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Abstract. This paper presents an algebraically extended 2D image representation. Combining
methods of tensor algebra, monogenic signal and quadrature filter, this novel image represen-
tation can be derived as the monogenic extension of a curvature tensor. From it, the monogenic
signal and the monogenic curvature signal for modeling intrinsically one and two dimensional
(i1D/i2D) structures are obtained as special cases. Local amplitude, phase and orientation are
correspondingly extracted. Compared with the related work, our approach has the advantage
of simultaneous estimation of local phase and orientation. The main contribution is the rota-
tionally invariant phase estimation, which enables many phase-based applications in computer
vision research.
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1 INTRODUCTION

Model based image representation plays an important role in many computer vision tasks.
There are bulk of researches for intensity based image representation, see [7, 16, 15, 4]. How-
ever, those approaches suffer from illumination variations. Therefore, this intensively inves-
tigated area of research is not adequate to model local structures. Phase information carries
most essential structure information of the original image [17]. It is invariant with respect to
illumination changes. Consequently, model based image representation should combine both
the intensity and phase information.

In 1D signal processing, the analytic signal [9] is an important complex valued signal repre-
sentation which enables the local amplitude and phase extraction from the original signal. For
2D images, there exist infinite many types of structures which can be classified into three cate-
gories according to the intrinsic dimensionality [21] as a local property of a signal. Hence, 2D
images can locally belong to the intrinsically zero dimensional (i0D) signals which are constant
signals, intrinsically one dimensional (i1D) signals representing straight lines and edges and
intrinsically two dimensional (i2D) signals which do not belong to the above two cases. The
i2D structures are composed of curved edges and lines, junctions, corners and line ends, etc.
The i1D and i2D structures carry most of the important information of the image. Therefore,
correct representation of them has great significance for many computer vision applications.

In the literature, there exist many approaches for 2D image representation. The structure
tensor [7] and the boundary tensor [15] estimate the main orientation and the energy of the i2D
signal. However, the phase is neglected. In [16], a nonlinear image operator for the detection of
locally i2D signals was proposed, but it captures no information about the phase. There are lots
of papers concerned with applications of the analytic signal for image analysis. But they have
serious problems in transferring that concept from 1D to 2D in a rotation-invariant way. The
partial Hilbert transform and the total Hilbert transform [11] provide some representations of the
phase in 2D. Unfortunately, they lack the property of rotation invariance and are not adequate for
detecting i2D features. Bülow and Sommer [2] proposed the quaternionic analytic signal, which
enables the evaluation of the i2D signal phase. However, this approach also has the drawback
of being not rotationally invariant. For i1D signals, Felsberg and Sommer [5] proposed the
monogenic signal as a novel model. It is a rotationally invariant generalization of the analytic
signal in 2D and higher dimensions. From the monogenic signal, the local amplitude and a local
phase representation can be simultaneously extracted. However, it captures no information of
the i2D part. A 2D phase model is proposed in [3], where the i2D signal is split into two
perpendicularly superposed i1D signals and the corresponding two phases are evaluated. It
delivers a new description of i2D structure by a so-called structure multivector. Unfortunately,
steering is needed and only i2D patterns superimposed by two perpendicular i1D signals can be
correctly handled.

In this paper, we present a novel 2D image representation. By embedding our problem into
a certain geometric algebra, more degrees of freedom can be obtained. Coupling the methods
of tensor algebra, monogenic signal and quadrature filter, the 2D image representation can
be derived as the monogenic extension of a curvature tensor. From this model, local signal
representations for i1D and i2D structures are obtained as the monogenic signal [5] and the
monogenic curvature signal, respectively. Thus, local amplitude, phase and orientation are able
to be extracted in this unique framework in a rotation invariant manner.
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2 GEOMETRIC ALGEBRA

The way we intend to derive a representation for the 2D structure is to some extent a general-
ization of the analytic signal. It cannot be realized in the domain of complex numbers. Instead,
a more powerful algebraic system should be taken into consideration. Geometric algebras con-
stitute a rich family of algebras as generalization of vector algebra [12]. Compared with the
classical framework of vector algebra, the geometric algebra makes a tremendous extension of
modeling capabilities available. For the problem we are concerned, the 2D signal will be al-
gebraically embedded into the Euclidean 3D space. Therefore, in this section, we give a brief
introduction to the geometric algebra over 3D Euclidean space (R3).

