞

x=−∞
f(x)exp(−I32πx · u)dxdy (2.17)
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Its corresponding inverse Fourier transform takes the following form

f(x) =

∫ ∞

v=−∞

∫ ∞

u=−∞
G(u)exp(I32πx · u)dudv (2.18)

Hence, given a signal f(x) = f1(x)e1 + f2(x)e2 + f3(x)e3, its Fourier domain representa-
tion reads

F(u) = F{f1(x)e1 + f2(x)e2 + f3(x)e3} = F1(u)e1 + F2(u)e2 + F3(u)e3 (2.19)

where F indicates the Fourier transform and Fk (k = 1, 2, 3) is the Fourier transform of
fk. For a spinor valued function h = h0 + h23e23 + h31e31 + h12e12, its spectral domain
representation is given by

H(u) = H0(u) + H23(u)e23 + H31(u)e31 + H12(u)e12 (2.20)

where H0(u) = F{h0}, H23(u) = F{h23} and so on.

2.3 Basis functions

In order to analyze 2D patterns, we choose 2D spherical harmonics as basis functions
according to the proposal in [10]. Actually, spherical harmonic is a general term which
denotes the harmonic oscillations on the unit sphere of a multi-dimensional Euclidean
space. However, in this paper, only the spherical harmonics of 2D space are employed,
they are also called circular harmonics. Due to the theory of Fourier series, one can
approximate any plane angular function (in L2 sense) by using 2D spherical harmonics.
Since the angular behavior of a signal can be regarded as band limited, only spherical
harmonics of order zero to three are applied, otherwise, aliasing would occur on a dis-
crete grid around a location x. To build the signal model, we are more concerned of
the angular portions. Therefore, we use the polar representation of spherical harmonics
instead of the Cartesian form applied in [10].

In the frequency domain, a nth order spherical harmonic Hn takes the following
form

Hn(ρ, α) = Hn(ρ)Hn(α) = exp(nαe12) = cos(nα) + sin(nα)e12 (2.21)

where ρ and α denote the polar coordinates in the Fourier domain and n refers to the
order of the spherical harmonic. It is obvious that the radial part of the spherical har-
monic equals one, i.e. Hn(ρ) = 1. Every spherical harmonic consists of two orthogonal
components and the first order spherical harmonic is basically identical to the Riesz
kernel [14] which is well known in Clifford analysis as the multidimensional general-
ization of the Hilbert kernel. Since Hn is separable into radial variation and angular
variation, and its angular variation is harmonic, according to the theorem in [8] (page
262), its angular variation is preserved in the spatial domain while the radial function
is the Hankel transform of the radial variation in the frequency domain. Therefore, the
spatial domain representation of a nth order spherical harmonic hn reads

hn(r, β) = c(I3)
nhn(r)hn(β) = c(I3)

nhn(r)[cos(nβ) + sin(nβ)e12] (2.22)
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Fig. 2.1: From left to right are spherical harmonic bandpasses of order 1 to 3 in the spa-
tial domain, every spherical harmonic consists of two orthogonal components.
White indicates positive one and black represents negative one.

where c indicates a constant, r and β are the polar coordinates in the spatial domain,
hn(r) represents the radial part which is obtained by the nth order Hankel transform of
Hn(ρ).

In practice, 2D spherical harmonics are normally considered only as angular parts
which should be combined with radial bandpass filters. In this paper, the difference of
Poisson (DOP) kernel [10] is employed as the radial bandpass filter, see also the next
section. As a result, local signal analysis can be realized in a multi-scale approach in the
monogenic scale-space [15]. The DOP is an isotropic bandpass filter which in spectral
domain takes the form

HDOP (ρ; s) = exp(−2πρs1)− exp(−2πρs2) (2.23)

where s1 and s2 represent the fine and coarse scales parameters, respectively. Therefore,
a nth order bandpass bounded spherical harmonic reads

Hn(ρ, α; s) = HDOP (ρ; s)Hn(α) (2.24)

Hence, Hn(ρ, α; s) is separable into radial variation HDOP (ρ; s) and angular variation
Hn(α). Since the angular portion is harmonic, according to the theorem stated in [8],
Hn(ρ, α; s) is separable both in the spatial and spectral domains. Thereby, we are able
to obtain the spatial representation of the bandpass bounded spherical harmonic as
follows

F−1{Hn(ρ, α; s)} = c(I3)
nhn(r; s)(cos(nβ) + sin(nβ)e12) (2.25)

The angular variation is preserved and the radial function hn(r; s) is the Hankel trans-
form of HDOP (ρ; s). Combined with the DOP bandpass filters, spherical harmonics of
order 1 to 3 in the spatial domain are illustrated in Fig. 2.1, where the fine scale is one
and the coarse scale takes two.

It is obvious that the amplitude of the spherical harmonic equals always one, that is

|H2
n(α)| =

√
(cos(nα))2 + (sin(nα))2 = 1 (2.26)

If the coordinate system rotates with the angle θ0, spherical harmonics will rotate ac-
cordingly as

H ′
n(α) = (cos(nθ0) cos(nα) + sin(nθ0) sin(nα)) + (2.27)

(− sin(nθ0) cos(nα) + cos(nθ0) sin(nα))e12
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The amplitude of the rotated spherical harmonic is

|H ′2
n (α)| = [(cos(nθ0) cos(nα) + sin(nθ0) sin(nα))2 + (2.28)

(− sin(nθ0) cos(nα) + cos(nθ0) sin(nα))2]
1
2 = 1

This results from the fact that no matter what angle the spherical harmonic rotates, its
amplitude is always one. Hence, the amplitude of any spherical harmonic is indepen-
dent of the angular argument. Therefore, using spherical harmonics as basis functions
gives access to a rotationally invariant signal representation.

2.4 The monogenic scale-space

In Section 2.2, we have briefly discussed the signal embedding. In that case, a 2D image
signal is embedded into 3D Euclidean space as a vector field f(x) = f(xe1 + ye2 + ze3)
with z = 0. The monogenic signal fM [14] is thus obtained by rotating the signal f out of
the e3 basis vector. This signal representation consists of three components according to
Eq. (2.13). There, f3(x)e3 indicates the real component which is identical to the original
signal f(x), f1(x)e1 and f2(x)e2 are two non-real components that can be obtained from
the Riesz transform of the original signal.

Let x = xe1+ye2 and u = ue1+ve2 be the Cartesian coordinates of the spatial domain
and the Fourier domain, respectively. The convolution kernel of the Riesz transform is
given by

hR(x) = − x

2π|x|3e31 +
y

2π|x|3e23 =
xe3

2π|x|3 (2.29)

and its frequency domain representation reads

HR(u) =
u

|u|I
−1
2 (2.30)

In terms of polar coordinates, the spatial and spectral domain representations of the
Riesz kernel take the following forms

hR(r, β) =
1

2πr2
(− cos(β)e31 + sin(β)e23) (2.31)

HR(ρ, α) = − cos(α)e2 + sin(α)e1 (2.32)

The Riesz kernel consists of two bivector valued components and it is basically identical
to the first order spherical harmonic. Combining the signal and its Riesz transformed
result yields the monogenic signal

fM(x) = f(x) + (hR ∗ f)(x) (2.33)

The real part f(x) is also called the even component of the monogenic signal. The odd
component of the monogenic signal, called the figure flow, is defined as (hR ∗ f)(x),
which is in quadrature phase relation to the even part.
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In the light of the discussion in Section 2.2, fM(x) can be regarded as the impulse
response of a spinor S acting on the e3 basis vector. Therefore, the logarithm of this
spinor gives access to both the amplitude and phase information of the original signal.
The spinor field which maps the e3 basis vector to the vector valued signal fM(x) is
e3fM(x). Hence, according to Eq. (2.15) and Eq. (2.16), the local amplitude and local
phase representation of the monogenic signal are obtained as follows

AM(x) = |fM(x)| = exp(log|e3fM(x)|) = exp(〈log(e3fM(x))〉0) (2.34)

ΦM(x) = 〈log(e3fM(x))〉2 =
〈e3fM(x)〉2
|〈e3fM(x)〉2|atan

( |〈e3fM(x)〉2|
〈e3fM(x)〉0

)
(2.35)

It is also possible to extend the monogenic signal to higher dimensions, see [39, 28].
Hence, the monogenic signal can be regarded as a generalization of the analytic signal
in 2D and higher dimensions. The monogenic signal is a novel model for i1D signals,
however, it delivers no information about the i2D parts of the 2D image.

