
The Monogenic Curvature Scale-Space?

Di Zang and Gerald Sommer

Cognitive Systems Group
Institute of Computer Science and Applied Mathematics

Christian Albrechts University of Kiel, 24118 Kiel, Germany
{zd,gs}@ks.informatik.uni-kiel.de

Abstract. In this paper, we address the topic of monogenic curvature
scale-space. Combining methods of tensor algebra, monogenic signal and
quadrature filter, the monogenic curvature signal, as a novel model for in-
trinsically two-dimensional (i2D) structures, is derived in an algebraically
extended framework. It is unified with a scale concept by employing
damped spherical harmonics as basis functions. This results in a mono-
genic curvature scale-space. Local amplitude, phase and orientation, as
independent local features, are extracted. In contrast to the Gaussian
curvature scale-space, our approach has the advantage of simultaneous
estimation of local phase and orientation. The main contribution is the
rotationally invariant phase estimation in the scale-space, which delivers
access to various phase-based applications in computer vision.

1 Introduction

It is well know that corners and junctions play an important role in many com-
puter vision tasks such as object recognition, motion estimation, image retrieval,
see [1–4]. Consequently, signal modeling for such structures is of high significance.
There are bulk of researches for intensity-based modeling, e.g. [5–7]. However,
those approaches are not stable when the illumination varies. Phase information
carries most essential structure information of the original signal [8]. It has the
advantage of being invariant with respect to the illumination change. Hence, we
intend to design a model for local structures with phase information contained.
For 2D images, there are three types of structures, which can be associated with
the term intrinsic dimension [7]. As a local property of multi-dimensional sig-
nals, it expresses the number of degrees of freedom necessary to describe local
structures. The intrinsically zero dimensional (i0D) signals are constant signals.
Intrinsically one dimensional (i1D) signals represent lines and edges. Corners,
junctions, line ends, etc. are all intrinsically two dimensional (i2D) structures
which have certain degrees of curvatures. There are lots of related work for 2D
structures modeling. The structure tensor [5] estimates the main orientation and
the energy of 2D structures. However, phase information is neglected. The Gaus-
sian curvature scale-space [9, 10] enables the extraction of signal curvature in a
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multi-scale way with no phase contained. A nonlinear curvature scale-space was
proposed in [11] for shape representation and recognition, but it is impossible
to extract phase information in this framework. Bülow and Sommer [12] pro-
posed the quaternionic analytic signal, which enables the evaluation of the i2D
signal phase. But it has the drawback of being not rotationally invariant. The
monogenic signal [13] is a novel model for i1D signals. It is a generalization of
the analytic signal in 2D and higher dimensions. However, the monogenic signal
captures no information of the i2D part. A phase model is proposed in [14],
where the i2D signal is split into two i1D signals and the corresponding two
phases are evaluated. Unfortunately, steering is needed and only i2D patterns
superimposed by two perpendicular i1D signals can be correctly handled.

In this paper, we present a novel approach to model i2D structures in a multi-
scale way. Combining methods of tensor algebra, monogenic signal and quadra-
ture filter, the monogenic curvature signal, as a novel model for i2D structures,
is derived in an algebraically extended framework. It is unified with a scale con-
cept by employing damped spherical harmonics as basis functions, which results
in a monogenic curvature scale-space. Local amplitude, phase and orientation,
as independent local features, are extracted. In contrast to the Gaussian cur-
vature scale-space, our approach has the advantage of simultaneous estimation
of local phase and orientation, which enables many phase-based applications in
computer vision tasks.

2 Geometric Algebra Fundamentals

Geometric algebras [15–17] constitute a rich family of algebras as generalization
of vector algebra. Compared with the classical framework of vector algebra, the
geometric algebra enables a tremendous extension of modeling capabilities. By
embedding our problem into a certain geometric algebra, more degrees of free-
dom can be obtained, which makes it possible to extract multiple features of i2D
structures. For the problem we concentrate on, 2D image data is embedded into
the Euclidean 3D space. Therefore, an overview of geometric algebra over Eu-
clidean 3D space is given. The Euclidean space R3 is spanned by the orthonormal
basis vectors {e1, e2, e3}. The geometric algebra R3 of the 3D Euclidean space
consists of 23 = 8 elements,

R3 = span{1, e1, e2, e3, e23, e31, e12, e123 = I3} (1)

Here e23, e31 and e12 are the unit bivectors and the element e123 is a trivector
or unit pseudoscalar. In this geometric algebra, vectors square to one, bivectors
and trivector all square to minus one. A general combination of these elements
is called a multivector

M = a + be1 + ce2 + de3 + ee23 + fe31 + ge12 + hI3 (2)

The geometric product of two multivectors M1 and M2 is indicated by juxtapo-
sition of M1 and M2, i.e. M1M2. The multiplication results of the basis elements
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are shown in table 1. The geometric product of two vectors x = x1e1 + x2e2

and y = y1e1 + y2e2 can be decomposed into their inner product (·) and outer
product (∧)

xy = x · y + x ∧ y (3)

where the inner product of x and y is x ·y = x1y1 +x2y2 and the outer product
is x ∧ y = (x1y2 − x2y1)e12.