The Euclidean space R3 is spanned by the orthonormal basis vectors {e1, e2, e3}. The geo-
metric algebra, R3, of the 3D Euclidean space consists of 23 = 8 elements,

R3 = span{1, e1, e2, e3, e23, e31, e12, e123 = I3} (1)

Here e23, e31 and e12 are the unit bivectors and the element e123 is a unit trivector or unit
pseudoscalar. The vectors square to one and bivectors and the trivector square to -1. A general
combination of these elements is called a multivector, e.g. M = a + be1 + ce2 + de3 + ee23 +
fe31+ge12+hI3. The basic product of a geometric algebra is the geometric product, i.e. M1M2,
where M1 and M2 are two multivectors. Because the square of the bivector or trivector equals
-1, the imaginary unit i of the complex numbers can be substituted by a bivector or a trivector,
yielding an algebra isomorphism. The k-grade part of a multivector is obtained from the grade
operator 〈M〉k. Hence, 〈M〉0 is the scalar part of M , 〈M〉1 represents the vector part, 〈M〉2
indicates the bivector part and 〈M〉3 is the trivector part, which commutes with every element of
the R3. If only the scalar and the bivectors are involved, the combined result is called a spinor,
i.e. S = a + ee23 + fe31 + ge12. All spinors form a proper subalgebra of R3, that is the even
subalgebra R+

3 . A vector-valued signal f in R3 can be considered as the result of a spinor acting
on the e3 basis, i.e. f = be1 + ce2 + de3 = e3S. The transformation performed under the action
of the spinor delivers access to both the amplitude and phase information of the vector-valued
signal f [20]. From the logarithm of the spinor representation, two parts can be obtained. They
are the scaling which corresponds to the local amplitude and the rotation which corresponds to
the local phase representation. The R3-logarithm of a spinor S ∈ R+

3 takes the following form

log(S) = 〈log(S)〉0 + 〈log(S)〉2 = log(|S|) +
〈S〉2
|〈S〉2|atan

( |〈S〉2|
〈S〉0

)
(2)

where atan is the arc tangent mapping for the interval [0, π). The scalar part 〈log(S)〉0 =
log(|S|) illustrates the logarithm of the local amplitude, hence, local amplitude is obtained as
the exponential of it,

|S| = exp(log|S|) = exp(〈log(S)〉0) (3)

The bivector part of log(S) indicates the local phase representation,

arg(S) = 〈log(S)〉2 =
〈S〉2
|〈S〉2|atan

( |〈S〉2|
〈S〉0

)
(4)

3 2D SPHERICAL HARMONICS

In order to analyze 2D patterns, we choose the 2D spherical harmonics as basis functions
according to the proposal in [3]. Since the angular behavior of a signal can be regarded as
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Figure 1: The 2D spherical harmonics from order one to three in the frequency domain. Every 2D spherical
harmonic consists of two orthogonal components.

band limited, only spherical harmonics of order zero to three are applied, otherwise, aliasing
would occur. To build the signal representation, we are more concerned of the angular portions.
Therefore, we use the polar representation of spherical harmonics instead of the Cartesian form
stated in [3]. In the frequency domain, spherical harmonics have much simpler forms than that
in the spatial domain. Spherical harmonics in the spectral domain read

Hn = exp(nαe12) = cos(nα) + sin(nα)e12 (5)

where n indicates the order of the spherical harmonic, and α represents the angle in polar co-
ordinates. Every spherical harmonic consists of two orthogonal components. The first order
spherical harmonic is basically identical to the Riesz kernel [5]. Figure 1 illustrates 2D spher-
ical harmonics from order one to three, every spherical harmonic consists of two orthogonal
components.