Up to now, we only considered the 2D image signal f(x) = f(xe1 + ye2 + ze3) with
z = 0. If we investigate the case for the half space z > 0, this signal will become a
smoothed version of the original signal (z = 0). Hence, z is regarded as a scale parame-
ter. Applying a Poisson kernel to the original signal results in a smoothed signal which,
for all scale parameters s, results in a Poisson scale-space [15],

p(x; s) = (f ∗ hP )(x) (2.36)

where s denotes the scale parameter, p(x; s) is the Poisson scale-space and hP indicates
the scalar valued Poisson kernel defined as

hP (x) =
s

2π(|x + se3|)3
(2.37)

and
F {hP (x)} = exp(−2π|u|s) (2.38)

Here F refers to the Fourier transform. The harmonic conjugate of the Poisson scale-
space reads

q(x; s) = (f ∗ hQ)(x) (2.39)

where hQ denotes the bivector valued conjugate Poisson kernel which takes the follow-
ing forms

hQ(x) = hQ1(x) + hQ2(x) = − xe31

2π(|x + se3|)3
+

ye23

2π(|x + se3|)3
=

xe3

2π(|x + se3|)3
(2.40)

and
F {hQ(x)} =

u

|u|I
−1
2 exp(−2π|u|s) (2.41)

Fig. 2.2 illustrates the Poisson kernel and its harmonic conjugates. Combining the
Poisson scale-space with its harmonic conjugates yields the monogenic scale-space [15],
which can be visualized as shown in Fig. 2.3. When the scale parameter is set to zero, the



2. Mathematical preliminaries 13

Fig. 2.2: From left to right: the Poisson kernel (hP ) and the two components of the con-
jugate Poisson kernel (hQ1 and hQ2). Note that the two components of the con-
jugate Poisson kernel constitute one single isotropic operator.

Fig. 2.3: The structure of the monogenic scale-space [15].

monogenic signal is obtained. From an alternative point of view, the monogenic scale-
space can also be built by the monogenic signals at all scales, where the monogenic
signals are formed by the smoothed image signals and their Riesz transformed results,
i.e. the figure flows. In the monogenic scale-space, the figure flow and the smoothed
signal are in quadrature phase relation at each scale. As in the case of the well known
difference of Gaussian (DOG) bandpass filter, it is also possible to build up two band-
pass filters in the presented framework. They are the difference of Poisson (DOP) filter
and the difference of conjugate Poisson (DOCP) filter. Since the DOCP consists of two
components, DOP and DOCP together form a Riesz triplet [10].

In the monogenic scale-space, expressions for the local amplitude AM(x; s) and local
phase Φ(x; s) have to be generalized accordingly as

AM(x; s) =
√

p(x; s)2 + |q(x; s)|2 (2.42)

ΦM(x; s) =
q(x; s)

|q(x; s)| arctan

( |q(x; s)|
p(x; s)

)
(2.43)

The monogenic scale-space is an interesting alternative to the Gaussian scale-space.
The unique advantage of the monogenic scale-space, compared with that of the Gaus-
sian scale-space, is the figure flow being in quadrature phase relation to the image at
each scale. Therefore, the monogenic scale-space is superior to the Gaussian scale-space
if a quadrature relation concept is required [15].



3. SIGNAL MODELING FOR
TWO-DIMENSIONAL IMAGE
STRUCTURES

So far, we understood that the monogenic signal is derived from the monogenic exten-
sion of a scalar field. However, it is restricted to model only the i1D signals because
only a minimum of information, i.e. the scalar value f(x), is taken into consideration.
If 2D images are interpreted as surfaces in R3, the first and second order fundamental
theorems of differential geometry would deliver the most general local signal model in
the classic framework. We will associate a curvature tensor instead of a scalar value to
a location of interest. This results in a useful signal model for 2D image structures. For
the moment we are neglecting the metric tensor. Hence, our operators for local signal
analysis will be rotation invariant.

The proposed model can be regarded as the monogenic extension of the curvature
tensor. Motivated from the differential geometry, this curvature tensor can be con-
structed. Therefore, a brief introduction to the differential geometry is given.

3.1 Basic concepts of differential geometry

Differential geometry [7] is a well known methodology in the disciplines like physics,
mechanical engineering and topography. Classical differential geometry deals with the
mathematical description of curves and surfaces. In image processing field, Koenderink
and van Doorn [25, 26] have introduced methods from differential geometry to analyze
the local properties of signals. In such case, two dimensional intensity data can be
represented as surfaces in 3D Euclidean space. Such surfaces in geometrical terms can
be written as Monge patches of the form

x + f(x) = xe1 + ye2 + f(x, y)e3 (3.1)

This notation of a surface is the most simple one for considerations in the framework of
differential geometry because it enables to express the mentioned tensors with entries
built from first and second order differentials of the image functions. In the following,
we will introduce basic concepts of differential geometry and the general 2D signal
model in an algebraic framework with more powerful geometric meanings than R3.
Because we are interested in a tensor representation of the image signal, our model will
thus be represented in the matrix geometric algebra M(2,R3) which results from the
tensor product R3 × R3.
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The matrix geometric algebra M(2,R3), see [38], is the geometric algebra of 2 × 2
matrices with entities in R3. For example, a general element p in this matrix geometric
algebra can be written as

p =

[
a b
c d

]
(3.2)

where p ∈ M(2,R3) and a, b, c, d ∈ R3. Addition and multiplication of matrices in
M(2,R3) is the usual matrix addition and multiplication. The trace of this representation
is

traceM(p) = trace
[
a b
c d

]
= a + d (3.3)

and the corresponding determinant reads

detM(p) = detM

[
a b
c d

]
= aadd + bbcc− (abdc + cdba) (3.4)

where a, b, c and d are the conjugations of a, b, c and d, respectively, see Eq. (2.9).
The primary first order differential quantity for an image, represented by the vector

field f , is the gradient defined as

∇f = e1
∂

∂x
f(x, y)e3 + e2

∂

∂y
f(x, y)e3 = fxe13 + fye23 (3.5)

For second order geometry, the matrix of second order derivatives or Hessian H is
given by

HM =

[
∂2

∂x2 f
∂2

∂x∂y
f

∂2

∂y∂x
f ∂2

∂y2 f

]
=

[
e1

∂
∂x

fxe13 e2
∂
∂y

fxe13

e1
∂
∂x

fye23 e2
∂
∂y

fye23

]
=

[
fxxe3 −fxye123

fxye123 fyye3

]
(3.6)

The Hessian matrix is related to the curvature tensor, which describes the local devia-
tion of the signal f from the tangent plane of the surface.

According to the derivative theorem of Fourier theory [35, 2], in the spectral domain,
the second derivative of f with respect to the x axis is given by

F{fxxe3} = −4π2ρ2 cos2(α)F = −4π2ρ2 1 + cos(2α)

2
F (3.7)

where F denotes the Fourier transform of the original signal f = f(x, y)e3. Analogously,
the other second order derivatives are obtained as

F{fxye123} = −4π2ρ2 cos(α) sin(α)e12F = −4π2ρ2 sin(2α)

2
e12F (3.8)

F{fyye3} = −4π2ρ2 sin2(α)F = −4π2ρ2 1− cos(2α)

2
F (3.9)

Hence, in the spectral domain, the Hessian matrix reads

F {HM} =

[
−4π2ρ2 1+cos(2α)

2
F (4π2ρ2 sin(2α)

2
F)e12

(−4π2ρ2 sin(2α)
2

F)e12 −4π2ρ2 1−cos(2α)
2

F

]
(3.10)
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Tab. 3.1: Surface type classification based on Gaussian curvature and mean curvature
Surface type M (Mean Curvature) K(Gaussian Curvature)
Elliptic (i2D) K > 0
Hyperbolic (i2D) K < 0
Parabolic (i1D) |M | 6= 0 K = 0
Planar (i0D) |M | = 0 K = 0

