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Abstract

This paper presents a novel approach towards two-dimensional (2D) image structures modeling. To obtain more degrees of freedom,
a 2D image signal is embedded into a certain geometric algebra. Coupling methods of differential geometry, tensor algebra, monogenic
signal and quadrature filter, a general model for 2D image structures can be obtained as the monogenic extension of a curvature tensor.
Based on this model, local representations for the intrinsically one-dimensional (i1D) and intrinsically two-dimensional (i2D) image
structures are derived as the monogenic signal and the generalized monogenic curvature signal. From the local representation, indepen-
dent features of local amplitude, phase and orientation are simultaneously extracted. Compared with the other related work, the remark-
able advantage of our approach lies in the rotationally invariant phase evaluation of 2D structures, which delivers access to phase-based

processing in many computer vision tasks.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Model-based image representation plays an important
role in many computer vision tasks such as object recogni-
tion, motion estimation, image retrieval, etc. Therefore,
signal modeling for local structures is of high significance
in image processing. There are bulk of researches for inten-
sity-based modeling, see [1-5]. However, those approaches
suffer from illumination variations. Therefore, that inten-
sively investigated area of research is not adequate to mod-
el local structures. On the other hand, phase information
carries most essential structure information of the original
signal [6]. It is invariant with respect to illumination chang-
es. Consequently, modeling of local structures should take
both the intensity and phase information into
consideration.
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In one-dimensional (1D) signal processing, the analytic
signal [7] is an important complex-valued model which
can be used for speech recognition, seismic data analysis,
airfoil design and so on. The polar representation of the
analytic signal yields the local amplitude and local phase,
which are measures of quantitative and qualitative infor-
mation of a signal, respectively. In 1D case, there exist four
types of structures. They are the peak, pit, decreasing slope
and increasing slope. The local amplitude is invariant with
respect to local structures and it indicates the energetic
information of the signal. The local phase allows to distin-
guish structures and it is invariant with respect to the local
amplitude. If the local structure varies, the local phase will
correspondingly change. Local amplitude and local phase
are independent of each other and they fulfill the properties
of invariance and equivariance. Invariance means that a
feature value is not changed by a certain group acting on
a signal. Opposite to invariance, equivariance means there
is a monotonic dependency of a feature value on the
parameter of the group action. If a set of features includes
only invariant and equivariant features, it thus has the
property of invariance—equivariance. In addition to satisfy-
ing the requirement of invariance and equivariance, if a set
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of features is at the same time a unique description of the
signal, it then performs a split of identity [8]. The split of
identity indicates that different features represent mutually
different properties of the signal and the whole set of fea-
tures describes completely the signal. Hence, the analytic
signal performs a split of identity.

In 2D images, there exist infinite many types of struc-
tures. These can be classified with different features such
as their intrinsic dimensions, the number and shape of
junctions, or the type of curvature in a differential geomet-
ric setting. According to their intrinsic dimensionality, 2D
images can locally belong to the intrinsically zero dimen-
sional (10D) signals which are constant signals, intrinsically
one dimensional (i1D) signals representing straight lines
and edges and intrinsically two-dimensional (i2D) signals
which do not belong to the above two cases. The i2D struc-
tures are composed of curved edges and lines, junctions,
corners and line ends, etc. Intrinsic dimensionality [9] is a
local property of a multidimensional signal, which express-
es the number of degrees of freedom necessary to describe
local structure. The term intrinsic dimension used in image
processing corresponds to the term codimension in mathe-
matics. In [9], a discrete concept of the intrinsic dimension-
ality has been proposed and it was later extended to a
continuous one by Kriiger and Felsberg [10]. The ilD
and 12D structures carry most of the important informa-
tion of the image, therefore, correct characterization of
them has great significance for many computer vision
applications.

Many approaches have been proposed for the signal
representation of local image structures. Tensors turn out
to be interesting data structures for image analysis. The
structure tensor [1] and the energy tensor [11] estimate
the main orientation and the energy of the i2D signal.
However, the split of identity is lost, because the phase is
neglected. In [3], a nonlinear image operator for the detec-
tion of locally 12D signals was proposed, but it captures no
information about the phase. There are lots of papers con-
cerned with applications of the analytic signal for image
analysis. But they have serious problems in transferring
that concept from 1D to 2D in a rotation-invariant way.
One of the most interesting proposals is the boundary ten-
sor [2]. Recently, it has been identified as a kind of quadra-
ture operator [12], which applies a tensor representation of
the Riesz transform as a generalization of the Hilbert trans-
form. The partial Hilbert transform and the total Hilbert
transform [13] provide some representations of the phase
in 2D. Unfortunately, they lack the property of rotation
invariance and are not adequate for detecting 12D features.
Biilow and Sommer [14] proposed the quaternionic analyt-
ic signal, which enables the evaluation of the i2D signal
phase, however, this approach also has the drawback of
being not rotationally invariant. For i1D signals, Felsberg
and Sommer [15] proposed the monogenic signal as a novel
model. It is a rotationally invariant generalization of the
analytic signal in 2D and higher dimensions. In that work,
the application of the Riesz transform has been proposed

as generalized Hilbert transform in image analysis. In
[16], the 3D monogenic signal has been used for image
sequence analysis. From the monogenic signal, the local
amplitude and a local phase representation can be simulta-
neously extracted. The monogenic signal delivers an
orthogonal decomposition of the original signal into ampli-
tude, phase and orientation. Thus, the monogenic signal
has the property of split of identity [15]. However, it cap-
tures no information of the i2D part. A 2D phase model
was proposed in [17], where the i2D signal is split into
two perpendicularly superposed 11D signals and the corre-
sponding two phases are evaluated. The operator derived
from that signal model takes advantage of spherical har-
monics up to order three. It delivers a new description of
12D structure by a so-called structure multivector. Unfor-
tunately, steering is needed and only i2D patterns superim-
posed by two perpendicular 11D signals can be correctly
handled.

Quite another approach of local signal analysis is based
on differential geometry of curves and surfaces [18,19]. The
main points of concern are some invariance properties of
signal analysis and regional symmetry with respect to cer-
tain combinations of Gaussian and mean curvatures of
local surface patterns in a Gaussian multi-scale framework
[20,21]. We will pick up the differential geometry model of
surfaces. But instead of a Gaussian blurring operator, we
will apply a Poisson blurring operator as a consequence
of the algebraic embedding we use.

Our purpose is to build a general model for all 2D struc-
tures without necessarily delivering all parameters for
describing the local structure. This model should contain
both the amplitude and phase information of 2D structures
in a rotation-invariant manner. In other words, the new
model should be an extension of the analytic signal to the
2D case. In this paper, we present a novel signal model
which covers 2D structures of all intrinsic dimensionalities.
By embedding our problem into a certain geometric alge-
bra, more degrees of freedom can be obtained to derive a
complete representation for the 2D structure. Based on
the differential geometry, we are able to design that general
model for 2D structures in a rotation-invariant manner by
coupling the methods of tensor algebra, monogenic signal
and quadrature filter. The proposed model can be consid-
ered as the monogenic extension of a curvature tensor.
From this model, a local signal representation for i1D
structures is obtained. It is exactly the monogenic signal
[15] as a special case of this general model. The local repre-
sentation for i2D structures, referred as the generalized
monogenic curvature signal, can also be derived based on
the proposed model.

From the generalized monogenic curvature signal, three
independent local features can be extracted. They are the
amplitude, phase and orientation just like in the case of
the monogenic signal. Hence, the generalized monogenic
curvature signal also performs the split of identity, i.e.,
the invariance—equivariance property of signal decomposi-
tion. The energy output (square of the amplitude) can be
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regarded as a junction strength for detecting the points of
interest. The estimated orientation represents the local
main orientation of the structure and the phase feature
can be used to classify some specific i2D structures. Com-
pared with the related research work, our main contribu-
tion is the derivation of a general signal model for 2D
structures, which enables us to simultaneously extract local
features in a single framework. The remarkable advantage
lies in the possibility of evaluating the 2D structure phase
information in a rotation-invariant manner, which gives
access to many phase-based processing in computer vision
tasks.

2. Mathematical preliminaries

The way we intend to design a general model for 2D
structures is a generalization of the analytic signal. It can-
not be realized in the domain of complex numbers. Instead,
a more powerful algebraic system should be taken into con-
sideration. Geometric algebra constitutes a rich family of
algebras as the generalization of vector algebra [22]. Com-
pared with the classical framework of vector algebra, the
geometric algebra makes available a tremendous extension
of modeling capabilities. By embedding our problem into a
certain geometric algebra, more degrees of freedom can be
obtained, which makes it possible to extract multiple fea-
tures of 2D structure. For the problem we are concerned,
the 2D signal will be algebraically embedded into the
Euclidean 3D space R*. Therefore, in this section, we give
a brief introduction to the geometric algebra over 3D
Euclidean space (R;). For the detail information, please
refer to [23-25].