In practice, 2D spherical harmonics are combined with radial bandpass filters to form polar
separable filters. In this paper, the difference of Poisson (DOP) kernel [3] is employed as
bandpass filter. As a result, local signal analysis can be realized in a multi-scale approach in the
monogenic scale-space [6]. The DOP is an isotropic bandpass filter which in spectral domain
takes the form

HDOP (ρ; s) = exp(−2πρs2)− exp(−2πρs1) (6)

where s1 and s2 represent the fine and coarse scales parameters, respectively.

4 ALGEBRAICALLY EXTENDED 2D IMAGE REPRESENTATION

The proposed representation is the monogenic extension of the curvature tensor. Motivated
from the differential geometry, this curvature tensor can be constructed. Therefore, a brief
introduction to the differential geometry is given.

4.1 Differential geometry in image processing

In the image processing field, Koenderink and van Doorn [13, 14] have introduced methods
from differential geometry to analyze the local properties of signals. In such case, two dimen-
sional intensity data can be represented as surfaces in 3D Euclidean space. Such surfaces in
geometrical terms can be written as Monge patches of the form

x + f(x) = xe1 + ye2 + f(x, y)e3 (7)

In the following, we will introduce basic concepts of differential geometry and the general
2D signal model in a algebraic framework with more powerful geometric meanings than R3.
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Because we are interested in a tensor representation of the image signal, our model will thus
be represented in the matrix geometric algebra M(2,R3) which results from the tensor product
R3 × R3. The matrix geometric algebra M(2,R3), see [19], is the geometric algebra of 2 × 2
matrices with entities in R3.

The primary first-order differential quantity for an image is the gradient, which is defined as

∇f =

[
e1

∂
∂x

f(x, y)e3

e2
∂
∂y

f(x, y)e3

]
=

[
fxe13

fye23

]
(8)

Analogously, for second-order geometry, the matrix of second derivatives or Hessian H is given
by

H =

[
e1

∂
∂x

fxe13 e2
∂
∂y

fxe13

e1
∂
∂x

fye23 e2
∂
∂y

fye23

]
=

[
fxxe3 −fxye123

fxye123 fyye3

]
(9)

The Hessian matrix is related to the curvature tensor, which describes the local derivation of the
signal f on the tangent plane of the surface.

According to the derivative theorem of Fourier theory [18, 1], in the spectral domain, the
Hessian matrix reads

F {H} =

[
−4π2ρ2 1+cos(2α)

2
F (4π2ρ2 sin(2α)

2
F)e12

(−4π2ρ2 sin(2α)
2

F)e12 −4π2ρ2 1−cos(2α)
2

F

]
(10)

where F denotes the Fourier transform of the original signal f = f(x, y)e3. It is obvious that
the angular parts of the derivatives are related to spherical harmonics of even orders 0 and 2.

In the heart of differential geometry, we find that the first and second fundamental theorems
describe the inner and exterior geometry of a surface. We are here only interested in the exterior
geometry represented by the curvature tensor. It is well known that the Gaussian and mean
curvatures can be computed according to the determinant and the trace of the curvature tensor,
respectively. From these two curvatures, basic types of local geometry (elliptic, hyperbolic,
parabolic and planar surfaces) can be decided. We will take advantage from these facts in
connection with our algebraic signal embedding.

4.2 Curvature tensor and its monogenic extension

In the following, we will extend the ideas of deriving the monogenic signal from a real valued
2D image signal. For a 2D image, every image point is now associated with a curvature tensor
which is related to the Hessian matrix. This curvature tensor Te indicates the even information of
2D structures and is obtained from a tensor-valued filter He in the frequency domain, i.e. Te =
F−1 {FHe}, where F−1 means the inverse Fourier transform. Since the original 2D signal
f(x, y) is embedded as an e3-valued signal, the tensor-valued filter He, called the even filter,
thus takes the following form

He =
1

2

[
H0 + 〈H2〉0 −〈H2〉2
〈H2〉2 H0 − 〈H2〉0

]
(11)

=
1

2

[
1 + cos(2α) − sin(2α)e12

sin(2α)e12 1− cos(2α)

]
=

[
cos2(α) −1

2
sin(2α)e12

1
2
sin(2α)e12 sin2(α)

]