Due to the orthogonality of basis vectors, their outer products are equivalent
to their geometric products.

e1 ∧ e2 = e1e2 = e12 (4)
e2 ∧ e3 = e2e3 = e23 (5)
e3 ∧ e1 = e3e1 = e31 (6)

The k-grade part of a multivector is obtained from the grade operator 〈M〉k. A
blade of grade k, i.e. a k-blade Bk, is the outer product (∧) of k independent
vectors x1, ...,xk ∈ R3

Bk = x1 ∧ ... ∧ xk = 〈x1...xk〉k (7)

Hence, 〈M〉0 is the scalar part of M , 〈M〉1 represents the vector part, 〈M〉2
indicates the bivector part and 〈M〉3 is the trivector part, which commutes with
every element of R3. The dual of a multivector M is defined to be the product

Table 1. The geometric product of basis elements.

1 e1 e2 e3 e23 e31 e12 I3

1 1 e1 e2 e3 e23 e31 e12 I3

e1 e1 1 e12 −e31 I3 −e3 e2 e23

e2 e2 −e12 1 e23 e3 I3 −e1 e31

e3 e3 e31 −e23 1 −e2 e1 I3 e12

e23 e23 I3 −e3 e2 -1 −e12 e31 −e1

e31 e31 e3 I3 −e1 e12 -1 −e23 −e2

e12 e12 −e2 e1 I3 −e31 e23 -1 −e3

I3 I3 e23 e31 e12 −e1 −e2 −e3 -1

of M with the inverse of the unit pseudoscalar I3

M∗ = MI−1
3 = −MI3 (8)

The modulus of a multivector is obtained by |M | =
√
〈MM̃〉0, where M̃ is the

reverse of a multivector defined as M̃ = 〈M〉0 + 〈M〉1 − 〈M〉2 − 〈M〉3.
If only the scalar and the bivectors are involved, the combined result is called

a spinor
S = a + ee23 + fe31 + ge12 (9)
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All spinors form a proper subalgebra of R3, that is the even subalgebra R+
3 . A

spinor represents a scaling-rotation, i.e. S = rexp(θB), where B is a bivector
indicating the rotation plane, θ is the rotation angle within that plane and r
refers to the scaling factor. It is shown in table 1 that the square of the bivector
or trivector equals -1. Therefore, the imaginary unit i of the complex numbers
can be substituted by a bivector or a trivector, yielding an algebra isomorphism.
A vector-valued signal f in R3 can be considered as the result of a spinor acting
on the e3 basis vector, i.e. f = be1 + ce2 + de3 = e3S. The transformation
performed under the action of the spinor delivers access to both the amplitude
and phase information of the vector-valued signal f [18]. From the logarithm
of the spinor representation, two parts can be obtained. They are the scaling
which corresponds to the local amplitude and the rotation which corresponds to
the local phase representation. The R3-logarithm of a spinor S ∈ R+

3 takes the
following form

log(S) = 〈log(S)〉0 + 〈log(S)〉2 = log(|S|) +
〈S〉2
|〈S〉2|atan

( |〈S〉2|
〈S〉0

)
(10)

where atan is the arc tangent mapping for the interval [0, π). The scalar part
〈log(S)〉0 = log(|S|) illustrates the logarithm of the local amplitude, hence, local
amplitude is obtained as the exponential of it

|S| = exp(log|S|) = exp(〈log(S)〉0) (11)

The bivector part of log(S) indicates the local phase representation

〈log(S)〉2 =
〈S〉2
|〈S〉2|atan

( |〈S〉2|
〈S〉0

)
(12)

3 Damped Spherical Harmonics

In the light of the proposal in [14], 2D damped spherical harmonics are employed
as basis functions. Since we are more interested in the angular portions, the polar
representation of damped spherical harmonics is used instead of the Cartesian
form. Assume the angular behavior of a signal is band limited, therefore, only
damped spherical harmonics from order zero to three are applied, otherwise,
aliasing would occur. Damped spherical harmonics in the spectral domain have
much simpler forms than that in the spatial domain. An nth order damped
spherical harmonic in the Fourier domain reads