2.1. Geometric algebra of 3D Euclidean space R’

The Euclidean space R® is spanned by the orthonor-
mal basis vectors {ej,ep,e;}. The geometric algebra of
the 3D Euclidean space (R;) consists of 2° =8 basis
elements,

R; = span{l,e;,e;, es, e, €3, €2, €123 = [3}. (1)

Here e»3, e3; and e, are the unit bivectors and the element
€123 1S a unit trivector or unit pseudoscalar. A general com-
bination of these elements is called a multivector, e.g.
M:a+be1 +ce2+de3+ee23 +fe31 +ge12+h13. The
basic product of the geometric algebra is the geometric
product. The geometric product of two multivectors M,
and M, is indicated by the juxtaposition of M; and M>,
i.e. M M,. The multiplication results of the basis elements
are shown in Table 1.

The geometric product of two vectors x = xje; + xe,
and y = yje; + y,e> can be decomposed into their inner
product (-) and outer product (A),

Xy =X-y+XAY, (2)

where the inner product of X and y is Xy = x1y1 + xo0»
and the outer product is X Ay = (X112 — X2)1)€12.

Table 1
The geometric product of basis elements of R;

1 € € €3 €23 €3] €12 I3
1 1 € € €3 €23 €31 €12 I3
e e 1 ey —e3 L —e () €3
€ € —€12 1 €23 €3 I3 —€ €31
3 e3 e —ex 1 —€ e I e
€23 €23 I3 —€3 € -1 —€12 €31  —€
e3) €3 e3 L —e e —1 —e3 —€
ez e —€ € I —ey epn —1 —e3
I3 I €3 €3] er —e —e —e -1

Due to the orthogonality of basis vectors, their outer
product is equivalent to their geometric product.

e Ney =ee; = e, (3)
e /\e; = ee; = e, (4)
e; \e = eze; = e3. (5)

The k-grade part of a multivector is obtained from the
grade operator (M),. A blade of grade k, i.e. a k-blade
By, is the outer product (A) of k independent vectors
Xi,. .., X € R,

Bk:XI/\"‘/\Xk:<X1"'Xk>k. (6)

Hence, (M), is the scalar part of M, (M), represents the
vector part, (M), indicates the bivector part and (M); is
the trivector part, which commutes with every element of
R;. The dual of a multivector M is defined to be the prod-
uct of M with the inverse of the unit pseudoscalar I,

M*=MI;" = —MI;. (7

The modulus of a multivector is

M| =

obtained by

\/ (M AZ ),» Where M is the reverse of a multivector

defined as M = (M), + (M), — (M), — (M),. The main
automorphism of R; is the grade involution
M = (M), — (M), + (M), = (M), (8)

Combining the grade involution and reversion will yield
the conjugation

A—/[:M:<M>o_<M>1_<M>2+<M>3- )
A versor is any multivector that can be expressed as the
geometric product of invertible vectors, for example,

U:Xk"'XQXl, (10)

where the choice of vectors is not unique, but there is a
minimal number k < n with n denoting the dimension of
the vector space. The parity of U is even (odd) for even
(odd) k. An even versor R is called a spinor if

RR = |RF, (11)

where R indicates the reversion of the even versor R. In the
case of |R|*> = 1, the spinor is called a rotor.
In R;, an even grade multivector is called a spinor,

S=a+eey + fey +gen with SS = [S[. (12)
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All spinors form a proper subalgebra of Rj, that is the
even subalgebra R;. A spinor represents a scaling-rotation,
i.e. S =rexp(0B), where B is a bivector indicating the rota-
tion plane, 6 is the rotation angle within that plane and r
refers to the scaling factor. There exist isomorphisms
between the algebra of complex numbers and the subalge-
bras of R3, which are generated by {1, I3} or {1, ‘B‘} with £ 8
being a normalized bivector.

It is shown in Table 1 that squares of the unit bivectors
or the unit trivector equal —1. Therefore, the imaginary
unit 1 of the complex numbers can be substituted by a unit
bivector or a wunit trivector, yielding an algebra
isomorphism.

2.2. Geometric embedding of the signal

The scalar-valued real 2D image signal f{x,y) will be
embedded into R; as a real-valued vector field, i.e.
fix,y)es = f(x) = f(xe, + ye, + ze3), x € R* and z=0. For
the 3D signal, it can be embedded into the geometric alge-
bra of the Euclidean 4D space (R4) as a vector-valued sig-
nal for modeling, see also [26,16]. In this paper, we will
restrict ourselves to the 2D signal modeling.

Rotating the 2D signal f out of the e; axis results in a
representation f,, which contains additional non-real com-
ponents. Hence, f,; takes the following form

fu(x) = filx)er + fa(x)ex + f3(x)es. (13)

This representation of a 2D signal is called a monogenic
signal [15], as the rotationally invariant generalization of
the analytic signal. The vector-valued signal f;; in R; can
be considered as the impulse response of a spinor S acting
on the e; basis vector, i.e. fj, = e3S. The transformation
performed under the action of the spinor delivers access
to both the amplitude and phase information of the vec-
tor-valued signal f;, [26]. To make this clear, we will con-
sider the spinor more in depth. The spinor can be
represented in polar coordinates as an exponential form.
Therefore, from the logarithm of the spinor, two parts
can be obtained. They are the scaling which corresponds
to the local amplitude and the rotation which corresponds
to the local phase representation. The Rz-logarithm of a
spinor S € Ry takes the following form

log($) = (log(8)}o + (log(S)),
B )y (18]
= log(ISh + 1y, atan( ) ) (14)

where atan is the arc tangent mapping for the interval
[0,m). The scalar part (log(S))o =1log(|S|) illustrates the
attenuation [27] as the logarithm of the local amplitude.
Hence, the local amplitude is obtained as the exponential
of it,

IS| = exp(log|S|) = exp((log(S)),)- (15)

The bivector part of log(S) indicates the local phase
representation

(log(S)), = <S>i|atan<|<s>2|>. (16)

1(S) {S)o

The algebraically embedded Fourier transform of a 2D sig-
nal f(x), see [17], is defined as

=)L

Its corresponding inverse Fourier transform takes the fol-
lowing form

el ]

Hence, given a signal f(x) =fi(x)e; + f2(x)es + f3(X)es, its
Fourier domain representation reads

F(u) = 7{fi(x)e1 + f2(x)es + f3(x)es}
:Fl(u)el +F2(H)€2+F3(U)€3, (19)

arg(8) =

X) exp(—/327x - u) dx dy. (17)

u) exp(/32nx - u) du do. (18)

where F indicates the Fourier transform and Fj (k = 1,2,3)
is the Fourier transform of f;. For a spinor-valued function
h = hy + hyzers + hze3; + hyseq,, its spectral domain repre-
sentation is given by

H(u) = Ho(u) + Hys(u)ex + Hz(u)es + Hip(a)ery,  (20)
where Ho(u) = F{ho}, Hy3(u) = F{hy} and so on.

2.3. Basis functions

In order to analyze 2D patterns, we choose 2D spherical
harmonics as basis functions according to the proposal in
[17]. Actually, spherical harmonic is a general term which
denotes the harmonic oscillations on the unit sphere of a
multidimensional Euclidean space. However, in this paper,
only the spherical harmonics of 2D space are employed,
they are also called circular harmonics. Due to the theory
of Fourier series, one can approximate any plane angular
function (in L, sense) by using the 2D spherical harmonics.
Since the angular behavior of a signal can be regarded as
band limited, only spherical harmonics of order zero to
three are applied. Otherwise, aliasing would occur on a dis-
crete grid around a location x. To build the signal model,
we are more concerned of the angular portions. Therefore,
we use the polar representation of spherical harmonics
instead of the Cartesian form applied in [17].

In the frequency domain, a nth order spherical harmonic
H,, takes the following form:

H,(p,2) = H,(p)H,(x) = exp(ncer,)

= cos(na) + sin(no)e,, (21)

where p and o denote the polar coordinates in the Fourier
domain and n refers to the order of the spherical harmonic.
It is obvious that the radial part of the spherical harmonic
equals one, i.e. H,(p) = 1. Every spherical harmonic con-
sists of two orthogonal components and the first-order
spherical harmonic is basically identical to the Riesz kernel
[15] which is well known in Clifford analysis as the multidi-
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mensional generalization of the Hilbert kernel. Since H,, is
separable into radial variation and angular variation, and
its angular variation is harmonic, according to the theorem
in [28] (page 262), its angular variation is preserved in the
spatial domain while the radial function is the Hankel
transform of the radial variation in the frequency domain.
Therefore, the spatial domain representation of a nth order
spherical harmonic 7, reads

hn(r7 .B) = 0(13)nhn(r)hn(ﬁ)
= c(I3)"h,(r)[cos(nf) + sin(nf)es,], (22)

where ¢ indicates a constant, /3 is the unit pseudoscalar, r
and f are the polar coordinates in the spatial domain
and /,(r) represents the radial part which is obtained by
the nth order Hankel transform of H,(p).