Entities of He are obtained from Eq. (10).
In this filter, the two elements cos2(α) and sin2(α) can be considered as two angular win-

dowing functions which are the same as those of the orientation tensor in [10]. From them, two
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Figure 2: From left to right are the angular windowing functions of cos2(α), sin2(α), cos2(α− π
4 ) and sin2(α− π

4 ).
White indicates positive one and black represents zero.

perpendicular i1D components of the 2D image, oriented along the e1 and e2 coordinates, can
be obtained. The other component of the filter is also the combination of two angular window-
ing functions, i.e. 1

2
sin(2α) = 1

2
(cos2(α − π

4
) − sin2(α − π

4
)). These two angular windowing

functions yield again two i1D components of the 2D image, which are oriented along the di-
agonals of the plane spanned by e1 and e2. These four angular windowing functions, shown
in Fig. 2, can also be considered as four differently oriented filters, which are basis functions
to steer a detector for i1D structures [8]. They make sure that i1D components along different
orientations are extracted.

The Riesz transform [5] is able to evaluate the corresponding conjugate information of the
i1D signal, which is in quadrature phase relation with the i1D signal. Therefore, the odd rep-
resentation of the curvature tensor, called the conjugate curvature tensor To, is obtained by em-
ploying the Riesz transform hR ≡ h1 to elements of Te, which equals the Riesz transform of the
curvature tensor Te. Besides, the conjugate curvature tensor To results also from a tensor-valued
odd filter Ho.

To = hR ∗ Te = F−1 {HoF} (12)

The odd filter Ho equals the Riesz transform of the even filter, i.e. Ho = HRHe with HR ≡ H1.
In the spectral domain, the odd filter thus takes the following form

Ho ≡
[
Ho11 Ho12

Ho21 Ho22

]
=

1

2

[
H1(H0 + 〈H2〉0) H1(−〈H2〉2)

H1(〈H2〉2) H1(H0 − 〈H2〉0)
]

(13)

with

Ho11 = (cos(α) + sin(α)e12)(cos2(α)) (14)

=
1

4
[(3 cos(α) + cos(3α)) + (sin(α) + sin(3α))e12]

Ho21 = −Ho12 = (cos(α) + sin(α)e12)(
1

2
sin(2α))e12 (15)

=
1

4
[−(cos(α)− cos(3α)) + (sin(α) + sin(3α))e12]

Ho22 = (cos(α) + sin(α)e12)(sin
2(α)) (16)

=
1

4
[(cos(α)− cos(3α)) + (3 sin(α)− sin(3α))e12]

It is obvious that this tensor-valued filter consists of odd order spherical harmonics. Hence,
the Riesz transform of the curvature tensor Te gives its corresponding odd representation To.
Combing the curvature tensor and its conjugate representation forms the algebraically extended
2D image representation, i.e. T = Te+To. This representation can be regarded as the monogenic
extension of the curvature tensor. Hence, it is called the monogenic curvature tensor.
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4.3 Local representations for i1D and i2D image structures

Analogous with the Hessian matrix, since the non-zero determinant indicates the existence
of i2D structure, the even and odd parts of i2D structures are obtained from the determinants
of the curvature tensor and its odd representation, respectively. The even part of i2D structures
reads

de = det(Te)e3 = Ae3 (17)

Since the determinant of the curvature tensor is scalar valued, similar as the monogenic signal,
the even part of i2D structures is embedded as the e3 component in the 3D Euclidean space.
The odd part of i2D structures is

do = det(To)e2 = Be1 + Ce2 (18)

Because det(To) is spinor valued, by multiplying the e2 basis from the right, do takes a vector
valued representation. A local representation for i2D structures is obtained by combining the
even and odd parts of i2D structures. This local representation for i2D structures is called the
monogenic curvature signal and it takes the following form

fi2D = de + do = Ae3 + Be1 + Ce2 (19)

The parabolic and planar surface patches, corresponding to i1D and i0D structures, have
zero determinants of the monogenic curvature tensor. In order to separate them with each other,
the trace of the tensor pair Te and To is computed. Non-zero trace illustrates the existence of
i1D structure. Therefore, combination of traces of Te and To can be considered as the local
representation of i1D structures, that is

fi1D = trace(Te) + trace(To) = F−1 {trace(HeF) + trace(HoF)} (20)
= F−1 {(trace(He) + trace(Ho))F}
= F−1 {(1 + H1)F} = f + h1 ∗ f = f + hR ∗ f (21)

where hR is the spatial representation of the Riesz kernel. This indicates that the local represen-
tation for i1D structures, obtained from the proposed general signal model, is the combination
of the original signal and its Riesz transform. This means, the derived i1D structure representa-
tion is just the monogenic signal as proposed in [5]. Hence, the proposed signal representation
includes the monogenic signal and the monogenic curvature signal as special cases to represent
i1D and i2D image structures.

