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Abstract. In this paper, we present an approach for image reconstruc-
tion from local phase vectors in the monogenic scale space. The local
phase vector contains not only the local phase but also the local orienta-
tion of the original signal, which enables the simultaneous estimation of
the structural and geometric information. Consequently, the local phase
vector preserves a lot of important information of the original signal. Im-
age reconstruction from the local phase vectors can be easily and quickly
implemented in the monogenic scale space by a coarse to fine way. Exper-
imental results illustrate that an image can be accurately reconstructed
based on the local phase vector. In contrast to the reconstruction from
zero crossings, our approach is proved to be stable. Due to the local
orientation adaptivity of the local phase vector, the presented approach
gives a better result when compared with that of the Gabor phase based
reconstruction.

1 Introduction

In the past decades, signal reconstruction from partial information has been
an active area of research. Partial information such as zero crossing, Fourier
magnitude and localized phase are considered to represent important features of
the original signal. Therefore, we are able to reconstruct the original signal based
on only the partial information. The variety of results on signal reconstruction
has a major impact on the research fields like image processing, communication
and geophysics.

Reconstruction from zero crossings in the scale space is investigated by Hum-
mel [1]. He has demonstrated that reconstruction based on zero crossings is pos-
sible but can be unstable, unless gradient values along the zero crossings are
added. In [2], it is proved that many features of the original image are clearly
identifiable in the phase only image but not in the magnitude only image, and
reconstruction from Fourier phase is visually satisfying. However, the application
of this approach is rather limited in practice due to the computational complex-
ity. Behar et al. have stated in [3] that image reconstruction from localized phase
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only information is more efficient and faster than that from the global phase.
The reconstruction errors produced by this method can be very small. However,
compared with this approach, the way of image reconstruction presented in this
paper is more easier and faster.

In this paper, we present an approach of image reconstruction from the local
phase vector in the monogenic scale space. Image reconstruction is easy, fast,
accurate and stable when compared with the above mentioned approaches. In
[4], Felsberg and Sommer proposed the first rotationally invariant 2D analytical
signal. As one of its features, the monogenic phase vector preserves most of the
important information of the original signal. The local phase vector contains not
only the local phase but also the orientation information of the original signal,
which enables the evaluation of structure and geometric information at the same
time. The embedding of local phase and local orientation into monogenic scale
space improves the stability and robustness. However, in the Gaussian scale
space, there is no common filter set which could evaluate the local orientation and
local phase simultaneously. To show the advantage of our approach, we replace
the Gaussian kernel with the Gabor filter for phase evaluation, the reconstruction
results of these two approaches are compared in this paper.

2 The Monogenic Scale Space

The structure of the monogenic scale space [5] is illustrated in Fig.1. The Riesz
transform of an image yields the corresponding figure flow, a vector field rep-
resenting the Riesz transformed results. If we define u = (u1, u2)T and x =
(x1, x2)T , then the Riesz kernel in the frequency domain reads H(u) = −i u

|u|
and the convolution mask of the Riesz transform is given by h(x) = x

2π|x|3 . The
combination of the signal and its Riesz transformed result is defined as the mono-
genic signal. Let f(x) represent the input signal, the corresponding monogenic
signal thus takes the form: fM (x) = f(x) + (h ∗ f)(x). The monogenic signal is
a vector valued extension of the analytical signal, it is rotation invariant. The
monogenic scale space is built by the monogenic signals at all scales, it can al-
ternatively be regarded as the combination of the Poisson scale space and its
harmonic conjugate. The Poisson scale space and its harmonic conjugate form
the monogenic scale space, they are obtained as follows, respectively.

p(x; s) = (f ∗ P )(x) where P (x) =
s

2π(|x|2 + s2)3/2
(1)

q(x; s) = (f ∗Q)(x) where Q(x) =
x

2π(|x|2 + s2)3/2
(2)

In the above formulas, P and Q indicate the Poisson kernel and the conjugate
Poisson kernel, respectively. At scale zero, the conjugate Poisson kernel is exactly
the Riesz kernel. The Poisson scale space p(x; s) is obtained from the original
image by Poisson filtering, its harmonic conjugate is the conjugate Poisson scale
space q(x; s), which can be formed by the figure flows at all scales. The unique
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Fig. 1. The structure of the Monogenic Scale Space [5]

advantage of the monogenic scale space, compared with the Gaussian scale space,
is the figure flow being in quadrature phase relation to the image at each scale.
Therefore, the monogenic scale space is superior to the Gaussian scale space if
a quadrature relation concept is required.