In practice, 2D spherical harmonics are normally con-
sidered only as angular parts which should be combined
with radial bandpass filters. In this paper, the difference
of Poisson (DOP) kernel [17] is employed as the radial
bandpass filter, see also the next section. As a result, local
signal analysis can be realized in a multi-scale approach in
the monogenic scale-space [27]. The DOP is an isotropic
bandpass filter which in spectral domain takes the form

Hpop(p;s) = exp(—2mps1) — exp(—2mps), (23)

where s; and s, represent the fine and coarse scales param-
eters, respectively. Therefore, a nth order bandpass bound-
ed spherical harmonic reads

H,(p,o;5) = Hpop(p; s)H(20). (24)

Hence, H,(p,o;s) is separable into radial variation
Hpop(p;s) and angular variation H,(«). Since the angular
portion is harmonic, according to the theorem stated in
[28], H,(p,;s) is separable both in the spatial and spectral
domains. Thereby, we are able to obtain the spatial repre-
sentation of the bandpass bounded spherical harmonic as
follows

FYUH,(p,2;5)} = c¢(I3)"h,(r;5)(cos(np) + sin(nf)ey,),
(25)

where F~! indicates the inverse Fourier transform. The
angular variation is preserved and the radial function
h,(r;s) is the Hankel transform of Hpop(p;s). Combined
with the DOP bandpass filters, spherical harmonics of
order 1-3 in the spatial domain are illustrated in
Fig. 1, where the fine scale is one and the coarse scale
takes two.

It is obvious that the amplitude of the spherical harmonic
equals always one, that is

12()] = \/ (cos(n))? + (sin(n20))? = 1. (26)

If the coordinate system rotates with the angle 0,, spher-
ical harmonics will rotate accordingly as

H' (a) = (cos(nby) cos(na) + sin(nby) sin(na))
+ (—sin(nby) cos(na) + cos(nly) sin(na))er,.  (27)
The amplitude of the rotated spherical harmonic is
\H? ()| = [(cos(nly) cos(na) + sin(n0y) sin(na))
+ (— sin(nby) cos(ner) + cos(nby) sin(na))’]

l—

= 1.
(28)

This results from the fact that no matter which angle the
spherical harmonic rotates, its amplitude is always one.
Hence, the amplitude of any spherical harmonic is indepen-
dent of the angular argument. Therefore, using spherical
harmonics as basis functions gives access to a rotationally
invariant signal representation.

2.4. Monogenic signal and monogenic scale-space

In Section 2.2, we have briefly discussed the signal
embedding. In that case, a 2D image signal is embedded
into 3D FEuclidean space as a vector field
f(x) = f(xe; + ye, + ze;3) with z = 0. The monogenic signal
fys [15] is thus obtained by rotating the signal f out of the
e3 basis vector. This signal representation consists of three
components according to Eq. (13). There, f3(x)es indicates
the real component which is identical to the original signal
f(x), fi(x)e; and f5(x)e, are two non-real components that
can be obtained from the Riesz transform of the original
signal.

Let x = xe; + ye, and u=ue; + ve, be the Cartesian
coordinates of the spatial domain and the Fourier domain,
respectively. The convolution mask of the Riesz transform
is given by

Xes

x Y
hp(x) = — ey + ey =—"— 29
x(%) 2m|x|’ . 2m)x|? » 2m|x|’ (29)
and its frequency domain representation reads
u
Hg(u) = mlz‘l. (30)

Fig. 1. From left to right are spherical harmonic bandpasses of order 1 to 3 in the spatial domain. Every spherical harmonic consists of two orthogonal

components. White indicates positive one and black represents negative one.
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In terms of polar coordinates, the spatial and spectral
domain representations of the Riesz kernel take the follow-
ing forms:

he(r, ) = I (—cos(f)e3; + sin(f)er), (31)

Hg(p,a) = —cos(a)e, + sin(a)e;. (32)

The Riesz kernel consists of two bivector-valued compo-
nents and it is basically identical to the first-order spherical
harmonic. Combining the signal and its Riesz transformed
result yields the monogenic signal

f1,(x) = £(x) + (hg % £)(x). (33)

The real part f(x) is also called the even component of the
monogenic signal. The odd component of the monogenic
signal is defined as (/1z*f)(x), which is in quadrature phase
relation to the even part.

In the light of the discussion in Section 2.2, f,,(x) can be
regarded as the impulse response of a spinor S acting on
the e; basis vector. Therefore, the logarithm of this spinor
gives access to both the amplitude and phase information
of the original signal. The spinor field which maps the e;
basis vector to the vector-valued signal fj,(x) is esfy(x).
Hence, according to Egs. (15) and (16), the local amplitude
and local phase representation of the monogenic signal are
obtained as follows:

Au(x) = [fu(x)| = exp(log |esfy (x)[)

_ exp({log(efy(x)))o), (34)
Py (%) = (log(esf(x))),

b))y (esfu()]

= Teatu () atan( (et () ) (39)

It is also possible to extend the monogenic signal to higher
dimensions, see [26,16]. Hence, the monogenic signal can
be regarded as a generalization of the analytic signal in
2D and higher dimensions. The monogenic signal is a novel
model for i1D signals, however, it delivers no information
about the i2D parts of the 2D image.

Up to now, we only considered the 2D image signal
f(x) = f(xe; + ye, + ze3) with z=0. If we investigate the
case for the half space z >0, this signal will become a
smoothed version of the original signal (z =0). Hence, z
is regarded as a scale parameter. Applying a Poisson kernel
to the original signal results in a smoothed signal which, for
all scale parameters s, results in a Poisson scale-space [27],

p(x;s) = (Fx hp)(x), (36)

where s denotes the scale parameter, p(x;s) is the Poisson
scale-space and /ip indicates the scalar-valued Poisson ker-
nel defined as

hp(x) = 2m(lx + se)’ (37)

and
F{hp(x)} = exp(—2m|u]s). (38)

The harmonic conjugate of the Poisson scale-space reads
q(x;8) = (fxhg)(x), (39)

where hy denotes the bivector-valued conjugate Poisson
kernel which takes the following forms

ho(x) = hoi(x) + hoa(x)

_ X€s31 JYeas _ Xes
2n(|x + ses)’  2m(|x +ses])’  2m(|x + ses))’
(40)
and
u
Flho(x)} = 2 "exp(—2nfuls). (41)

Fig. 2 illustrates the Poisson kernel and its harmonic
conjugates. Combining the Poisson scale-space with its
harmonic conjugates yields the monogenic scale-space
[27], which can be visualized as shown in Fig. 3. When
the scale parameter is set to zero, the monogenic signal is
obtained. From an alternative point of view, the monogen-
ic scale-space can also be built by the monogenic signals at
all scales, where the monogenic signals are formed by the
smoothed image signals and their Riesz transformed
results, i.e. the figure flows. In the monogenic scale-space,
the figure flow and the smoothed signal are in quadrature
phase relation at each scale. As in the case of the well-
known difference of Gaussian (DOG) bandpass filter, it is
also possible to build up two bandpass filters in the present-
ed framework. They are the difference of Poisson (DOP) fil-
ter and the difference of conjugate Poisson (DOCP) filter.
Since the DOCP consists of two components, DOP and
DOCP together form a Riesz triplet [17].

In the monogenic scale-space, expressions for the local
amplitude A4 ,,(x;s) and local phase ®(x;s) have to be gener-
alized accordingly as

Au(x;s) = \/p(xis) + la(x; )P, (42)
Dy (x58) = ;Ei’g arctan ('28’ gl) (43)

The monogenic scale-space is an interesting alternative to
the Gaussian scale-space. The unique advantage of the
monogenic scale-space, compared with that of the Gauss-
ian scale-space, is the figure flow being in quadrature phase
relation to the image at each scale. Therefore, the mono-
genic scale-space is superior to the Gaussian scale-space
if a quadrature relation concept is required [27].

3. Signal modeling for two-dimensional image structures

So far, we understood that the monogenic signal is
derived from the monogenic extension of a scalar field.
However, it is restricted to model only 11D signals because
only a minimum of information, i.e. the scalar value f{x), is
taken into consideration. If 2D images are interpreted as
surfaces in R®, the first and second-order fundamental the-
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Fig. 2. From left to right: the Poisson kernel (/1p) and the two components of the conjugate Poisson kernel (%1, and /). Note that the two components of

the conjugate Poisson kernel constitute one single isotropic operator.

TAonogenic sca]e-.sPHCE

MOonogenic signal

flow

Fig. 3. The structure of the monogenic scale-space [27].

orems of differential geometry would deliver the most gen-
eral local signal model in the classic framework. We will
associate a curvature tensor instead of a scalar value to a
location of interest. This results in a useful signal model
for 2D image structures. For the moment we neglect the
metric tensor. Hence, our operators for local signal analysis
will be rotation invariant.

The proposed model can be regarded as the monogenic
extension of the curvature tensor. Motivated from the dif-
ferential geometry, this curvature tensor can be construct-
ed. Therefore, a brief introduction to the differential
geometry is given.