According to Eq. (3.4), the determinant of the Hessian in this algebraic framework
is obtained as

detM(HM) = [(fxxe3)(fyye3)− (−fxye123)(fxye123)]
2 =

[
fxxfyy − f 2

xy

]2 (3.11)

This determinant is identical to the square of the classic Hessian determinant in the
vector algebra. In general, the determinant computation of the algebra M(2,R3) can
not be reduced to the original definition in the vector algebra. However, in the current
case, due to the particular basis elements, the original definition of the determinant
can still be used, see Appendix for details. Hence, the determinant of the Hessian is
reformulated as

detR(HM) = (fxxe3)(fyye3)− (−fxye123)(fxye123) = fxxfyy − f 2
xy = λ1λ2 (3.12)

where λ1 and λ2 are two eigenvalues of the real valued Hessian matrix, which represent
the principal curvatures. Thus, the Gaussian curvature K can be defined as

K = detR(HM) (3.13)

or
K2 = detM(HM) (3.14)

The mean curvature M , obtained from the trace of the algebraically embedded Hessian
matrix, takes the following form

M =
1

2
traceM(HM) =

1

2
(fxxe3 + fyye3) =

1

2
(λ1 + λ2)e3 (3.15)

Hence, both the Gaussian curvature and the mean curvature give rise to a rotation in-
variant local analysis of second order features. Combining the Gaussian curvature and
mean curvature, a complete classification of the local structure into the types i2D (ellip-
tic and hyperbolic regions), i1D (parabolic region) and i0D (planar region) in principle
can be done, see table 3.1.

3.2 Monogenic extension of the curvature tensor

In order to build a general model for 2D structures with phase information contained,
we follow the ideas of deriving the analytic or monogenic signal from a real valued
1D or 2D image signal. The holomorphic (1D) or monogenic (2D) completion of the
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signal results in an additional component which is in quadrature phase relation to the
original signal. For a 2D image, every image point is now associated with a curvature
tensor which is related to the Hessian matrix. It is necessary to find a conjugate matrix
with quadrature phase relationship to the curvature tensor. In the following, we will
introduce the general signal model based on 2D spherical harmonics.

As analyzed before, the Hessian matrix contains curvature information. Based on it,
i0D, i1D and i2D structures can be easily separated. It is obvious that angular parts of
the derivatives are related to spherical harmonics of even orders 0 and 2, see equations
(3.7) to (3.10). These harmonics represent the even information of 2D structures. There-
fore, we are motivated to construct a tensor Te, which is related to the Hessian matrix,
for the signal modeling. We will call Te as the curvature tensor, although it is different to
the curvature tensor of the second fundamental form of the differential geometry. This
curvature tensor indicates the even information of 2D structures and is obtained from
a tensor-valued filter He in the frequency domain, i.e. Te = F−1 {He ×τ F}, where F−1

means the inverse Fourier transform and ×τ indicates the geometric product between
all elements of He and F. Since the original 2D signal f(x, y) is embedded as an e3-
valued signal, the tensor-valued filter He, called the even Hessian operator, thus takes
the following form

He =
1

2

[
H0 + 〈H2〉0 −〈H2〉2
〈H2〉2 H0 − 〈H2〉0

]
(3.16)

=
1

2

[
1 + cos(2α) − sin(2α)e12

sin(2α)e12 1− cos(2α)

]
=

[
cos2(α) −1

2
sin(2α)e12

1
2
sin(2α)e12 sin2(α)

]

The entities of He are obtained from Eq. (3.10). For the convenience of analysis, the
radial factors are ignored.

In this filter, the two elements cos2(α) and sin2(α) can be considered as two angular
windowing functions which are the same as those of the orientation tensor in [21]. From
them, two perpendicular i1D components of the 2D image, oriented along the e1 and e2

coordinates, can be obtained. The other component of the filter is also the combination
of two angular windowing functions, i.e. 1

2
sin(2α) = 1

2
(cos2(α− π

4
)− sin2(α− π

4
)). These

two angular windowing functions yield again two i1D components of the 2D image,
which are oriented along the diagonals of the plane spanned by e1 and e2. These four
angular windowing functions, shown in Fig. 3.1, can also be considered as four dif-
ferently oriented filters, which are basis functions to steer a detector for i1D structures
[19]. They make sure that i1D components along different orientations are extracted,
see Fig. 3.2. Consequently, the even Hessian operator He enables the extraction of four
differently oriented i1D components of the 2D image. Hence, the superimpose of these
four basis i1D signals will result in a rotation-invariant extraction of any arbitrary i1D
signal.

The Riesz transform [14] is able to evaluate the corresponding conjugate information
of the i1D signal, which is in quadrature phase relation with the i1D signal. Therefore,
the odd representation of the curvature tensor, called the conjugate curvature tensor To,
is obtained by employing the first order spherical harmonic h1 to elements of Te, which
equals the Riesz transform of the curvature tensor Te. Besides, the conjugate curvature
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Fig. 3.1: From left to right are the angular windowing functions of cos2(α), sin2(α),
cos2(α − π

4
) and sin2(α − π

4
). White indicates positive one and black represents

zero.

e
2

e
1

Fig. 3.2: From left to right are the test image, i1D signals result from the angular win-
dowing functions of cos2(α), cos2(α− π

4
), sin2(α) and sin2(α− π

4
), respectively.

tensor To results also from a tensor-valued filter Ho, called the odd Hessian operator.

To = h1 ∗τ Te = F−1 {Ho ×τ F} (3.17)

where ∗τ represents the convolution of all elements of Te with h1. The odd Hessian
operator Ho equals the Riesz transform of the even Hessian operator, i.e. Ho = H1×τ He.
In the spectral domain, the odd Hessian operator thus takes the following form

Ho ≡
[
Ho11 Ho12

Ho21 Ho22

]
=

1

2

[
H1(H0 + 〈H2〉0) H1(−〈H2〉2)

H1(〈H2〉2) H1(H0 − 〈H2〉0)
]

(3.18)

with

Ho11 = (cos(α) + sin(α)e12)(cos2(α)) (3.19)

=
1

4
[(3 cos(α) + cos(3α)) + (sin(α) + sin(3α))e12]

Ho21 = −Ho12 = (cos(α) + sin(α)e12)(
1

2
sin(2α)e12) (3.20)

=
1

4
[(cos(α)− cos(3α)) + (sin(α) + sin(3α))e12]

Ho22 = (cos(α) + sin(α)e12)(sin
2(α)) (3.21)

=
1

4
[(cos(α)− cos(3α)) + (3 sin(α)− sin(3α))e12]

It is obvious that this tensor-valued filter consists of odd order spherical harmonics.
Hence, the Riesz transform of the curvature tensor Te gives its corresponding odd rep-
resentation To. Combing the curvature tensor and its conjugate representation forms
the general signal model of local 2D image structures,

T (x) = Te(x) + To(x) (3.22)
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This signal model can also be regarded as the monogenic extension of the curvature
tensor. Hence, it is called the monogenic curvature tensor.

In fact, the monogenic curvature tensor is an element of M(2,R3) with monogenic
entries. This representation is much more powerful than the monogenic signal. There
for each pixel a real signal is extended to a Clifford valued signal. In our case, a Clifford
valued tensor representation is gained with quadrature relations in each element of the
tensor. There are different ways of evaluating the monogenic curvature tensor. One
way is to evaluate the quadrature relationship of the tensor pair (Te, To) separately, the
other way is to evaluate the quadrature relation of the elements of T = Te + To. We will
present in this paper the first way.