3 Important Features of the Monogenic Scale Space

As an analytical scale space, the monogenic scale space provides very useable
signal features including local amplitude and local phase vector. The local phase
vector contains both the local phase and local orientation information, which
enables the simultaneous estimation of structural and geometric information.
The local amplitude represents the local intensity or dynamics, the local phase
indicates the local symmetry and the local orientation describes the direction of
highest signal variance. Let p(x; s) and q(x; s) represent the Poisson scale space
and its harmonic conjugate, the logarithm of the local amplitude, namely the
local attenuation in the monogenic scale space reads:

A(x; s) = log(
√
|q(x; s)|2 + (p(x; s))2) =

1
2

log(|q(x; s)|2 + (p(x; s))2) (3)

The local orientation and the local phase are best represented in a combined
form, namely, the local phase vector r(x; s). It is defined as the following form:

r(x; s) =
q(x; s)
|q(x; s)|

arctan(
|q(x; s)|
p(x; s)

) (4)

Whenever an explicit representation of phase or orientation is needed, the
local orientation can be extracted from r as the orientation of the latter, and
the local phase is obtained by projecting r onto the local orientation. The local
phase vector thus denotes a rotation by the phase angle around an axis perpen-
dicular to the local orientation. In the monogenic scale space, the local phase and
orientation information are scale dependent, which means the local phase and
orientation information can be correctly estimated at an arbitrary scale simul-
taneously. Unlike the monogenic scale space, there is no common filter set in the
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Gaussian scale space which enables the estimation of phase and orientation at
the same time. The evaluation of phase in that traditional framework is possible
when the Gaussian kernel is replaced by the Gabor filter, and by using Gaussian
derivatives, orientation can be evaluated. However, the Gabor filter and Gaus-
sian derivatives are not compatible in the Gaussian scale space, the phase and
orientation obtained from them are simply a collection of features, these two
features can not be evaluated simultaneously in the Gaussian framework.

4 Image Reconstruction in the Monogenic Scale Space

It is reported in [6] that the local attenuation and the phase response of a
minimum phase filter form a Hilbert pair. Under certain conditions, this could
also be generalized to 2D. For a 2D signal with an intrinsic dimension of one, if
the scale space representation has no zeros in the half space with s ≥ 0, then
the local attenuation and the local phase vector form a Riesz triplet [5]

r(x; s) ≈ (h ∗A)(x; s) (5)

where h refers to the Riesz kernel. In practice, images are in general not glob-
ally intrinsical 1D signal. However, they commonly have lots of intrinsically 1D
neighborhoods which makes the reconstruction from the local phase vector avail-
able. In most practical applications zeros occur in the positive half-space, but as
we can see from [5], the influence of the zeros can mostly be neglected. To re-
cover the amplitude information from only the phase vector information, we take
the inverse Riesz transform of the local phase vector. By definition, the Riesz
transform of the local phase vector is DC free. This means that the transformed
output has no DC component. Consequently, the DC-free local attenuation in
the scale space is approximated by the following form

A(x; s)−A(x; s) ≈ −(h ∗ r)(x; s) (6)

where A(x; s) indicates the DC component of the local attenuation that should
be calculated beforehand. Hence, the original image reconstruction based on the
local phase vector reads

f(x) = exp(A(x; 0))exp(−(h ∗ r)(x; 0))cos(|r(x; 0)|) + CDC (7)

where CDC denotes a further DC correction term corresponding to a gray value
shift. To reconstruct a real image, we use only the real part of the local phase
vector cos(|r(x; 0)|). The above introduction indicates that image reconstruction
from the local phase vector can be easily and quickly implemented, no iterative
procedure is needed.

To investigate the image reconstruction in the monogenic scale space, a scale
pyramid structure is employed. The differences of monogenic signals at adjacent
scales are first computed as the bandpass decomposition at different frequencies
in the monogenic scale space. The information of different bandpasses forms a
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Laplacian pyramid. Local phase vectors of the corresponding bandpass informa-
tion are considered as the partial information. Signals can thus be reconstructed
in the scale space by a coarse to fine way. Let g(s) denote the representation of
the image in the pyramid at scale s, then the one scale higher representation
reads g(s+1). By interpolation, g(s+1) is expanded as ĝ(s+1) = TIg

(s+1), where
TI refers to the operation of interpolation and ĝ(s+1) has the same size of g(s).
The difference of adjacent scales can then be computed as

l(s) = g(s) − ĝ(s+1) = g(s) − TIg
(s+1) (8)

where l(s) can be regarded as a bandpass decomposition of the original image.
Based on only the local phase vector of the intermediate representation, the
reconstruction at different scales can be implemented as follows

l̃(s) = exp(A(x; s))exp(−(h ∗ r)(x; s))cos(|r(x; s)|) + CDC (9)

where l̃(s) describes the reconstructed result at a certain scale. By means of a
coarse to fine approach, all the scale space images can be combined together
to make the final reconstruction of the original image. Starting from the most
coarse level, the recovery of one scale lower image takes the following form

g̃(s) = l̃(s) + TI g̃
(s+1) (10)

This is an iterative procedure. It will end until s goes to zero, hence, g̃(0) indicates
the final reconstruction.