3.1. Basic concepts of differential geometry

Differential geometry [29] is a well-known methodology
in the disciplines like physics, mechanical engineering and
topography. Classical differential geometry deals with the
mathematical description of curves and surfaces. In image
processing field, Koenderink and van Doorn [18,19] have
introduced methods from differential geometry to analyze
the local properties of signals. In such case, two-dimension-
al intensity data can be represented as surfaces in 3D
Euclidean space. Such surfaces in geometrical terms can
be written as Monge patches of the form

X + f(x) = xe; +ye, + f(x,v)es. (44)

This notation of a surface is the most simple one for con-
siderations in the framework of differential geometry be-
cause it enables to express the mentioned tensors with
entries built from first and second differentials of the image
functions. In the following, we will introduce basic con-
cepts of differential geometry and the general 2D signal
model in an algebraic framework with more powerful geo-
metric meanings than R;. Because we are interested in a
tensor representation of the image signal, our model will
thus be represented in the matrix geometric algebra

M(2,R;) which results from the tensor product R; x Rj.
The matrix geometric algebra M (2, R3), see [30], is the geo-
metric algebra of 2 x 2 matrices with entities in R3. For
example, a general element p in this matrix geometric alge-
bra can be written as

[0

where p € M(2,R;) and a, b, ¢, d € R;. Addition and mul-
tiplication of matrices in M (2, R;) is the usual matrix addi-
tion and multiplication. The trace of this representation is

b
tracey (p) = tracey, [a d] =a+d (46)
C

and the corresponding determinant reads

b o _ _
dety,(p) = dety, [a d} = aadd + bbcc — (abdc + ¢dba),
c

(47)

where @, b, ¢ and d are the conjugations of a, b, ¢ and d,
respectively, see Eq. (9).

The primary first-order differential quantity for an
image, represented by the vector field f, is the gradient
defined as

Vf:e1

0 0
af(XJ)ea +e af(ny/)ea = fiei3 + fren.  (48)

For the second-order geometry, the matrix of second
derivatives or Hessian H,, is given by

o & 0 9
@f @f _[elafxela eza—yfxew]

Hy = 2 2
2 8
%f a%f e = fien € aj,fyen
€3 —Ju€i23
_ [ Sues S ] (49)
Joeis  fies

The Hessian matrix is related to the curvature tensor,
which describes the local deviation of the signal f from
the tangent plane of the surface.

According to the derivative theorem of Fourier theory
[31,32], in the spectral domain, the second derivative of f
with respect to the x axis is given by

1 4 cos(2a) F,
2
(50)

f{fxxe3} = —47'[2p2 COSZ(OC)F = —4n2p2
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where F denotes the Fourier transform of the original sig-
nal f = f{x,y)es. Analogously, the other second-order deriv-
atives are obtained as

F{fnein} = —4n’p* cos(«) sin(x)e;, F

_ a4 sin(2a)

e12F, (51)
1 — cos(2x)
2

Hence, in the spectral domain, the Hessian matrix
reads

F{fyes} = —4n?p?sin*()F = —dn’p? F. (52)

—47T2p2 l+cozs(2:<) F

(_41_[2'02 sin(220<) F)e12

(47'C2p2 sin(22:x) F)612

F{H,) =
{ M} —4T52p2 l—cozs(Zoc) F

(53)

According to Eq. (47), the determinant of the Hessian in
this algebraic framework is obtained as

dety (H ) = [(fuves)(fye3) — (—fiy€ins)(fovens)]’
= [fucl — 2] (54)

This determinant is identical to the square of the classic
Hessian determinant in the vector algebra. In general,
the determinant computation of the algebra M(2,R;)
can not be reduced to the original definition in the vec-
tor algebra. However, in the current case, due to the
particular basis elements, the original definition of the
determinant can still be used, see Appendix A for de-
tails. Hence, the determinant of the Hessian is reformu-
lated as

detr(Hu) = (fue3)(frp€3) — (—fiveins) (foeins)
:fxxfyy - ,é) = }“1}~27 (55)

where 1, and 7, are two eigenvalues of the real-valued Hes-
sian matrix, which represent the principal curvatures. Thus,
the Gaussian curvature K can be defined as

K = detR(HM) or K2 = detM(HM) (56)

The mean curvature M, obtained from the trace of the
algebraically embedded Hessian matrix, takes the following
form

M = %traceM(HM) = %(ﬂrxe3 —|—fwe3) = %(/L] + /lz)e3. (57)

Hence, both the Gaussian curvature and the mean curva-
ture give rise to a rotation-invariant local analysis of sec-
ond-order features. Combining the Gaussian curvature
and mean curvature, a complete classification of the local
structure into the types i2D (elliptic and hyperbolic re-
gions), 11D (parabolic region) and i0D (planar region) in
principle can be done, see Table 2.

3.2. Monogenic extension of the curvature tensor

In order to build a general model for 2D structures
with phase information contained, we follow the ideas

Table 2
Surface type classification based on Gaussian curvature and mean
curvature

Surface type M (Mean curvature) K (Gaussian curvature)

Elliptic (i2D) K>0
Hyperbolic (i2D) K<0
Parabolic (i1D) |M|#0 K=0
Planar (i0D) (M| =0 K=0

of deriving the analytic or monogenic signal from a
real-valued 1D or 2D image signal. The holomorphic
(1D) or monogenic (2D) completion of the signal results
in an additional component which is in quadrature phase
relation to the original signal. For a 2D image, every
image point is now associated with a curvature tensor
which is related to the Hessian matrix. It is necessary
to find a conjugate matrix with quadrature phase rela-
tionship to the curvature tensor. In the following, we will
introduce the general signal model based on 2D spherical
harmonics.

As analyzed before, the Hessian matrix contains curva-
ture information. Based on it, i0D, i1D and i2D structures
can be easily separated. It is obvious that angular parts of
the derivatives are related to spherical harmonics of even
orders 0 and 2, see Egs. (50)—(53). These harmonics repre-
sent the even information of 2D structures. Therefore, we
are motivated to construct a tensor 7., which is related
to the Hessian matrix, for the signal modeling. We will call
T. as the curvature tensor, although it is different to the
curvature tensor of the second fundamental form of the dif-
ferential geometry. This curvature tensor indicates the even
information of 2D structures and is obtained from a ten-
sor-valued filter H, in the frequency domain, i.e.
T.=F *I{Heer}, where X, indicates the geometric prod-
uct between all elements of H, and F. Since the original 2D
signal f(x, y) is embedded as an e;-valued signal, the tensor-
valued filter H,, called the even Hessian operator, thus
takes the following form:

_1[H0+<H2>o —(Ha2), ]
2L (Hy),  Ho—(Ha)
_ 1[1+cos(20) —sin(20)er
) [ sin(2a)e;; 1 — cos(2x) ]
B cos?(«) —1sin(20)e;,
B L sin(2a)e;s sin® () 1 ' 8)

The entities of H, are obtained from Eq. (53). For the con-
venience of analysis, the radial factors are ignored.

In this filter, the two elements cos’() and sin’(2) can
be considered as two angular windowing functions which
are the same as those of the orientation tensor in [8].
From them, two perpendicular ilD components of the
2D image, oriented along the e; and e, coordinates, can
be obtained. The other component of the filter is also the
combination of two angular windowing functions, i.e.
1sin(20) =1 (cos*(« — %) — sin*(« — %)). These two angular
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- M s

Fig. 4. From left to right are the angular windowing functions of cos*(a),
sin*(cr), cos? (o — %) and sin 2o — ). White indicates positive one and black
represents zero.

windowing functions yield again two ilD components of
the 2D image, which are oriented along the diagonals of
the plane spanned by e; and e,. These four angular win-
dowing functions, shown in Fig. 4, can also be consid-
ered as four differently oriented filters, which are basis
functions to steer a detector for ilD structures [33].
They make sure that ilD components along different
orientations are extracted, see Fig. 5. Consequently,
the even Hessian operator H, enables the extraction of
four differently oriented i1D components of the 2D
image. Hence, the superimpose of these four basis il1D
signals will result in a rotation-invariant extraction of
any arbitrary i1D signal.

The Riesz transform [15] is able to evaluate the corre-
sponding conjugate information of the i1D signal, which
is in quadrature phase relation with the i1D signal. There-
fore, the odd representation of the curvature tensor, called
the conjugate curvature tensor 7, is obtained by employ-
ing the first-order spherical harmonic /; to elements of
T., which equals the Riesz transform of the curvature ten-
sor T,. Besides, the conjugate curvature tensor 7, results
also from a tensor-valued filter H,, called the odd Hessian
operator.
To:hl*rTe:fil{Hoer}v (59)
where *, represents the convolution of all elements of 7
with 4. The odd Hessian operator H, equals the Riesz
transform of the even Hessian operator, i.e. H, = H{ X . H..
In the spectral domain, the odd Hessian operator thus
takes the following form

gy = |Hon Hon
. |:H021 H022:|
L [Hi(Ho+ (Ha)o) Hi(—(H2),)
) |:H1(<H2>2) HI(H() _ <H2>0) (60)

with

Hoi1 = (cos(a) + sin(a)e;y)(cos?(«)) (61)
= 4(3cos(a) + cos(3a)) + (sin(a) + sin(3a))eya),

Ho = —H o1z = (cos(a) + sin(a)ery) (5 sin(20)ey,), (62)
= H(cos(a) — cos(3a)) + (sin(a) + sin(30))es]

H o2 = (cos(a) + sin(a)e;s)(sin’(a)) (63)
= {(cos(a) — cos(3a)) + (3 sin(x) — sin(3a))eyy).