Hn = exp(nαe12)exp(−2πρs) = [cos(nα) + sin(nα)e12] exp(−2πρs) (13)

where n indicates the order of the damped spherical harmonic, ρ and α repre-
sent the polar coordinates, s is the scale parameter. The 2D damped spherical
harmonics can be alternatively regarded as 2D spherical harmonics exp(nαe12)
combined with a Poisson kernel exp(−2πρs) [19]. The Poisson kernel is a low-
pass filter which, like the Gaussian kernel, will result in a linear scale-space,
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called Poisson scale-space. As a result, local signal analysis can be realized in
a multi-scale approach. Except for the zero order, every damped spherical har-
monic consists of two orthogonal components. In the spatial domain, damped
spherical harmonics from order 0 to 3 are illustrated in Figure 1. The first or-

Fig. 1. From left to right are damped spherical harmonics from order 0 to 3 in the
spatial domain (white:+1, black:-1). Except for zero order, every damped spherical
harmonic consists of two orthogonal components.

der damped spherical harmonic H1 is basically identical to the conjugate Poisson
kernel [14]. When the scale parameter is set to zero, the conjugate Poisson kernel
equals the Riesz transform [13].

4 The Monogenic Curvature Scale-Space

It is a well-known fact that 1D analytic functions correspond directly to 2D
harmonic fields. In mathematics, these functions are also called holomorphic.
Such functions are characterized by having a local power series expansion about
each point [20]. This generalizes to 2D such that monogenic functions correspond
to 3D harmonic fields. In Clifford analysis, the term monogenic is used to express
the multidimensional character of the functions. Since in this paper, we present
a novel approach which is to some degree a generalization of the analytic signal
to the i2D case, it thus is called the monogenic extension of a curvature tensor.
The monogenic curvature signal, as a novel model for i2D structures, can be
derived from it. The monogenic scale-space, shown in Figure 2, is formed by the
monogenic curvature signal at all scales.

4.1 Monogenic Extension of the Curvature Tensor

Motivated from the differential geometry, the curvature tensor can be con-
structed. Two dimensional intensity data can be represented as surfaces in 3D
Euclidean space. Such surfaces in geometrical terms are Monge patches of the
form

f = {xe1, ye2, f(x, y)e3} (14)

This representation makes it easy to use differential geometry to study the prop-
erties of the surface. The primary first-order differential quantity for an image
is the gradient, which is defined as

∇f =
2∑

i=1

giei
∂f
∂xi

(15)
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Fig. 2. The monogenic curvature scale-space.

where gi indicates the following basis

g1 =
[
1
0

]
g2 =

[
0
1

]
(16)

Thereby, the gradient is reformulated as

∇f =
[
e1

∂
∂xf(x, y)e3

e2
∂
∂y f(x, y)e3

]
=

[
fxe13

fye23

]
(17)

Analogously, as second-order differential quantity, the Hessian matrix H is given
by

H =

[
e1

∂
∂xfxe13 e2

∂
∂y fxe13

e1
∂
∂xfye23 e2

∂
∂y fye23

]
=

[
fxxe3 −fxye123

fxye123 fyye3

]
(18)

This representation belongs to a hybrid matrix geometric algebra M(2,R3),
which is the geometric algebra of a 2× 2 matrix with elements in R3, see [21].

According to the derivative theorem of Fourier theory [22], the Hessian matrix
in the spectral domain reads

F {H} =

[
(−4π2ρ2 1+cos(2α)

2 F) (4π2ρ2 sin(2α)
2 F)e12

(−4π2ρ2 sin(2α)
2 F)e12 (−4π2ρ2 1−cos(2α)

2 F)

]
(19)

where F indicates the Fourier transform and F is the Fourier transform of the
original signal f . The angular parts of the derivatives are related to spherical
harmonics of even order 0 and 2. It is well known that the Hessian matrix contains
curvature information. Based on it, i0D, i1D and i2D signals can be separated by
computing the trace and determinant. Therefore, we are motivated to construct
a curvature tensor Te, which is related to the Hessian matrix. The curvature
tensor can be obtained from a tensor-valued filter, i.e. Te = F−1 {FHe}, where
F−1 means the inverse Fourier transform and He indicates a tensor-valued filter
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in the frequency domain with the following form

He =
1
2

[
H0 + 〈H2〉0 −〈H2〉2
〈H2〉2 H0 − 〈H2〉0

]
=

1
2

[
1 + cos(2α) − sin(2α)e12

sin(2α)e12 1− cos(2α)