3.3 Local representations for i1D and i2D image structures

Analogous with the real valued differential geometry approach, in our Clifford valued
approach 2D image structures can be classified by computing the Gaussian curvature
and the mean curvature of the tensor pair Te and To, see also table 3.1. Since the non-
zero Gaussian curvature indicates the existence of i2D structure, the even and odd parts
of i2D structures are correspondingly obtained according to Eq. (3.13). The even part of
i2D structures reads

de = detR(Te)e3 = (Te11Te22 − Te12Te21)e3 (3.23)

= F−1

{[(
H0 + 〈H2〉0

2
F

)
∗

(
H0 − 〈H2〉0

2
F

)
−

(〈H2〉2
2

F

)
∗

(−〈H2〉2
2

F

)]
e3

}

= F−1

{[(
1 + cos(2α)

2
F

)
∗

(
1− cos(2α)

2
F

)
−

(
sin(2α)

2
F

)
∗

(− sin(2α)

2
F

)]
e3

}

= Ae3

where Teij , i, j = 1, 2 are the corresponding components of the curvature tensor Te.
Because detR(Te) is scalar valued, similar as the monogenic signal, the even part of i2D
structures is embedded as the e3 component in the 3D Euclidean space. The odd part of
i2D structures is given by

do = e1detR(To) = e1(To11To22 − To12To21) (3.24)

= F−1

{
e1

[(
H1(H0 + 〈H2〉0)

2
F

)
∗

(
H1(H0 − 〈H2〉0)

2
F

)
(3.25)

−
(

H1(〈H2〉2)
2

F

)
∗

(−H1(〈H2〉2)
2

F

)]}

= Be1 + Ce2

where Toij , i, j = 1, 2 are the corresponding components of the conjugate curvature ten-
sor To. Because detR(To) is spinor valued, i.e. detR(To) ∈ span{1, e12}, by multiplying
the e1 basis vector from the left, do takes a vector valued representation. A local rep-
resentation for i2D structures is obtained by combining the even and odd parts of i2D
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structures. This local representation for i2D structures is called the monogenic curva-
ture signal and it takes the following form

fi2D = de + do = Ae3 + Be1 + Ce2 (3.26)

The original signal f(x),x ∈ R2 is thus mapped to fi2D(x),x ∈ R3 as a local representa-
tion of i2D signals. The monogenic curvature signal can be considered as a monogenic
representation of the Gaussian curvature in real valued differential geometry.

The parabolic and planar surface patches, corresponding to i1D and i0D structures,
have zero Gaussian curvatures. In order to separate them with each other, the trace
of the tensor pair Te and To is computed. Non-zero trace illustrates the existence of
i1D structure. Therefore, the combination of traces of Te and To can be considered as
the local representation of i1D structures. According to the combination and certain
embedding, this representation is obtained as

fi1D = trace(Te) + trace(To)e2 = F−1 {trace(He ×τ F) + trace(Ho ×τ F)e2}
= F−1 {[trace(He) + (−e2)trace(Ho)]F} (3.27)

with

trace(He) + (−e2)trace(Ho) = 1 + (−e2)H1 = 1 + (−e2)(cos(α) + sin(α)e12)

= 1 + cos(α)(−e2) + sin(α)e1 = 1 + HR (3.28)

where HR refers to the Riesz kernel in the spectral domain, see Eq. (2.32). Plugging Eq.
(3.28) into Eq. (3.27), we will get the i1D structure representation as

fi1D = F−1 {[trace(He) + (−e2)trace(Ho)]F} (3.29)
= F−1 {(1 + HR)F} = f + hR ∗ f = f3(x)e3 + f1(x)e1 + f2(x)e2

where hR is the spatial representation of the Riesz kernel and f refers to the e3 valued
original signal. The obtained Eq. (3.29) is identical to Eq. (2.13), which indicates that the
local representation for i1D structures, obtained from the general signal model, is the
combination of the original signal and its Riesz transform. This means that the derived
i1D structure representation is just the monogenic signal as proposed in [14]. Hence,
the proposed signal model includes the monogenic signal as a special case, which is a
monogenic measure of the mean curvature. In addition to this, it constitutes also the
local representation for i2D structure. Therefore, the signal model is a general represen-
tation for 2D structures of any intrinsic dimension.



4. INTERPRETATION OF THE MONOGENIC
CURVATURE SIGNAL

Because the monogenic signal has been discussed in [14] in detail, we are more inter-
ested in the interpretation of the i2D structure representation, i.e. the monogenic curva-
ture signal.

4.1 Geometric model and feature extraction

In the light of the introduction in Section 2.1, local features of the monogenic curvature
signal can be defined using the logarithm of R+

3 . The spinor field which maps the e3

basis vector to the monogenic curvature signal fi2D is given by e3fi2D. According to Eq.
(2.15) and Eq. (2.16), the local amplitude A(x) and local phase representation Φ(x) are
obtained as

A(x) = |fi2D(x)| = exp(log(|e3fi2D(x)|)) = exp(〈log(e3fi2D(x))〉0) (4.1)

Φ(x) = arg(fi2D(x)) = 〈log(e3fi2D(x))〉2 =
〈e3fi2D(x)〉2
|〈e3fi2D(x)〉2|atan

( |〈e3fi2D(x)〉2|
〈e3fi2D(x)〉0

)
(4.2)

where arg(·) denotes the argument of the expression and atan(·) ∈ [0, π). As the bivector
part of the logarithm of the spinor field e3fi2D, this local phase representation describes
a rotation from the e3 axis by a phase angle ϕ in the oriented complex plane spanned
by fi2D and e3, i.e. fi2D ∧ e3. The orientation of this phase plane indicates the local
main orientation. Therefore, the local phase representation of the monogenic curvature
signal combines local phase and local orientation of i2D structures, just as in the case of
the monogenic signal for i1D structures. Since the local phase representation Φ(x) is a
bivector, its dual in R3 is a rotation vector that can be defined as

r(x) = (Φ(x))∗ = 〈log (e3fi2D(x))〉∗2 (4.3)

The rotation vector r is orthogonal to the local orientation. The length of the rotation
vector |r| indicates the phase angle ϕ of the i2D structure and its direction illustrates the
rotation axis. According to the proposed algebraic embedding, a geometric model for
the monogenic curvature signal can be visualized as shown in figure 4.1. The geometric
model is an ellipsoid, which looks very similar to that of the monogenic signal. How-
ever, each axis encodes totally different meaning. The even part of the i2D structure
is encoded within the e3 axis, and the odd part is encoded within the e1 and e2 axes.
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Be1

Ae3

Ce2r

fi2D

2θ

ϕ

Fig. 4.1: The geometric model for the monogenic curvature signal. Here, Ae3 indicates
the even information of the i2D structure, Be1 and Ce2 are the two components
of the odd part. The phase is represented by ϕ, 2θ denotes the main orientation
in terms of double angle representation, r indicates the rotation vector.

The angle ϕ represents the phase and 2θ is the main orientation in a double angle repre-
sentation form. The rotation vector r lies in the plane orthogonal to e3. Combining the
local amplitude and local phase representation, the monogenic curvature signal for i2D
structures can be reconstructed as

fi2D = |fi2D|exp (arg (fi2D)) (4.4)

Having a definition for the i2D local phase, we recognize that the local phase repre-
sentation contains additional geometric information, i.e. local orientation. Since local
amplitude, local phase and local orientation are orthogonal to each other, the mono-
genic curvature signal performs a split of identity.

From an alternative point of view, local amplitude, phase and orientation can also
be obtained according to the relationship of the even and odd components in spherical
coordinates. The local amplitude is computed as

|fi2D| =
√

A2 + B2 + C2 (4.5)

The local main orientation is given by

θ =
1

2
atan2(B,C) θ ∈ (−π

2
,
π

2
] (4.6)

where atan2(·) ∈ (−π, π]. And the local phase reads

ϕ = atan2 (sign(Be1 + Ce2)|Be1 + Ce2|, A) ϕ ∈ (−π, π] (4.7)

Fig. 4.2 illustrates bandpassed local features extracted from the monogenic curva-
ture signal. A synthetic image which consists of a superposition of an angular and a
radial modulation is used as the test image. The blobs in this test image are considered
as i2D structures. The energy output of the monogenic curvature signal, i.e. d2

e + d2
o,

can be regarded as i2D structure strength to detect points of interest. Besides, it also il-
lustrates the rotation invariance property of the monogenic curvature signal. The even
and odd outputs also indicate the existence of i2D structures. Local main orientation
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Fig. 4.2: Bandpassed local features. Top row: from left to right are the original image
and the energy output of the monogenic curvature signal. Middle row: even
and odd parts of the monogenic curvature signal. Bottom row: the estimated
main orientation and phase.
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Fig. 4.3: Top row: test image, the energy of the monogenic signal and its phase. Bottom
row: Energy and phase of the monogenic curvature signal.