It is obvious that this tensor-valued filter consists of odd
order spherical harmonics. Hence, the Riesz transform of
the curvature tensor 7, gives its corresponding odd repre-
sentation 7,. Combing the curvature tensor and its conju-
gate representation forms the general signal model of local
2D image structures,

T(x) = Te(x) + To(X). (64)

This signal model can also be regarded as the monogenic
extension of the curvature tensor. Hence, it is called the
monogenic curvature tensor. For the 3D signal modeling,
the curvature tensor can be derived from the well-known
Riemann tensor and its corresponding conjugate part is
also easy to be obtained by employing the Riesz transform.
However, it is out of the scope of this paper.

In fact, the monogenic curvature tensor is a monogenic
element of M (2, R;) with monogenic entries. This represen-
tation is much more powerful than the monogenic signal.
There, for each pixel a real signal is extended to a Clif-
ford-valued signal. In our case, a Clifford-valued tensor
representation is gained with quadrature relations in each
element of the tensor. There are different ways of evaluat-
ing the monogenic curvature tensor. One way is to evaluate
the quadrature relationship of the tensor pair (7, T,) sep-
arately, the other way is to evaluate the quadrature relation
of the elements of T=1T,+ T,. We will present in this
paper the first way.

3.3. Local representations for il D and i2D image structures

Analogous with the real-valued differential geometry
approach, in our Clifford-valued approach 2D image struc-
tures can be classified by computing the Gaussian curva-
ture and the mean curvature of the tensor pair 7. and
T, see also Table 2. Since the non-zero Gaussian curvature
indicates the existence of 12D structure, the even and odd
parts of 12D structures are correspondingly obtained
according to Eq. (56). The even part of i2D structures reads

N

Fig. 5. From left to right are the test image, ilD signals result from the angular windowing functions of cos?(c), sin*(a), cos? (e — 1), and sin (o — s

respectively.



90 D. Zang, G. Sommer | J. Vis. Commun. Image R. 18 (2007) 81-99

d. = detg(Te)es = (Ten1Texz — Te1nTear)es

H0+ (H2), F> (Ho

= F- 1{ —2<H2>°F)
<<sz F) < <12{2> F>]e3}—Ae3,

where T,;, ij =1, 2 are the corresponding components of
the curvature tensor T,. Because detg(7,) is scalar-valued,
similar as the monogenic signal, the even part of i2D struc-
tures is embedded as the e; component in the 3D Euclidean
space. The odd part of i2D structures is given by

(65)

d, = e;detg(To) = €1 (To11Ton — To12Ton1) (66)
_ ]—‘I{e, KHl(Ho 42' <H2>0)F> . <H1(Ho g <H2>0)F>
B <H1(<f2>2)F> . <—H1(§H2>2)F)}} (67)

= Be| + Cey,

where T, i,j = 1, 2 are the corresponding components of
the harmonic conjugate curvature tensor 7,. Because
detg(T,) is spinor-valued, i.e. detg(7,) € span{l,e;,}, by
multiplying the e; basis vector from the left, d,, takes a vec-
tor-valued representation. A local representation for i2D
structures is obtained by combining the even and odd parts
of 12D structures. Because the product of monogenic func-
tions is not monogenic again, the determinants of the even/
odd parts of the monogenic curvature tensor are not mono-
genic. Hence, this local representation for i2D structures is
called the generalized monogenic curvature signal and it
takes the following form

fi2D = de + do = Ae3 + Be1 + Cez. (68)

The original signal f(x),x € R® is thus mapped to
fop(x),x € R® as a local representation of i2D signals.
The generalized monogenic curvature signal can be consid-
ered as a generalized monogenic representation of the
Gaussian curvature in real-valued differential geometry.
Although d. and d, are not monogenic, they are in quadra-
ture phase relation to one another. Hence, f;;p, is called the
generalized monogenic curvature signal, details will be dis-
cussed in the next section.

The parabolic and planar surface patches, correspond-
ing to 11D and i0D structures, have zero Gaussian curva-
tures. In order to separate them with each other, the
trace of the tensor pair 7, and T, is computed. Non-zero
trace illustrates the existence of 11D structure. Therefore,
the combination of traces of T, and T, can be considered
as the local representation of i1D structures. According
to the combination and certain embedding, this representa-
tion is obtained as

fi1p = trace(T.) + trace(7T,)e,
= F"{trace(H.x.F) + trace(H, x tF)e,} (69)
= FY{[trace(H.) + (—e;)trace(H,)]F}

with
trace(H) + (—ey)trace(H,)
=1 —|—(—62)H1 =1 —|—(—
=1+ cos(a)(—

e)(cos(a) + sin(o)er2) (70)
e) +sin(x)e; = 1 + Hp,

where H y refers to the Riesz kernel in the spectral domain,
see Eq. (32). Plugging Eq. (70) into Eq. (69), we will get the
i1D structure representation as

fip = F'{[trace(H.) + (—e,)trace(H,)|F}
=F (1 + He)F} =+ he + £ = fies + fie, + fres,
(71)

where /iy is the spatial representation of the Riesz kernel
and f refers to the es-valued original signal. The obtained
Eq. (71) is identical to Eq. (13), which indicates that the lo-
cal representation for ilD structures, obtained from the
proposed general signal model, is the combination of the
original signal and its Riesz transform. This means that
the derived 11D structure representation is just the mono-
genic signal as proposed in [15]. Hence, the proposed signal
model includes the monogenic signal as a special case,
which is a monogenic measure of the mean curvature. In
addition to this, it constitutes also the local representation
for 12D structure. Therefore, the signal model is a
general representation for 2D structures of any intrinsic
dimension.

4. Interpretation of the generalized monogenic curvature
signal

Because the monogenic signal has been discussed in [15]
in detail, we are more interested in the interpretation of the
12D structure representation, i.e. the generalized monogen-
ic curvature signal.

4.1. Geometric model and feature extraction

In the light of the introduction in Section 2.1, local fea-
tures of the generalized monogenic curvature signal can be
defined using the logarithm of R;. The spinor field which
maps the e3 basis vector to the generalized monogenic cur-
vature signal f;,p is given by esf;»p. According to Eq. (15)
and Eq. (16), the local amplitude 4(x) and local phase rep-
resentation ®(x) are obtained as

A(X) = [fan(x)] = exp(log(jesfan(x)])
_ exp({log(exfan(x)))y) (72)
0(x) = arg(fan(x) = (log(esfan(x))),
_ (esfiop(x)), |(esfion (X)),
~Terfan () t( (efan(x))s ) 73

where arg(:) denotes the argument of the expression and
atan(-) € [0,n). As the bivector part of the logarithm of
the spinor field esf;,p, this local phase representation de-
scribes a rotation from the e; axis by a phase angle ¢ in
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the oriented complex plane spanned by f,, and es, i.e.
fop A 5. The orientation of this phase plane indicates the
local main orientation. Therefore, the local phase represen-
tation of the generalized monogenic curvature signal com-
bines local phase and local orientation of i2D structures,
just as in the case of the monogenic signal for il1D struc-
tures. Since the local phase representation ®(x) is a bivec-
tor, its dual in R; is a rotation vector that can be defined as

r(x) = (®(x))" = (log(esfin(x)));- (74)

The rotation vector r is orthogonal to the local orienta-
tion. The length of the rotation vector |r| indicates the
phase angle ¢ of the i2D structure and its direction illus-
trates the rotation axis. According to the proposed algebra-
ic embedding, a geometric model for the generalized
monogenic curvature signal can be visualized as shown in
Fig. 6. The geometric model is an ellipsoid, which looks
very similar to that of the monogenic signal. However, each
axis encodes totally different meaning. The even part of the
12D structure is encoded within the e; axis, and the odd
part is encoded within the e; and e, axes. The angle ¢ rep-
resents the phase and 26 is the main orientation in a double
angle representation form. The rotation vector r lies in the
plane orthogonal to e;. Combining the local amplitude and
local phase representation, the generalized monogenic cur-
vature signal for i2D structures can be reconstructed as

fiop = |fiop| exp(arg(fip)). (75)

Having a definition for the i2D local phase, we recognize
that the local phase representation contains additional geo-
metric information, i.e. local orientation. Since local ampli-
tude, local phase and local orientation are orthogonal to
each other, the generalized monogenic curvature signal per-
forms a split of identity.