]
exp(−2πρs)

=
[

cos2(α) − 1
2 sin(2α)e12

1
2 sin(2α)e12 sin2(α)

]
exp(−2πρs) (20)

The angular portion of this filter is the same as that of the Hessian, according
to equations (13) and (19), it is composed of even order 2D spherical harmon-
ics H0 and H2. In this filter, components cos2(α) and sin2(α) are two angu-
lar windowing functions. They yield two perpendicular i1D components of the
2D image along the e1 and e2 coordinates. The other components of the filter
are also the combination of two angular windowing functions, i.e. 1

2 sin(2α) =
1
2 (cos2(α− π

4 )− sin2(α− π
4 )). These two angular windowing functions result in

two i1D components of the 2D image, which are oriented along the diagonals
of the plane spanned by e1 and e2. All of the angular windowing functions are
shown in Figure 3. They make sure that i1D components along different ori-
entations are extracted. Consequently, this even filter enables the extraction of
differently oriented even i1D components of the 2D image. Since the conjugate

Fig. 3. From left to right are the angular windowing functions of cos2(α), sin2(α −
π
4
), sin2(α) and cos2(α− π

4
) with white:+1 and black:0.

Poisson kernel H1 [14] is able to evaluate the corresponding odd information
of the i1D signal, the odd representation of the curvature tensor is obtained
by employing H1 to its elements. Besides, the odd representation of the curva-
ture tensor, denoted as To, can also result from a tensor-valued odd filter Ho,
i.e. To = h1 ∗ Te = F−1 {HoF} with h1 referring to the spatial representation of
the conjugate Poisson kernel. Thereby, the odd filter Ho can be obtained from
the even filter by employing the conjugate Poisson kernel, i.e. Ho = H1He. In
the spectral domain, the odd filter thus takes the following form

Ho =
1
2

[
H1(H0 + 〈H2〉0) H1(−〈H2〉2)

H1(〈H2〉2) H1(H0 − 〈H2〉0)
]

(21)

Combing the curvature tensor and its odd representation forms a general 2D
image representation, i.e. T = Te+To. This algebraically extended representation
can also be regarded as the monogenic extension of the curvature tensor.
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4.2 The Monogenic Curvature Signal

Analogous with the differential geometry approach, 2D structures can be clas-
sified by computing the determinants and traces of the tensor pair Te and To.
Since the non-zero determinant indicates the existence of i2D structures, the
even and odd parts of i2D structures are obtained from the determinants of the
curvature tensor and its odd representation, respectively. The even part of i2D
structures reads

oe(x; s) = det(Te)e3 = Ae3 (22)

The determinant of the curvature tensor is scalar valued. Therefore, same as
the monogenic signal, the even part of i2D structures is embedded as the e3

component in the 3D Euclidean space. The odd part of i2D structures is

oo(x; s) = det(To)e2 = Be1 + Ce2 (23)

Because det(To) is spinor valued, by multiplying the e2 basis from the right,
oo(x; s) takes a vector valued representation. Hence, a local representation for
i2D structures is obtained by combining the even and odd parts of i2D structures.
This local representation for i2D structures is called the monogenic curvature
signal and it takes the following form

fi2D(x; s) = oe(x; s) + oo(x; s) = Ae3 + Be1 + Ce2 (24)

The original scalar signal f(x),x ∈ R2 is thus mapped to a vector-valued signal
fi2D(x; s) in R3 as a local representation of i2D signals.

4.3 Local Features and Geometric Model

According to the introduction in Section 2, local features of the monogenic cur-
vature signal can be defined using the logarithm of R+

3 . The spinor field which
maps the e3 basis vector to the monogenic curvature signal fi2D(x; s) is given by
fi2D(x; s)e3. The local amplitude and local phase representation are obtained as

|fi2D(x; s)| = exp(〈log(fi2D(x; s)e3)〉0) = exp(log(|fi2D(x; s)e3|)) (25)

arg(fi2D(x; s)) =
〈fi2D(x; s)e3〉2
|〈fi2D(x; s)e3〉2|atan

( |〈fi2D(x; s)e3〉2|
〈fi2D(x; s)e3〉0

)
(26)

where arctan(·) ∈ [0, π) and arg(·) denotes the argument of the expression. As
the bivector part of the logarithm of the spinor field fi2D(x; s)e3, this local
phase representation describes a rotation from the e3 axis by a phase angle ϕ in
the oriented complex plane spanned by fi2D(x; s) and e3, i.e. fi2D(x; s)∧e3. The
orientation of this complex plane indicates the local main orientation. Therefore,
the local phase representation combines local phase and local orientation of i2D
structures. The dual of the complex plane fi2D(x; s) ∧ e3 is a rotation vector

r(x; s) = (arg (fi2D(x; s)))∗ = 〈log (fi2D(x; s)e3)〉∗2 (27)
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Be1

Ae3

Ce2r

fi2D

2θ

ϕ

Fig. 4. The geometric model for the monogenic curvature signal. Here, ϕ is the phase,
2θ denotes the main orientation in terms of double angle representation, r indicates
the rotation vector.