5 Experimental Results

In this section, we present some experiments to check the performance of image
reconstruction based on the local phase vector in the monogenic scale space.
Three images used for the experiment are shown in Fig.2. Image reconstruction

Fig. 2. Test images, from left to right, are lena, bird, and circles (synthetic image)

in the monogenic scale space is illustrated in Fig.3. Although we use pyramid
structures for scale space reconstruction, the results shown in Fig.3 at different
scales are scaled to the same size as the original one. The top row shows the
original image and the corresponding absolute error multiplied by 8. Bottom
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row demonstrates the reconstructed results in the monogenic scale space. The
left image in the bottom row is the final result, which is reconstructed by a
coarse to fine way. The final reconstruction has a normalized mean square error
(NMSE) of 0.0018 when compared with the original one. This demonstrates that
image reconstruction can be implemented accurately from the local phase vector.

Fig. 3. Image reconstruction in the monogenic scale space. The original image and the
absolute error image multiplied by 8 are shown in the top row. Bottom row: right three
images demonstrate the intermediate reconstruction in the monogenic scale space, the
left image indicates the final result.

A successful reconstruction from partial information requires a stable output.
To investigate the performance of reconstruction from the local phase vector, we
conduct another experiment by adding noise to contaminate the input images
and checking the outputs. In this experiment, the bird image and the lena image
are used as the noise contaminated inputs, outcomes are shown in Fig.4. The
NMSEs increase when the signal noise ratio (SNR) is reduced. However, for
both cases, our approach results in limited reconstruction errors even the SNR
is set to zero. The results indicate that reconstruction based on the local phase
vector is a stable process, hence, the local phase vector can be regarded as stable
representation of the original signal. In contrast to this, reconstruction from only
zero crossings is proved to produce unstable results [1] unless the gradient data
along the zero crossings are combined for reconstruction.

There is no common filter set in the Gaussian framework to evaluate the
phase and orientation simultaneously. However, phase information can be esti-
mated when the Gaussian kernel is replaced by the Gabor filter. To show the
advantage of our approach, we compare the results of our method with that of
the Gabor phase based case. A certain orientation must be assigned to the Ga-
bor filter beforehand. In this case, the orientation is independent with the scale
space, local orientation estimation does not change when the scale is changed.
Superior to the Gabor phase, the monogenic phase vector enables the estima-
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Fig. 4. Normalized mean square error with respect to signal noise ratio

tion of structural and geometric information simultaneously at each scale space.
In the monogenic scale space, local phase vector and local attenuation form a
Riesz triplet, which means that the amplitude can be easily recovered from the
local phase vector simply by using inverse Riesz transform. Unfortunately, the
Gabor phase and the local amplitude do not have the property of orthogonal-
ity. Hereby, we have to employ an iterative algorithm to reconstruct the image
based on local Gabor phases. The iterative reconstruction procedure is similar to
the Gerchberg Saxton algorithm [7]. By alternatively imposing constrains in the
spatial and frequency domains, an image could be reconstructed in an iterative
way. The comparison results are illustrated in Fig.5, four channels with orienta-
tions of 00, 450, 900 and 1350 are considered, the corresponding normalized mean
square errors are 0.0812, 0.0833, 0.0815, 0.0836. It is obvious that Gabor phase
only preserves the information at the given orientation, however, the monogenic
phase results in an accurate and isotropic outcome with an NMSE of 0.0014.
Due to the rotation invariant property of the monogenic signal, signals can be
well reconstructed in the isotropic way.

6 Conclusions

In this paper, we have presented an approach to reconstruct an image in the
monogenic scale space based on the local phase vector. According to the esti-
mated local structural and geometric information, an image can be easily and
quickly reconstructed in the monogenic scale space by a coarse to fine way. Ex-
perimental results show that accurate reconstruction is available. In contrast to
the reconstruction from zero crossings, a stable reconstruction can be achieved
based on the local phase vector. Furthermore, the very nice property of local ori-
entation adaptivity can result in a much better reconstruction when compared
with that of the orientation selective Gabor phase.
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