From an alternative point of view, local amplitude,
phase and orientation can also be obtained according to
the relationship of the even and odd components in spher-
ical coordinates. The local amplitude is computed as

|fi2D| =V A2 + B2 + Cz. (76)

The local main orientation is given by

(77)

1
0 = 3atan2(B, C) with 6 € (— T “],

22
where atan2(-) € (—mn, ). And the local phase reads

AC;;

Fig. 6. The geometric model for the generalized monogenic curvature
signal. Here, Ae; indicates the even information of the i2D structure, Be,
and Ce; are the two components of the odd part. The phase is represented
by ¢, 20 denotes the main orientation in terms of double angle
representation, r indicates the rotation vector.

Fig. 7. Top row: from left to right are the original image, the energy
output of the generalized monogenic curvature signal and the estimated
local main orientation. Bottom row: from left to right are the even and
odd parts of the generalized monogenic curvature signal and the estimated
phase information.

¢ = atan2(sign(Be; + Ce,)|Be; + Ce,|,4) with ¢ € (—mn, 7.
(78)

Fig. 7 illustrates local features extracted from the general-
ized monogenic curvature signal. A synthetic image which
consists of a superposition of an angular and a radial modu-
lation is used as the test image. The blobs in this test image are
considered as 12D structures. The energy output of the gener-
alized monogenic curvature signal, i.e. d? + dZ, can be regard-
ed as i2D structure strength to detect points of interest.
Besides, it also illustrates the rotation-invariance property
of the generalized monogenic curvature signal. The even
and odd outputs also indicate the existence of i2D structures.
The local main orientation of the generalized monogenic cur-
vature signal denotes the main orientation of the i2D struc-
ture. Its minor orientation is simply perpendicular to the
main orientation. The local phase contains the structure infor-
mation. At the positions where the main orientation and the
minor orientation wrap form zero to m, the estimated phase
is inverted. This is called the orientation-phase wrapping.

To show the difference between the monogenic signal
and the generalized monogenic curvature signal, some
experimental results are given in Fig. 8 and Fig. 9. Two
patterns as the line and edge-like intersection are employed
as test images. Local energy output and phase information
from the monogenic signal and the generalized monogenic
curvature signal are extracted, respectively. These results
indicate that the monogenic signal enables the feature esti-
mation of 11D signals, however, it delivers no information
for the i2D part of the original signal. The generalized
monogenic curvature signal in contrast gives access to local
feature evaluation of i2D structures.

4.2. Properties of the generalized monogenic curvature signal

According to Eq. (65), in the spectral domain, the even
part of the generalized monogenic curvature signal d. can
be interpreted as
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. |
Fig. 8. Top row: test image, the energy of the monogenic signal and its

phase. Bottom row: energy and phase of the generalized monogenic
curvature signal.

o5

Fig. 9. Top row: test image, the energy of the generalized monogenic
signal and its phase. Bottom row: energy and phase of the generalized
monogenic curvature signal.

F{d.} = F{detg(Te)es}
= ((He1 () Hpop (p; 5)F)

* (Hen (o) Hpor (p; s)F)
— (Her2(2)Hpop (p; 5)F) *

(Hex () Hpor(p; 5)F) e,
(79)

where H,; (), i, j =1, 2 are the corresponding components
in the tensor-valued even Hessian operator H,. Only if Eq.
(79) delivers a non-zero output, the existence of i2D struc-
tures is indicated. For 10D and 11D structures, the result of
Eq. (79) is zero. The ilD signals in the frequency domain
are straight lines through the origin, therefore, the two-di-
mensional convolutions in Eq. (79) can be reduced to 1D
convolutions along the properly oriented axis, indicated
by the fixed angle «y. Then, Eq. (79) can be rewritten as

F{de} =([Hen (o) Hex (000)] [(Hpor (p35)F) * (Hpor (p35)F)]
— [Hei2(a0)Hea1 (00)][(Hpop (p; 5)F) * (Hpop(p;5)F)])es.
(80)

To ensure F{d.} to be zero for an i1D signal, the condi-
tion should be

Heyy(00)Hean(ot0) = Herz(0t0)Hear (o00)- (81)

Hence, Eq. (81) makes sure that the even part is selective
to the i2D structures and it was called the compensation
equation in [34]. In the case of the generalized monogenic
curvature signal, for its even part, we have

H i1 (o) H e (0tg) = cos?(atg) sinz(oco) = % sin(2a) (82)

Helz(OC())Hez1 (OC()) = %sin(2oc0)% SiIl(ZO(()) = isin(2oc0). (83)

Therefore, the compensation Eq. (81) is satisfied and can
be rewritten as

cos? (o) sin’ (o) = Lsin(20)L sin(2zt0). (84)

This equation decides that the even part of the general-
ized monogenic curvature signal is selective to the 2D
structure and the i1D structure can be suppressed.

Analogously, the odd part of the generalized monogenic
curvature signal d, in the Fourier domain reads

F{d,} = F{e\detr(T,)}
= e ((Hoi1 (2)Hpor(p; )F) * (Hox (o) Hpor(p; s)F)
— (How2(2)Hpop(p; 5)F) * (Ho21 () Hpor(p; 5)F)).
(85)
In order to make sure F{d,} is zero for an ilD signal,
the compensation equation for the odd part of the general-

ized monogenic curvature signal with the following form
should be satisfied

H o1 (0t0)H o22(0%0) = Horz(ot0) H o1 (%), (86)

where H;, i, j=1, 2 indicates the corresponding compo-
nents in the tensor-valued odd Hessian operator H,.
Hence, we are able to obtain

H o1 (0tg)H o3 (ctg) = cos (20 ) [cos® (o) sin® (e )]

+ sin(20) [cos? () sin’ ()12 (87)
H o12(00)H 021 (0t9) =cos(2atg) B sin(ZaO)% sin(ZaO)]
+sin(20) E sin(Zao)%sinroo)} en. (88

It is obvious that the compensation Eq. (86) is satisfied
and the odd part of the generalized monogenic curvature
signal does only respond to 12D structures. Consequently,
the generalized monogenic curvature signal is regarded as
local representation of i2D structures.

Since the odd part of the generalized monogenic curva-
ture signal has two components, the compensation of the
odd part can in accordance be split into two parts, that is

cos(20)[cos? (op) sin’ ()] = cos(20) % sin(2oc0)% sin(2a)

(89)
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sin(2ap) [cos? (o ) sin®(ap)] ey

= sin(2ap) % sin(2oc0)% sin(20) | e12. (90)

These two parts, which are derived from detg(7,) =
To11To22 — Ty12Top1, determine the two components of
the odd part Be; and Ce,, respectively. Comparing the
compensation Egs. (84), (89) and (90), it is shown that
the determinant of the conjugate curvature tensor 7, is
obtained from the curvature tensor 7, by convolving it
with the second-order spherical harmonic, that is

detg(To) = hy * det(Te). (91)

Therefore, the odd part of the generalized monogenic
curvature signal d, can be derived from the even part d.
by employing the second-order spherical harmonic opera-
tor, which means

fop = det(T.)e; + e det(T,) =de +d, = d. + (e1/e3) x d.
= Aes + Be; + Ce,.
(92)

The angle between Be; and Ce, indicates the local main
orientation in a double angle representation just as in the
case of the structure tensor [1,8]. It is introduced in Section
3 that the odd part of the monogenic signal is obtained
from the even part by employing the Riesz transform,
which is basically equivalent to the first-order spherical
harmonic. In case of the generalized monogenic curvature
signal, we have comparable relations between the even
and odd parts. Only the second-order spherical harmonic
occurs as a new operator which is another generalization
of the Hilbert transform. This enables us to state that the
Riesz transform is able to generalize the Hilbert transform
with respect to 11D signals and the derived generalized Hil-
bert transform (the second-order spherical harmonic) real-
izes the same with respect to i2D signals. This is valid for
any dimension of the signal. Furthermore, this gives rise
to the conjecture that a third-order spherical harmonic will
be responsible for generalizing the Hilbert transform in the
case of 13D signals in the 3D case. Recently, several types
of generalized Hilbert transforms have been derived in
[35,36]. Indeed, the second-order spherical harmonic
belongs to one of the considered types.

According to the Parseval theorem, the energy of the
odd and even parts of the generalized monogenic curvature
signal are related by

EO = ((e1h2e3) ES de)z = //|91H263De|2 dp dO(
_ / / | cos(2%)ers + sin(2x)ex 2|Ds|? dp du (93)
= //cos2(2oc) +sin?(24))|De|* dp do = E,,

where D, represents the Fourier transform of d.. It can be
shown that the energy of the odd part equals that of the

even part. Hence, the amplitudes of even and odd part
are equivalent, i.e. |d,| = |d,|.