Fig. 4.4: Top row: test image, the energy of the monogenic signal and its phase. Bottom
row: Energy and phase of the monogenic curvature signal.

of the monogenic curvature signal denotes the main orientation of the i2D structure.
Its minor orientation is simply perpendicular to the main orientation. Local phase con-
tains the structure information. At the positions where the main orientation and the
minor orientation wrap form zero to π, the estimated phase is inverted. This is called
the orientation-phase wrapping.

To show the difference between the monogenic signal and the monogenic curvature
signal, some experimental results are given in Fig. 4.3 and Fig. 4.4. Two patterns as
the line and edge like intersection are employed as test images. Local energy output
and phase information from the monogenic signal and the monogenic curvature signal
are extracted, respectively. These results indicate that the monogenic signal enables the
feature estimation of i1D signals, however, it delivers no information for the i2D part of
the original signal. The monogenic curvature signal is in contrast gives access to local
feature evaluation of i2D structures.
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4.2 Properties of the monogenic curvature signal

According to Eq. (3.23), in the spectral domain, the even part of the monogenic curva-
ture signal de can be interpreted as

F{de} = F{detR(Te)e3} = ((He11(α)HDOP (ρ; s)F) ∗ (He22(α)HDOP (ρ; s)F)

−(He12(α)HDOP (ρ; s)F) ∗ (He21(α)HDOP (ρ; s)F))e3 (4.8)

where Heij(α), i, j = 1, 2 are the corresponding components in the tensor-valued even
Hessian operator He. Only if Eq. (4.8) delivers a non-zero output, the existence of i2D
structures is indicated. For i0D and i1D structures, the result of Eq. (4.8) is zero. The
i1D signals in the frequency domain are straight lines through the origin, therefore, the
two dimensional convolutions in Eq. (4.8) can be reduced to 1D convolutions along the
properly oriented axis, indicated by the fixed angle α0. Then, Eq. (4.8) can be rewritten
as

F{de} = ([He11(α0)He22(α0)] [(HDOP (ρ; s)F) ∗ (HDOP (ρ; s)F)]−
[He12(α0)He21(α0)] [(HDOP (ρ; s)F) ∗ (HDOP (ρ; s)F)])e3 (4.9)

To ensure F{de} to be zero for an i1D signal, the condition should be

He11(α0)He22(α0) = He12(α0)He21(α0) (4.10)

Hence, Eq. (4.10) makes sure that the even part is selective to the i2D structures and
it was called the compensation equation in [41]. In the case of monogenic curvature
signal, for its even part, we have

He11(α0)He22(α0) = cos2(α0) sin2(α0) =
1

4
sin(2α0) (4.11)

He12(α0)He21(α0) =
1

2
sin(2α0)

1

2
sin(2α0) =

1

4
sin(2α0) (4.12)

Therefore, the compensation Eq. (4.10) is satisfied and can be rewritten as

cos2(α0) sin2(α0) =
1

2
sin(2α0)

1

2
sin(2α0) (4.13)

This equation decides that the even part of the monogenic curvature signal is selective
to the i2D structure and the i1D structure can be suppressed.

Analogously, the odd part of the monogenic curvature signal do in the Fourier do-
main reads

F{do} = F{e1detR(To)} = e1((Ho11(α)HDOP (ρ; s)F) ∗ (Ho22(α)HDOP (ρ; s)F)

−(Ho12(α)HDOP (ρ; s)F) ∗ (Ho21(α)HDOP (ρ; s)F)) (4.14)

In order to make sureF{do} is zero for an i1D signal, the compensation equation for the
odd part of the monogenic curvature signal with the following form should be satisfied

Ho11(α0)Ho22(α0) = Ho12(α0)Ho21(α0) (4.15)



4. Interpretation of the monogenic curvature signal 26

where Hoij, i, j = 1, 2 indicates the corresponding components in the tensor-valued odd
Hessian operator Ho. Hence, we are able to obtain

Ho11(α0)Ho22(α0) = cos(2α0)
[
cos2(α0) sin2(α0)

]
+ (4.16)

sin(2α0)
[
cos2(α0) sin2(α0)

]
e12

Ho12(α0)Ho21(α0) = cos(2α0)

[
1

2
sin(2α0)

1

2
sin(2α0)

]
+ (4.17)

sin(2α0)

[
1

2
sin(2α0)

1

2
sin(2α0)

]
e12

It is obvious that the compensation Eq. (4.15) is satisfied and the odd part of the mono-
genic curvature signal does only respond to i2D structures. Consequently, the mono-
genic curvature signal is regarded as local representation of i2D structures.

Since the odd part of the monogenic curvature signal has two components, the com-
pensation of the odd part can in accordance be split into two parts, that is

cos(2α0)[cos2(α0) sin2(α0)] = cos(2α0)[
1

2
sin(2α0)

1

2
sin(2α0)] (4.18)

sin(2α0)[cos2(α0) sin2(α0)]e12 = sin(2α0)[
1

2
sin(2α0)

1

2
sin(2α0)]e12 (4.19)

These two parts, which are derived from detR(To) = To11To22 − To12To21, determine the
two components of the odd part Be1 and Ce2, respectively. Comparing the compensa-
tion equations (4.13),(4.18) and (4.19), it is shown that the determinant of the conjugate
curvature tensor To is obtained from the curvature tensor Te by convolving it with the
second order spherical harmonic, that is

detR(To) = h2 ∗ detR(Te) (4.20)

Therefore, the odd part of the monogenic curvature signal do can be derived from the
even part de by employing the second order spherical harmonic operator, which means

fi2D = det(Te)e3 + e1det(To) = de + do = de + (e1h2e3) ∗ de = Ae3 + Be1 + Ce2 (4.21)

The angle between Be1 and Ce2 indicates the local main orientation in a double angle
representation just as in the case of the structure tensor [18, 21]. It is introduced in
Section 2.3 that the odd part of the monogenic signal is obtained from the even part by
employing the Riesz transform, which is basically equivalent to the first order spherical
harmonic. In case of the monogenic curvature signal, we have comparable relations
between the even and odd parts. Only the second order spherical harmonic occurs as a
new operator which is another generalization of the Hilbert transform. This enables us
to state that the Riesz transform is able to generalize the Hilbert transform with respect
to i1D signals and the derived generalized Hilbert transform (the second order spherical
harmonic) realizes the same with respect to i2D signals. This is valid for any dimension
of the signal. Furthermore, this gives rise to the conjecture that a third order spherical
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harmonic will be responsible for generalizing the Hilbert transform in the case of i3D
signals in the 3D case. Recently, several types of generalized Hilbert transforms have
been derived in [4, 3]. Indeed, the second order spherical harmonic belongs to one of
the considered types.

According to the Parseval theorem, the energy of the odd and even parts of the
monogenic curvature signal are related by

Eo = ((e1h2e3) ∗ de)
2 =

∫ ∫
|e1H2e3De|2dρdα (4.22)

=

∫ ∫
| cos(2α)e13 + sin(2α)e23|2|De|2dρdα

=

∫ ∫
(cos2(2α) + sin2(2α))|De|2dρdα = Ee

where De represents the Fourier transform of de. It can be shown that the energy of the
odd part equals that of the even part. Hence, the amplitudes of even and odd part are
equivalent, i.e. |de| = |do|.

As a good local representation for the i2D signal, it requires that the monogenic
curvature signal has the property of rotation invariance. To analyze this property, we
should start from Eq. (3.13). Hence, the Gaussian curvature of the Hessian matrix can
be rewritten as

K = fxxe3fyye3 − (−fxye123)(fxye123) (4.23)

=
1

4
[(fxxe3 + fyye3)

2 − ((fxxe3 − fyye3)
2 + (fxy)

2)]

=
1

4
[(∆f)2 − ε2]

where ∆f is the Laplacian of the signal and ε indicates the eccentricity. Because Eq.
(4.23) must be zero for the i0D and i1D signals, the compensation equation of it now
changes as

(cos2(α) + sin2(α))2 = cos2(2α) + sin2(2α) (4.24)

Since i0D and i1D structures are suppressed, what left is the i2D structure. Hence,
spherical harmonics which serve as the angular portions, decide the rotation invariance
of the i2D structure output. As stated in Section 2.1, the amplitude of the nth order
spherical harmonic is rotationally invariant. Thus, the filter response from a nth order
spherical harmonic has the property of rotation invariance. Therefore, the left and right
sides of Eq. (4.24) determine two isotropic operations. The Gaussian curvature of the
Hessian thus can be considered as the difference of two isotropic operation outputs,
which proves that the property of rotation invariance is fulfilled.