4.4 Local features of the monogenic curvature signal

Since the monogenic signal has been investigated in detail in [5], this section mainly dis-
cusses the local features of the monogenic curvature signal.

From the monogenic curvature signal, three independent local features can be extracted. In
the light of the introduction in Section 2, local features of the monogenic curvature signal can
be defined using the logarithm of R+

3 . The spinor field which maps the e3 basis vector to the
monogenic curvature signal fi2D is given by fi2De3. According to equations (3) and (4), the
local amplitude and local phase representation are obtained as

|fi2D| = exp(〈log(fi2De3)〉0) = exp(log(|fi2De3|)) (22)
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Be1

Ae3

Ce2r

fi2D

2θ

ϕ

Figure 3: The geometric model for the monogenic curvature signal. Here, Ae3 indicates the even information of
the i2D structure, Be1 and Ce2 are two components of the odd part. Phase is represented by ϕ, 2θ denotes the
main orientation in terms of double angle representation, r indicates the rotation vector.

Φ = arg(fi2D) = 〈log(fi2De3)〉2 =
〈fi2De3〉2
|〈fi2De3〉2|atan

( |〈fi2De3〉2|
〈fi2De3〉0

)
(23)

where arctan(·) ∈ [0, π), arg(·) denotes the argument of the expression and 〈fi2De3〉2
|〈fi2De3〉2| indicates

the local main orientation vector. As the bivector part of the logarithm of the spinor field fi2De3,
this local phase representation describes a rotation from the e3 axis by a phase angle ϕ in the
oriented complex plane spanned by fi2D and e3, i.e. fi2D ∧ e3. The orientation of this complex
plane indicates the local orientation. Therefore, the local phase representation combines local
phase and local orientation of i2D structures. The dual of the local phase representation Φ is a
rotation vector

r = (arg (fi2D))∗ = 〈log (fi2De3)〉∗2 (24)

The rotation vector r is orthogonal to the local orientation and its absolute value represents the
phase angle of the i2D structure. With the algebraic embedding, a geometric model for the
monogenic curvature signal can be visualized, see Figure 3.

Given a synthetic image shown in Figure 4, local features can be simultaneously extracted
from the monogenic curvature signal. Those blobs in this test image are considered as i2D
structures. The square of the local amplitude is the local energy which illustrates the existence
of i2D structures. The estimated local energy also indicates the rotation invariant property
of the monogenic curvature signal. Local main orientation denotes the main orientation of
the i2D structure, its minor orientation is simply perpendicular to the main orientation. The
evaluated local phase contains structure information with respect to the occurrence of even
and odd symmetric i1D structures meeting at the location selected by the monogenic curvature
operator.

5 CONCLUSIONS

In this paper, an algebraically extended 2D image representation is presented. A 2D image is
embedded into a certain geometric algebra to obtain more degrees of freedom. Coupling meth-
ods of differential geometry, tensor algebra, monogenic signal and quadrature filter, this novel
image representation can be derived as the monogenic extension of the curvature tensor. Based
on it, local representations for i1D and i2D structures are obtained as the monogenic signal and
the monogenic curvature signal. As in the i1D case, also for i2D structures, from the monogenic
curvature signal, local features of amplitude, phase and orientation can be simultaneously esti-
mated in a unique framework. Compared with other related work, the proposed representation
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Figure 4: Top row: a synthetic image and the energy output from the monogenic curvature signal. Bottom row:
local main orientation and phase estimation from the monogenic curvature signal.

has the advantage of enabling local features evaluation from a unique framework in a rotation
invariant manner.
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