As a good local representation for the 12D signal, it
requires that the generalized monogenic curvature signal
has the property of rotation invariance. To analyze this
property, we should start from Eq. (56). Hence, the
Gaussian curvature of the Hessian matrix can be rewrit-
ten as

K = fuesfies — (—fieis)(foeis)

= % [(fxxe3 +.f;ye3)2 - ((fx,\feS _.fyye3)2 + (fxy)z)] (94)

1
=2 [(Af)? — &7,
where Af is the Laplacian of the signal and ¢ indicates the
eccentricity. Because Eq. (94) must be zero for the i0D and
11D signals, the compensation equation of it now changes
as

(cos? () + sin’(a))* = cos?(20) 4 sin*(2a). (95)

Since 10D and 11D structures are suppressed, what left is
the 12D structure. Hence, spherical harmonics which serve
as the angular portions, decide the rotation invariance of
the 12D structure output. As stated in Section 2.1, the
amplitude of the nth order spherical harmonic is rotation-
ally invariant. Thus, the filter response from a nth order
spherical harmonic has the property of rotation invariance.
Therefore, the left and right sides of Eq. (95) determine two
isotropic operations. The Gaussian curvature of the Hes-
sian thus can be considered as the difference of two isotro-
pic operation outputs, which proves that the property of
rotation invariance is fulfilled.

A similar analysis applies to the even part of the general-
ized monogenic curvature signal, that is

de =(Te1Tex» — Te1aTen1)es (96)

1
=7 [(Tenr + Te22)2 — ((Ten1 — TeZZ)2 + TenTer))les.

The compensation for d. now takes the same form as the
compensation Eq. (95). Therefore, d. is rotationally invari-
ant. According to Egs. (92) and (93), the odd part is
obtained by convolving the even part with the second-order
spherical harmonic and the energy of them are equivalent.
Therefore, the amplitude of the odd part d, is also rotation-
ally invariant.

Hence, we can conclude the properties of the generalized
monogenic curvature signal as follows:

o It enables the simultaneous estimation of local ampli-
tude, local main orientation and local phase of 2D
structures.

o [t is rotationally invariant and no steering is needed.

e The odd part is transformed from the even part by the
second-order spherical harmonic, i.e. d, = (e1/,€3)*d..

e The energy of the even part is equal to that of the odd
part, i.e. d = 2,
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e Since the local amplitude and local phase representation
are independent of each other, the generalized monogenic
curvature signal fulfills the split of identity.

5. Parity symmetry analysis
5.1. Preliminaries

Parity symmetry, as an important local feature of qual-
itative signal analysis, is strongly related to the local phase
of the signal [26]. In image processing, parity symmetry is a
cue for the line-like or edge-like quality of a local image
structure. Parity refers to the invariance of a process with
respect to a reflection operation. It is well known that
any real signal ' : R® — R at any location x € R" can be
decomposed into an even and odd part, i.e. f{x) =fo(x) +
fo(x) [8]. A real signal has even symmetry if f{—x) = f(x)
and odd symmetry if fi—x) = —f(x) for all x € R".

In 1D, the local phase of a signal is defined as the angu-
lar part of its analytic signal. If the local energy is zero, no
phase analysis is available. Once the local energy exceeds a
certain threshold, the parity symmetry would then enable a
local structure analysis. The relation between the local
structure and local phase is illustrated in Fig. 10. At a sig-
nal position with locally even symmetry, only the real-val-
ued even part of the quadrature filter matches. Thus, the
phase is 0 for a peak-like signal and = for a dip-like signal.
A similar reflection reveals the odd case for edge-like sig-
nals. Only the odd, and thus the imaginary, filter compo-
nent matches the signal. Therefore, the signal structure
has a phase of 7 for decreasing slope and —J for increasing
slope. For 11D signals, the monogenic phase also indicates
the even and odd symmetry as line and edge-like structures
in a rotation-invariant manner. The line-like structure is
even symmetric with respect to its orientation vector,
hence, the odd output of the monogenic signal is zero.
The edge-like structure is pure odd symmetric with respect
to its orientation vector, therefore, no even output from the
monogenic signal exists.

A phase concept of i2D signals has been investigated by
Biilow and Sommer [14,37]. In this approach, a two-dimen-
sional signal is split into even and odd parts along the
x-axis and along the y-axis, i.e. f="f, +f,c +f.o + foo.
Here, f.. denotes the part of f that is even with respect to
x and y, f,. represents the part which is odd with respect
to x and even with respect to y and so on. These four

5/

Fig. 10. The relation between the local signal structure and local phase in
1D case.

Fig. 11. Four components of the quaternionic Gabor filter.

symmetries are obtained by convolving the signal with four
components of a quaternionic Gabor filter which are
shown in Fig. 11. Those four components have the even—
even, odd-even, even—odd and odd-odd symmetries with
respect to the coordinates. The estimated phase informa-
tion can, to some extent, illustrate the intrinsic dimension-
ality of local structures. Unfortunately, this approach has
the drawback of being not rotation invariant.

5.2. Parity symmetry of the generalized monogenic curvature
signal

The generalized monogenic curvature signal also enables
the rotation invariant extraction of a phase for i2D signals.
The presented phase interpretation strongly depends on the
way the monogenic curvature tensor is analyzed. Here, we
study only the relations between its even and odd compo-
nents. The parity symmetry involved in our case can be
analyzed from the even and odd parts of the generalized
monogenic curvature signal, respectively. As indicated in
Section 3, the even part is computed as,

de = (Ter1Ter — TernTerr)es = i dres. (97)

According to [17], the eigenvalues A; and /, can be con-
sidered as a cos’-decomposition of the local amplitude.
Hence, these two eigenvalues can be obtained from two
angular windowing functions, which are oriented along
the principal axes. This means that /; is obtained by con-
volving the signal with cos*(f — ) and 4, is the output
of convolving the signal with cos?(f— (0p+3%)) =
sin®(f — 0,). Here, 0, refers to the local main orientation.
These two angular windowing functions are even with
respect to the principal axes oriented along 0y and 0, + 7,
respectively, see Fig. 4. Thus, d. has the even—even symme-
try with respect to the principal axes.

The odd part of the generalized monogenic curvature
signal is computed as

do =€ (To11Too2 — To12To21) = (e1/2e3) * d. = Be; + Ces.
(98)

According to the analysis in Section 4.2, the two compo-
nents of d, are obtained from the second-order spherical
harmonic transform. Therefore, the symmetry of the odd
part can be determined by the second-order spherical har-
monic. As visualized in Fig. 12, the two components of the
second-order spherical harmonic are odd—odd symmetric
with respect to e, e, axes and the diagonals of the plane
e; A e, respectively. These two components together decide
the local main orientation. Thus, the principal axes are



D. Zang, G. Sommer | J. Vis. Commun. Image R. 18 (2007) 81-99 95

Fig. 12. Two orthogonal components of the second-order spherical
harmonic.

oriented along the local main orientation and its perpendic-
ular orientation. Therefore, the odd part of the generalized
monogenic curvature signal, which is the vector sum of Be;
and Ce;, has an odd—odd symmetry with respect to the
principal axes.

Hereby, we understand that the parity symmetry for i2D
structures, in the presented way of analyzing the monogen-
ic curvature tensor, is even—even and odd-odd symmetric
with respect to the principal axes. At those i2D neighbor-
hoods, even and odd outputs of the generalized monogenic
curvature signal are quite similar to the first and fourth
components of the quaternionic analytic signal. But, in
contrast to the quaternionic analytic signal, the parity sym-
metry in the current case is related to the principal axes
instead of the original x, y coordinates and therefore, the
rotation invariance is preserved.

Unlike the 11D signals, i2D signals have more degrees of
freedom. There is no general way to completely specify the
parity symmetry of an arbitrary i2D structure by applying
a pre-defined phase model. Because the odd part of the
generalized monogenic curvature signal has only odd—odd
symmetry with respect to the principal axes, the derived
phase information can only be used to classify some specif-
ic 12D structures, even though the generalized monogenic
curvature signal is a general local representation for all
12D structures. It can be assumed that a component wise
evaluation of the monogenic curvature tensor will result
in a more detailed specification of the parity symmetry.

For the superimposed i2D signals, as shown in Fig. 13,
there exist patterns such as the line-like intersection, the
edge-like intersection and a mixture of them. The local
neighborhood where two lines/edges intersect is considered
as the 12D structure. It corresponds to elliptic or hyperbolic
region with positive or negative Gaussian curvature, see
also Table 2. The line-like and edge-like intersections can

be regarded as two basic structures. By combining them
together, other 12D structures are able to be obtained.

For the 12D neighborhood where two lines intersect, it
belongs to an elliptic region with local extrema. Hence,
the even output of the generalized monogenic curvature
signal is positive, i.e. d. > 0. According to the introduction
in Section 5.1, line-like structure has no odd output. Thus,
for the line-like intersection structure, the odd output
would vanish, i.e. d, = 0. In this case, the estimated local
phase has a value of zero,

¢ = atan2(d,,d.) = 0. (99)

Edge-like intersection structures are saddle points which
correspond to hyperbolic regions. Therefore, the general-
ized monogenic curvature signal in such case has negative
even outputs, i.e. d, <O0. It is described in Section 5.1 that
edge-like structures have odd outputs. Hence, due to the
intersection of edges, the generalized monogenic curvature
signal has not only even but also non-zero odd outputs. As
mentioned in Section 4.2, the energy of the even part is
identical to that of the odd part. Thereby, the amplitude
of the even output equals that of the odd part, i.e.
|d.| = |d,|. Hence, the absolute phase value |¢| reads

ol = atan2(|d, . d) =7 (100)

The sign of the phase depends on the direction of d,, see
Eq. (78).