A similar analysis applies to the even part of the monogenic curvature signal, that is

de = (Te11Te22 − Te12Te21)e3 (4.25)

=
1

4

[
(Te11 + Te22)

2 − ((Te11 − Te22)
2 + Te12Te21))

]
e3
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The compensation for de now takes the same form as the compensation Eq. (4.24).
Therefore, de is rotationally invariant. According to equations (4.21) and (4.22), the odd
part is obtained by convolving the even part with the second order spherical harmonic
and the energy of them are equivalent, therefore, the amplitude of the odd part do is
also rotationally invariant.

Hence, we can conclude the properties of the monogenic curvature signal as follows

• It enables the simultaneous estimation of local amplitude, local main orientation
and local phase of i2D structures.

• It is rotationally invariant and no steering is needed.

• The odd part is transformed from the even part by the second order spherical
harmonic, i.e. do = (e1h2e3) ∗ de.

• The energy of the even part is equal to that of the odd part, i.e. d2
e = d2

o.

• Since the local amplitude and local phase representation are independent of each
other, the monogenic curvature signal fulfills the split of identity.



5. PARITY SYMMETRY ANALYSIS

5.1 Preliminaries

Parity symmetry, as an important local feature of qualitative signal analysis, is strongly
related to the local phase of the signal [39]. In image processing, parity symmetry is a
cue for the line-like or edge-like quality of a local image structure. Parity refers to the
invariance of a process with respect to a reflection operation. It is well known that any
real signal f : Rn → R at any location x ∈ Rn can be decomposed into an even and odd
part, i.e. f(x) = fe(x)+ fo(x) [21]. A real signal has even symmetry if f(−x) = f(x) and
odd symmetry if f(−x) = −f(x) for all x ∈ Rn.

In 1D, the local phase of a signal is defined as the angular part of its analytic signal.
If the local energy is zero, no phase analysis is available. Once the local energy exceeds
a certain threshold, the parity symmetry would then enable a local structure analysis.
The relation between the local structure and local phase is illustrated in Fig. 5.1. At
a signal position with locally even symmetry, only the real valued even part of the
quadrature filter matches. Thus, the phase is 0 for a peak like signal and π for a dip like
signal. A similar reflection reveals the odd case for edge like signals. Only the odd, and
thus the imaginary, filter component matches the signal. Therefore, the signal structure
has a phase of π

2
for decreasing slope and −π

2
for increasing slope. For i1D signals,

the monogenic phase also indicates the even and odd symmetry as line and edge like
structures in a rotation-invariant manner. The line-like structure is even symmetric with
respect to its orientation vector, hence, the odd output of the monogenic signal is zero.
The edge-like structure is pure odd symmetric with respect to its orientation vector,
therefore, no even output from the monogenic signal exists.

A phase concept of i2D signals has been investigated by Bülow and Sommer [6, 5].

−

π

2

π

2

0π ϕ

Fig. 5.1: The relation between the local signal structure and local phase in 1D case.
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Fig. 5.2: Four components of the quaternionic Gabor filter.

In this approach, a two-dimensional signal is split into even and odd parts along the
x-axis and along the y-axis, i.e. f = fee + foe + feo + foo. Here, fee denotes the part of f that
is even with respect to x and y, foe represents the part which is odd with respect to x and
even with respect to y and so on. These four symmetries are obtained by convolving
the signal with four components of a quaternionic Gabor filter which are shown in Fig.
5.2. Those four components have the even-even, odd-even, even-odd and odd-odd
symmetries with respect to the coordinates. The estimated phase information can, to
some extent, illustrate the intrinsic dimensionality of local structures. Unfortunately,
this approach has the drawback of being not rotation invariant.

5.2 Parity symmetry of the monogenic curvature signal

The monogenic curvature signal also enables the rotation invariant extraction of a phase
for i2D signals. The presented phase interpretation strongly depends on the way the
monogenic curvature tensor is analyzed. Here, we study only the relations between
its even and odd components. The parity symmetry involved in our case can be ana-
lyzed from the even and odd parts of the monogenic curvature signal, respectively. As
indicated in Section 3, the even part is computed as,

de = (Te11Te22 − Te12Te21)e3 = λ1λ2e3 (5.1)

According to [10], the eigenvalues λ1 and λ2 can be considered as a cos2-decomposition
of the local amplitude. Hence, these two eigenvalues can be obtained from two angular
windowing functions, which are oriented along the principal axes. This means that λ1

is obtained by convolving the signal with cos2(β−θ0) and λ2 is the output of convolving
the signal with cos2(β − (θ0 + π

2
)) = sin2(β − θ0). Here, θ0 refers to the local main orien-

tation. These two angular windowing functions are even with respect to the principal
axes oriented along θ0 and θ0 + π

2
, respectively, see Fig.3.1. Thus, de has the even-even

symmetry with respect to the principal axes.
The odd part of the monogenic curvature signal is computed as

do = e1(To11To22 − To12To21) = (e1h2e3) ∗ de = Be1 + Ce2 (5.2)

According to the analysis in Section 4.2, the two components of do are obtained from
the second order spherical harmonic transform. Therefore, the symmetry of the odd
part can be determined by the second order spherical harmonic. As visualized in Fig.
5.3, the two components of the second order spherical harmonic are odd-odd symmet-
ric with respect to e1, e2 axes and the diagonals of the plane e1 ∧ e2, respectively. These
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e
1

e
2

Fig. 5.3: Two orthogonal components of the second order spherical harmonic.

Fig. 5.4: Some i2D Structures: from left to right are the line-like intersection, edge-like
intersection and a mixture of them.

two components together decide the local main orientation. Thus, the principal axes are
oriented along the local main orientation and its perpendicular orientation. Therefore,
the odd part of the monogenic curvature signal, which is the vector sum of Be1 and
Ce1, has an odd-odd symmetry with respect to the principal axes. Hereby, we under-
stand that the parity symmetry for i2D structures, in the presented way of analyzing the
monogenic curvature tensor, is even-even and odd-odd symmetric with respect to the
principal axes. At those i2D neighborhoods, even and odd outputs of the monogenic
curvature signal are quite similar like the first and fourth components of the quater-
nionic analytic signal. But, in contrast to the quaternionic analytic signal, the parity
symmetry in the current case is related to the principal axes instead of the original x, y
coordinates and therefore the rotation invariance is preserved.

Unlike the i1D signals, i2D signals have more degrees of freedom. There is no gen-
eral way to completely specify the parity symmetry of an arbitrary i2D structure by
applying a pre-defined phase model. Because the odd part of the monogenic curvature
signal has only odd-odd symmetry with respect to the principal axes, the derived phase
information can only be used to classify some specific i2D structures, even though the
monogenic curvature signal is a general local representation for all i2D structures. It
can be assumed that a component wise evaluation of the monogenic curvature tensor
will result in a more detailed specification of the parity symmetry.