The rotation vector r(x; s) is orthogonal to the local orientation and its abso-
lute value represents the phase angle of the i2D structure. With the algebraic
embedding, a geometric model for the monogenic curvature signal can be visu-
alized as is shown in Figure 4. The geometric model is an ellipsoid, which looks
very similar to that of the monogenic signal. However, each axis encodes totally
different meaning. The even part of the i2D structure is encoded within the e3

axis, and the odd information is encoded within the plane spanned by e1 and e2

axes. The angle ϕ represents the phase and 2θ is the main orientation in a double
angle representation form. The rotation vector r lies in the plane orthogonal to
e3 since it is dual to the bivector fi2D ∧ e3. Combining the local amplitude and
local phase representation, the monogenic curvature signal for i2D structures,
can be reconstructed as

fi2D = |fi2D|exp (arg (fi2D)) (28)

Having a definition for the i2D local features, we recognize that local amplitude,
phase and orientation are scale dependent. However, they are independent of
each other at each scale.

Gaussian curvature scale-space [9, 10] and the morphological curvature scale-
space [11] are suitable for recovering invariant geometric features of a signal at
multiple scales. However, the definition of curvatures and the scale generating
operator are totally different from our approach. Besides, no phase information
is contained in those frameworks. In contrast to these methods, our approach en-
ables the simultaneous estimation of local amplitude, local phase and orientation
information in a common scale-space concept. Consequently, the monogenic cur-
vature scale-space has a unique advantage if a quadrature relationship concept
is required.

5 Experimental Results

In this section, we show some experimental results in the framework of the
monogenic curvature scale-space. A synthetic image superimposed by an angular
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and a radial modulation is adopted as the test image. The blobs in this image
are regarded as i2D structures. The monogenic curvature signal at a certain scale
can be obtained to characterize i2D structures. The test image and extracted
local features are illustrated in Figure 5.

The estimated orientation denotes the continuous main orientation at a cer-
tain scale. Because the evaluated orientation has a value between 0 and π, it
is wrapped along the horizontal axis. The local energy output, i.e. square of
the local amplitude, indicates the existence of i2D structures. Besides, it also
demonstrates the rotation-invariant property of the monogenic curvature signal.
Local energy outputs of the test image at three different scales are shown.

Fig. 5. Top row: from left to right are the test image and the orientation estimation
at a certain scale of the monogenic curvature scale-space. Bottom row: local energy
outputs at three different scales.

Another test image is composed of two cosine signals with different frequen-
cies, amplitudes and orientations. The test image and the estimated phase infor-
mation are shown in Figure 6. Because the local amplitude and local phase are
independent of each other, when the illumination of the original image varies,
the estimated local phase is still stable. This delivers access to many phase-based
processing techniques in computer vision.

The monogenic curvature signal is a novel model for i2D structures, which
handles the type of structure that the monogenic signal cannot correctly deal
with. The third experiment aims to show the difference of these two models.
Figure 7 demonstrates local energies and local phases extracted from the mono-
genic signal and the monogenic curvature signal. It is obvious that the monogenic
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Fig. 6. Top row: from left to right are the test image and its phase estimation. Bottom
row: the illumination changed test image and its phase evaluation.

Fig. 7. Top row: test image, the energy of the monogenic signal and its phase. Bottom
row: Energy and phase of the monogenic curvature signal.
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signal responds to i1D structures and the monogenic curvature signal extracts
features from i2D structures.

6 Conclusions

We present the monogenic curvature scale-space in this paper. Coupling methods
of tensor algebra, monogenic signal and quadrature filter, the monogenic curva-
ture signal, which characterizes i2D structures is obtained. Employing damped
spherical harmonics as basis functions unifies a scale concept with the monogenic
curvature signal. The monogenic curvatures scale-space is thus formed by the
monogenic curvature signals at all scales. Local amplitude, local phase and local
orientation of i2D structures, as independent features, can be extracted. Com-
pared with the Gaussian curvature scale-space and the morphological curvature
scale-space, our approach has remarkable advantage of simultaneous estimation
of local phase and local orientation, which delivers access to various applications
in the computer vision.
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