The 2D structure which is the mixture of the line-like
and edge-like intersection, has also a positive even output
since it corresponds to the local extrema. Due to the
edge-like intersection, its odd output is also non-zero.
Therefore, the even part of the generalized monogenic cur-
vature signal is positive, i.e. d, > 0. And the odd part of it is
also equivalent to the even part, i.e. |d.| = |d,|. Thereby, for
the mixture pattern, its local phase absolute value is
obtained as

ol = atan2(ld, . d.) = 5. (101)
Its sign also relies on the direction of d,.

Consequently, some specific structures can be classified
on the basis of the newly developed phase information.
On the oriented complex plane, shown in Fig. 14, phase
values clearly denote what kind of structure it is. The local

Fig. 13. Some i2D structures: from left to right are the line-like intersection, edge-like intersection and a mixture of them.
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Fig. 14. Local phase and corresponding i2D structures. The horizontal
axis is the real axis, the vertical axis indicates the imaginary axis.

Fig. 15. Top row: two test images. Bottom row: corresponding phases of
the two test images.

phase is able to distinguish between line-like, edge-like
intersection structures and the mixture pattern of them.

The two superimposed 11D signals are not necessarily to
be perpendicular to each other. This is a meaningful exten-
sion of the structure multivector model as proposed in [17].
If the phase has a value of zero, the corresponding struc-
ture is indicating line-like intersection. A phase absolute
value of 3¢ or Z implies that the corresponding local struc-
ture is edge-like intersection or a mixture pattern.

Fig. 15 illustrates the evaluated phase information for
two superimposed patterns with flexible opening angles.
In the case of very bright blobs, they can be regarded as
line-like intersections, hence, their phases take zero values.
For those blobs which are a bit darker than the bright
blobs, they indicate edge-like intersections with phases of
%" or —%‘. It can be assumed that an extensive analysis of
the inner structure of the monogenic curvature tensor will
yield more degrees of freedom. Thus, more phase angles
will be obtained which can further help specifying i2D
patterns.

6. Conclusions

A general signal model for 2D image structures is
proposed in this paper. In order to obtain more degrees

of freedoms for modeling, a 2D signal is embedded into a
certain matrix geometric algebra of the Euclidean 3D
space. Coupling methods of tensor algebra, differential
geometry, monogenic signal and quadrature filter, we are
able to design a curvature tensor and its monogenic exten-
sion. The monogenic extension of the curvature tensor con-
tains rich information for 2D structures as the
generalization of the analytic signal to 2D case. Therefore,
it is regarded as the general model for 2D image structures.
Based on it, local representations for i1D and i2D struc-
tures are obtained as the monogenic signal and the general-
ized monogenic curvature signal by computing the trace
and determinant of the general model. Hence, the mono-
genic signal for 11D structures can be considered as a spe-
cial case of the proposed general model.

From the generalized monogenic curvature signal, three
features can be extracted. They are the local amplitude,
local phase and local orientation. These features are inde-
pendent of each other, hence, the generalized monogenic
curvature signal performs a split of identity. The local
amplitude derived from that model represents the energetic
information and it indicates the existence of i2D structures.
Structure information of 12D structures is contained in the
local phase, and some specific types of i2D structures can
be classified by the local phase. Local orientation denotes
the main orientation and it illustrates the geometric infor-
mation of i2D structures. Compared with other approaches
for the 12D structure representation, the generalized mono-
genic curvature signal has remarkable advantage of simul-
taneous estimation of local amplitude, local phase and
local orientation in a rotation-invariant manner. This
advantage delivers access to various applications of the
generalized monogenic curvature signal in computer vision
tasks.

Appendix A. Eigenvalues of commutative hypercomplex
matrices

Commutative hypercomplex algebras (HCA) are the
hypercomplex algebras which have similar construction
rules as the Clifford algebra but with commutative multipli-
cation rules.

In [38], Davenport proposed the four-dimensional com-
mutative hypercomplex algebras (HCA,). It was shown
that HCA, is isomorphic to the tensor product of the com-
plex algebra C or the Cartesian product of C?. Later on,
Felsberg et al. [39] extended the HCA to any 2" dimensions
and proved that the 2"-dimensional HCA are isomorphic to
C” . In signal processing, the four dimensional commuta-
tive hypercomplex algebras are also called the reduced
biquaternions [40,41].

A four-dimensional commutative hypercomplex number
is defined as

z =2z + 20 + z3j + zsk = (21 + 220) + (23 + z40) ], (A1)

where i, j, k are unit basis which obey the following rules,
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ij = ji=k,
P=k=-1, F2=1.

jk=kj=i, ik=ki=—]

(A.2)
In contrast to the definition in [38], only the square of j is
chosen to be positive one, which results in more simple

computations.
According to the above rules, z can be reformulated as

z={(z1+z) +i(z2+z4)} [%} e =m)tia-a) {i}

2
=Cri+nr (A.3)
with

é :(Zl +Z3) -i—l'(Zz-i-Z4)7 (A4)

n=(z1 —z3) +i(z2 — za), (A.5)
I+

r ZTJ7 (A.6)
1—

s :TJ. (A7)

Correspondingly, a four-dimensional commutative

hypercomplex matrix Myca, can be represented as the lin-
ear composition of two complex matrices with the follow-
ing form

Muca, = Mery + Myrs. (A.8)

For an nxn matrix Myca,, there are n eigenvalues of
each of the corresponding complex matrices. Hence, there
are n’ eigenvalues for this matrix Myca,.

In the following, we restrict ourselves to the eigenvalues
computation of a 2 X 2 matrix. Let A, Ao, 4,1 and 4,5 be
the eigenvalues of complex matrices M and M, respective-
ly, then the eigenvalues of the commutative hypercomplex
matrix are given by

A = dar + o,
Jo = Aeab1 + Ayaha,
l3 = Aot + Agitra,
Ja = datt + Apha.

For example, given an 2 X 2 matrix Myca,

” {1 l':||:1 i]Jr[O 0}_
M= k] T Lo o 1)
1 i 1 j
= |:1 ;:|}"1 + |:_1 _li:|l"2 :Mirl +M,7}"2. (AlO)

The eigenvalues of matrices M and M, are respectively
obtained as follows

Ja =0, do=1+4i iy=0 Jp=1—i (A.11)

Hence, according to Eq. (A.9), the four eigenvalues of
the commutative hypercomplex matrix read

n Co1—i 1-i
A =0, AzZT—T]y
T+i 1+i
M:% %j, ha=1+k. (A.12)

Appendix B. Eigenvalue computation of the Hessian matrix

According to the definition of the 4D commutative
hypercomplex number, we can identify its unit basis i, j
and k with the following basis elements in Rj:

i— (IP) ] — €3 k— €123. (Bl)

The property of the unit basis based on the chosen cle-
ments can be checked as follows

iz :(612)2 = k2 = <e123)2 =1 j2 = (63)2 =1

ij =epes = ji =esep = €3 =k

(B.2)

Jk =eseis = kj = eze; =ep =i
ik =eppei3 = ki = e3ep = —€3 = —J.
Hence, the Hessian matrix in the algebraically extended

framework can be considered as a commutative hypercom-
plex matrix, that is

XX “Jxy | XX, = X k
H, — {f e3 Srve12s _ [f J fy. } (B.3)
otz fwes Sk S
The above equation can further be written as
XX, i —Jx k O O- XX . xvi
[fed k] [0 0] T o), B4
Sk S 0 0] Sl S

Two corresponding complex matrices M: and M, are
obtained as follows

M, = [f _f”l}, M, = [ e o } (B.5)
Sl Sy Sl Sy
The eigenvalues of M; read
/151 =m, ){2 =n. (B6)

These two eigenvalues are equivalent to those of the
real-valued Hessian matrix Hpg, that is

H= [f"" f‘y] with detz(H) = mn. (B.7)
S S
Accordingly, the eigenvalues of M, are given by
iql = —n, )\,"2 = —m. (BS)

Combining eigenvalues of the two matrices M. and M,,
the four eigenvalues of the algebraically extended Hessian
matrix are

m—n+m+n,
2 2 J7
m—m m-+m .,

M=

A st =, (B.9)
A 7n—n+n+n,7 .
3 — 2 2 J=nj,

n—m n-+m
Ay = . B.10
4 > + 5/ ( )

Hence, the determinant of the Hessian in the extended
algebraic framework reads
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dety (H ) =[(fues)(fye3) — (—fiy€i2s)(fyerns)]’
=[fufy — ol

=1 ladshs = (mn)* = (detp(Hy))*. (B.11)

It can be concluded that the determinant computation
of the Hessian in this framework can be reduced to the
determinant definition in the vector algebra.

The corresponding trace of the Hessian equals half of
the sum of eigenvalues

1
z()v1 + 2+ A+ )

=(m+n)j=(m+nes.

tracey (Hy) = fxes + fiy€3 =
(B.12)
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