For any superimposed i2D signals, as shown in Fig. 5.4, there exist patterns such
as the line-like intersection, the edge-like intersection and a mixture of them. The lo-
cal neighborhood where two lines/edges intersect is considered as the i2D structure. It
corresponds to elliptic or hyperbolic region with positive or negative Gaussian curva-
ture, see also table 3.1. Therefore, for the i2D neighborhood where two lines intersect,
it belongs to the elliptic region which denotes local extrema. Hence, the even output of
the monogenic curvature signal is positive, i.e. de > 0. According to the introduction
in Section 5.1, line-like structure has no odd output. Thus, for the line-like intersection
structure, the odd output would vanish, i.e. do = 0. In this case, the estimated local
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4

Fig. 5.5: Local phase and corresponding i2D structures. The horizontal axis is the real
axis, the vertical axis indicates the imaginary axis.

phase has a value of zero
ϕ = atan2(do,de) = 0 (5.3)

Edge-like intersection structures are saddle points which correspond to hyperbolic
regions. Therefore, the monogenic curvature signal in such case has negative even out-
puts, i.e. de < 0. It is described in Section 5.1 that edge-like structures have odd out-
puts. Hence, due to the intersection of edges, the monogenic curvature signal has not
only even but also non-zero odd outputs. As mentioned in Section 4.2, the energy of the
even part is identical to that of the odd part. Thereby, the amplitude of the even output
equals that of the odd part, i.e. |de| = |do|. Hence, the absolute phase value |ϕ| reads

|ϕ| = atan2(|do|,de) =
3π

4
(5.4)

The sign of the phase depends on the direction of do, see Eq. (4.7).
The i2D structure which is the mixture of the line-like and edge-like intersection,

has also a positive even output since it corresponds to the local extrema. Due to the
edge-like intersection, its odd output is also non-zero. Therefore, the even part of the
monogenic curvature signal is positive, i.e. de > 0. And the odd part of it is also equiv-
alent to the even part, i.e. |de| = |do|. Thereby, for the mixture pattern, its local phase
absolute value is obtained as

|ϕ| = atan2(|do|,de) =
π

4
(5.5)

Its sign also relies on the direction of do.
Consequently, some specific structures can be classified on the basis of the newly

developed phase information. On the oriented complex plane, shown in Fig. 5.5, phase
values clearly denote what kind of structure it is. The local phase is able to distinguish
between line-like, edge-like intersection structures and the mixture pattern of them.

The two superimposed i1D signals are not necessarily to be perpendicular to each
other. This is a meaningful extension of the structure multivector model as proposed
in [10]. If the phase has a value of zero, the corresponding structure is indicating line-
like intersection. A phase absolute value of 3π

4
or π

4
implies that the corresponding local

structure is edge-like intersection or a mixture pattern.
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Fig. 5.6: Top row: two test images. Bottom row: corresponding phases of the two test
images.

Fig. 5.6 illustrates the evaluated phase information for two superimposed patterns
with flexible opening angles. In the case of very bright blobs, they can be regarded as
line-like intersections, hence, their phases take zero values. For those blobs which are
a bit darker than the bright blobs, they indicate edge-like intersections with phases of
3π
4

or −3π
4

. It can be assumed that an extensive analysis of the inner structure of the
monogenic curvature tensor will yield more degrees of freedom. Thus, more phase
angles will be obtained which can further help specifying i2D patterns.



6. MONOGENIC CURVATURE SCALE-SPACE

In Section 2.2, the way to embed a 2D signal into a 3D space has been introduced. So far,
we discussed only the case with z = 0 for our general model. The half space z > 0 for the
monogenic signal is the monogenic scale-space [15] which has already been investigated
in detail. Now, we will sketch in this section the monogenic curvature signal in the
half space z > 0. Similar as in the case of the monogenic signal, z works as a scale
parameter. By applying Poisson filtering to the monogenic curvature signal results in
a monogenic curvature scale-space which enables the multi-scale processing of local
structures. Since the monogenic curvature signal consists of even and odd parts, the
monogenic curvature scale-space can also be formed by the Poisson curvature scale-
space and the conjugate curvature scale-space as illustrated in Fig. 6.1.

Combining the Poisson kernel with 2D spherical harmonics forms damped spherical
harmonics which are basis functions to build the monogenic curvature scale-space. An
nth order damped spherical harmonic in the frequency domain is given by

Hn(ρ, α; s) = exp(nαe12)exp(−2πρs) (6.1)

where ρ, α indicates the spectral domain polar coordinates, s denotes the scale parame-
ter. When s equals zero, the first order damped spherical harmonic is basically identical
to the Riesz kernel. Let r, β be the polar coordinates in the spatial domain, the Poisson
scale-space de(r, β; s) can thus be obtained from the curvature tensor Te(r, β; s). This
curvature tensor results from a scale dependent tensor valued filter which in the Fourier
domain reads

He(ρ, α; s) =

[
H0(ρ, α; s) + 〈H2(ρ, α; s)〉0 −〈H2(ρ, α; s)〉2

〈H2(ρ, α; s)〉2 H0(ρ, α; s)− 〈H2(ρ, α; s)〉0

]
(6.2)

monogenic curvature scale-space

scale

f
s

i2D
(x; s) = de(x; s) + do(x; s)

Fig. 6.1: The monogenic curvature scale-space.



6. Monogenic curvature scale-space 35

By computing the Gaussian curvature of Te(r, β; s), the Poisson curvature scale-space is
obtained as

de(r, β; s) = detR(Te(r, β; s))e3 (6.3)
= (Te11(r, β; s)Te22(r, β; s)− Te12(r, β; s)Te21(r, β; s))e3

= A(r, β; s)e3

The monogenic extension of the curvature tensor in the scale-space results in its conju-
gate part, i.e. To(r, β; s). In this case, the conjugate part can be considered as the result
of applying the conjugate Poisson filtering to the curvature tensor

To(r, β; s) = h1(r, β; s) ∗τ Te(r, β; s) (6.4)

where h1(r, β; s) indicates the conjugate Poisson kernel in the spatial domain. As an
alternative, To(r, β; s) can also be obtained from a scale dependent tensor valued filter
Ho(ρ, α; s), that is

To(r, β; s) = F−1 {Ho(ρ, α; s)×τ F(ρ, α)} (6.5)
= F−1 {H1(ρ, α; s)×τ He(ρ, α; s)×τ F(ρ, α)}

Hence, the filter Ho(ρ, α; s) results from the conjugate Poisson filtering of the filter He(ρ, α; s),

Ho(ρ, α; s) = H1 ×τ (ρ, α; s)He(ρ, α; s) =

[
Ho11(ρ, α; s) Ho12(ρ, α; s)
Ho21(ρ, α; s) Ho22(ρ, α; s)

]
(6.6)

with
Ho11(ρ, α; s) = H1(ρ, α; s)(H0(ρ, α; s) + 〈H2(ρ, α; s)〉0) (6.7)

Ho12(ρ, α; s) = −Ho12(ρ, α; s) = H1(ρ, α; s)(−〈H2(ρ, α; s)〉2) (6.8)

Ho22(ρ, α; s) = H1(ρ, α; s)(H0(ρ, α; s)− 〈H2(ρ, α; s)〉0) (6.9)

Hence, the conjugate Poisson curvature scale-space can be written as

do(r, β; s) = e1detR(To(r, β; s)) (6.10)
= e1(To11(r, β; s)To22(r, β; s)− To12(r, β; s)To21(r, β; s))

= B(r, β; s)e1 + C(r, β; s)e2

Combining the Poisson curvature scale-space and the conjugate Poisson curvature scale-
space, the monogenic curvature scale-space can be obtained, which in terms of Carte-
sian coordinates is given as

f s
i2D(x; s) = de(x; s) + do(x; s) (6.11)

According to the analysis in Section 2.1, local amplitude and local phase representation
of the monogenic curvature scale-space are extracted as

A(x; s) = |f s
i2D(x; s)| = exp(log(|f s

i2D(x; s)|)) = exp(〈log(e3f
s
i2D(x; s))〉0) (6.12)
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Fig. 6.2: Top row: local energies extracted at three scales in the monogenic curvature
scale-space. Bottom row: local phases evaluated at three scales.

Φ(x; s) = arg (f s
i2D(x; s)) = 〈log (e3f

s
i2D(x; s))〉2 (6.13)

As the dual of the local phase representation, the local rotation vector is defined as

r(x; s) = arg (f s
i2D(x; s))∗ = 〈log (e3f

s
i2D(x; s))〉∗2 (6.14)

The length of the rotation vector r(x; s) indicates the angle of phase at a certain scale,
and it is also perpendicular to the local orientation. Fig. 6.2 illustrates local energies and
local phases extracted at three scales in the monogenic curvature scale-space. All the
extracted features are scale dependent, however, local amplitude, phase and orientation
are still independent of each other at each scale. Hence, the split of identity is still
preserved in the monogenic curvature scale-space. For the feature extraction of the
bandpassed version in the monogenic curvature scale-space, one may refer to Fig. 4.2.

Since the monogenic curvature signal is derived from the Gaussian curvature, the
scale-space representation of the monogenic curvature signal is sensitive to the curva-
ture of local structures at the chosen scale. A similar concept is the Gaussian curvature
scale-space [33], which is also suitable for recovering invariant geometric features of a
signal at multiple scales. However, it applies a Gaussian smoothing kernel instead of
a Poisson kernel and it has a totally different curvature definition. Hence, the unique
advantage of the monogenic curvature scale-space is the odd part being in quadrature
phase relation to the even part at each scale. Besides, local amplitude, phase and orien-
tation, which are unified with the scale concept, can be simultaneously estimated. These
advantages give access to a multi-scale phase-based processing in many computer vi-
sion tasks.



7. CONCLUSIONS

A general signal model for 2D image structures is proposed in this paper. In order to
obtain more degrees of freedoms for modeling, a 2D signal is embedded into a certain
geometric algebra of the Euclidean 3D space. Coupling methods of tensor algebra, dif-
ferential geometry, monogenic signal and quadrature filter, we are able to design a cur-
vature tensor and its monogenic extension. The monogenic extension of the curvature
tensor contains rich information for 2D structures as the generalization of the analytic
signal to 2D case. Therefore, it is regarded as the general model for 2D image structures.
Based on it, local representations for i1D and i2D structures are obtained as the mono-
genic signal and the monogenic curvature signal by computing the mean and Gaussian
curvatures of the general model. Hence, the monogenic signal for i1D structures can be
considered as a special case of the proposed general model.

From the monogenic curvature signal, three features can be extracted. They are the
local amplitude, local phase and local orientation. These features are independent of
each other, hence, the monogenic curvature signal performs a split of identity. The local
amplitude derived from that model represents the energetic information and it indicates
the existence of i2D structures. Structure information of i2D structures is contained in
the local phase, and some specific types of i2D structures can be classified by the local
phase. Local orientation denotes the main orientation and it illustrates the geometric in-
formation of i2D structures. Compared with other approaches for the i2D structure rep-
resentation, the monogenic curvature signal has remarkable advantage of simultaneous
estimation of local amplitude, local phase and local orientation in a rotation-invariant
manner.

A monogenic curvature scale-space is built by applying the Poisson kernel to the
monogenic curvature signal. The local amplitude, local phase and local orientation are
scale dependent, but they are still independent of each other at every scale. In contrast
to the Gaussian curvature scale-space, not only the energetic but also the structure and
geometric information can be extracted at the same time in a multi-scale way. This
advantage delivers access to various applications of the monogenic curvature signal in
computer vision tasks.
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.1 Eigenvalues of commutative hypercomplex matrices

Commutative hypercomplex algebras (HCA) are the hypercomplex algebras which
have similar construction rules as the Clifford algebra but with commutative multi-
plication rules.

In [9], Davenport proposed the four dimensional commutative hypercomplex alge-
bras (HCA4). It was shown that HCA4 are isomorphic to the two-fold tensor product
and the Cartesian product of the complex algebras C2. Later on, Felsberg et al. [11] ex-
tended the HCA to any 2n dimensionas and proved that the 2n-dimensional HCA are
isomorphic to C2n−1 . The four dimensional commutative hypercomplex algebras are
also isomorphic to the reduced biquaternions which are used for the signal processing
[37, 36].

A four dimensional commutative hypercomplex number is defined as

z = z1 + z2i + z3j + z4k = (z1 + z2i) + (z3 + z4i)j (.1)

where i, j, k are unit basis which obey the following rules,

ij = ji = k, jk = kj = i, ik = ki = −j, i2 = k2 = −1, j2 = 1 (.2)

In contrast to the definition in [9], only the square of j is chosen to be positive one,
which results in more simple computations.

According to the above rules, z can be reformulated as

z = {(z1 + z3) + i(z2 + z4)}
[
1 + j

2

]
+ {(z1 − z3) + i(z2 − z4)}

[
1− j

2

]
(.3)

= ξr1 + ηr2

with

ξ = (z1 + z3) + i(z2 + z4) (.4)
η = (z1 − z3) + i(z2 − z4) (.5)

r1 =
1 + j

2
(.6)

r2 =
1− j

2
(.7)

Correspondingly, a four dimensional commutative hypercomplex matrix MHCA4

can be represented as the linear composition of two complex matrices with the follow-
ing form

MHCA4 = Mξr1 + Mηr2 (.8)

For an n×n MHCA4 matrix, there are n eigenvalues of each of the corresponding complex
matrix. Hence, there are n2 eigenvalues for this MHCA4 matrix.

In the following, we restrict ourselves to the eigenvalues computation of a 2 × 2
matrix. Let λξ1, λξ2, λη1 and λη2 be the eigenvalues of complex matrices Mξ and Mη
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respectively, then the eigenvalues of the commutative hypercomplex matrix are given
by

λ1 = λξ1r1 + λη1r2 (.9)
λ2 = λξ1r1 + λη2r2

λ3 = λξ2r1 + λη1r2

λ4 = λξ2r1 + λη2r2

For example, given an 2× 2 MHCA4 matrix

MHCA4 =

[
1 i
j k

]
=

[
1 i
0 0

]
+

[
0 0
1 i

]
j =

[
1 i
1 i

]
r1 +

[
1 i
−1 −i

]
r2 = Mξr1 + Mηr2 (.10)

The eigenvalues of matrices Mξ and Mη are respectively obtained as follows

λξ1 = 0, λξ2 = 1 + i, λη1 = 0, λη2 = 1− i (.11)

Hence, according to Eq. (.9), the four eigenvalues of the commutative hypercomplex
matrix read

λ1 = 0 λ2 =
1− i

2
− 1− i

2
j λ3 =

1 + i

2
+

1 + i

2
j λ4 = 1 + k (.12)

.2 Eigenvalue computation of the Hessian matrix

According to the definition of the 4D commutative hypercomplex number, we can iden-
tify its unit basis i, j and k with the following basis elements in R3

i → e12 j → e3 k → e123 (.13)

The property of the unit basis based on the chosen elements can be checked as follows

i2 = (e12)
2 = k2 = (e123)

2 = −1 j2 = (e3)
2 = 1 (.14)

ij = e12e3 = ji = e3e12 = e123 = k

jk = e3e123 = kj = e123e3 = e12 = i

ik = e12e123 = ki = e123e12 = −e3 = −j

Hence, the Hessian matrix in the algebraically extended framework can be considered
as a commutative hypercomplex matrix, that is

HM =

[
fxxe3 −fxye123

fxye123 fyye3

]
=

[
fxxj −fxyk
fxyk fyyj

]
(.15)

The above equation can further be written as
[
fxxj −fxyk
fxyk fyyj

]
=

[
0 0
0 0

]
+

[
fxx −fxyi
fxyi fyy

]
j (.16)
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Two corresponding complex matrices Mξ and Mη are obtained as follows

Mξ =

[
fxx −fxyi
fxyi fyy

]
Mη =

[−fxx fxyi
−fxyi −fyy

]
(.17)

The eigenvalues of Mξ read
λξ1 = m λξ2 = n (.18)

These two eigenvalues are equivalent to those of the real valued Hessian matrix HR,
that is

H =

[
fxx fxy

fxy fyy

]
with detR(H) = mn (.19)

Accordingly, eigenvalues of Mη are given by

λη1 = −n λη2 = −m (.20)

Combining eigenvalues of the two matrices Mξ and Mη, the four eigenvalues of the
algebraically extended Hessian matrix are

λ1 =
m− n

2
+

m + n

2
j λ2 =

m−m

2
+

m + m

2
j = mj (.21)

λ3 =
n− n

2
+

n + n

2
j = nj λ4 =

n−m

2
+

n + m

2
j (.22)

Hence, the determinant of the Hessian in the extended algebraic framework reads

detM(HM) = [(fxxe3)(fyye3)− (−fxye123)(fxye123)]
2 =

[
fxxfyy − f 2

xy

]2

= λ1λ2λ3λ4 = (mn)2 = (detR(HM))2 (.23)

It can be concluded that the determinant computation of the Hessian in this framework
can be reduced to the determinant definition as the one in the vector algebra.

The corresponding trace of the Hessian equals half of the sum of eigenvalues

traceM(HM) = fxxe3 + fyye3 =
1

2
(λ1 + λ2 + λ3 + λ4) = (m + n)j = (m + n)e3 (.24)
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