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Abstract. Neural networks, reinforcement learning systems and evolutionary algo-
rithms are widely used to solve real-world problems. We investigate learning and
adaptation capabilities of agents and show that the learning time required in continual
learning is shorter than that of learning from scratch undervarious learning conditions.
We argue that agents using appropriate hybridization of learning and evolutionary al-
gorithms show better learning and adaptation capability ascompared to agents using
learning algorithms only. We support our argument with experiments, where agents
learn optimal policies in an artificial robot world.

1 Introduction

When an infant learns how to go and how to stand, it has no explicit teacher, but it does have
a direct sensorimotor connection to its environment. From this connection, the infant receives
a wealth of information about cause and effect, about consequences of actions, and about
what to do in order to achieve goals. This interaction is a major source of knowledge about
our environment and ourselves. Learning from interaction is a fundamental idea underlying
nearly all theories of learning and intelligence [6]. It is used by agents at the individual level.
In this work, we shall investigate agents using learning from interaction. This type of learning
is different from supervised learning, which is learning from examples provided by a knowl-
edgeable external supervisor. Supervised learning is an important type of learning but alone
it is not adequate for learning from interaction. Moreover,it is usually impractical to obtain
examples of desired behavior that are both correct and representative of all the situations in
which the agent has to act and learn [5].

At the population level, it is clear that parents have inherited the infants the ability to learn
and survive. This inherited ability is developed through evolution. A generation of an organ-
ism can only survive or continue to live if the population adapts itself to various situations in
the environment. This shows that the learning and adaptation capabilities of agents are also
affected by evolution.

Reinforcement learning [3] is one form of learning from interaction. It is learning what to
do, how to map situations to actions so as to maximize a numerical reward signal. The learner
is not told which actions to take, but instead must discover by itself which actions yield the
most reward by trying them. Like the infant, an agent using reinforcement learning learns
and adapts itself through interaction with the environment. In this paper, we use Q-learning
[6], which is one form of reinforcement learning, to investigate the learning and adaptation
of agents at individual level.
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Evolutionary algorithms are, on the other hand, flavors of the well known machine learn-
ing method called beam search where the machine learning evaluation metric for the beam
is called the ”fitness function” and the beam of the machine learning is referred to as the
”population” [1]. Like other machine learning systems, evolutionary algorithms have oper-
ators that regulate the size, contents and ordering of the beam (population). We use genetic
algorithms (GA), which are one form of evolutionary algorithms, to investigate the learning
and adaptation of agents at population level.

In this work, we try to answer the following important questions:

1. Is the learning time required by agents shorter in continual learning at both individual and
population levels, and under various learning conditions?

2. Is it possible to improve the learning and adaptation capability of agents by hybridizing
learning and evolutionary algorithms?

We will use agents using Q-learning, hybrid of multi-layer perceptron (MLP) and ge-
netic algorithm, and hybrid of Q-learning and genetic algorithm respectively in answering
the above questions. The agents live and operate in an artificial robot world.

2 The Robot World (Test Scenario)

A deterministic world of denumerable states is used as a testscenario to investigate the learn-
ing and adaption capability of an agent. The agent is assumedto be a point robot with simpli-
fied motor actions:left, forward andright [3]. All actions can be tried in all states.
The robot world and its state of transitions as a function of the present state and action taken,
are shown in figure 1. The arrows in the cells show the orientation of the point robot when
the robot finds itself in these states.

The task of the agent is to reach a given goal state through theshortest path. For rein-
forcement learning agents, a reward function given any current state, next state and action,st,
st+1 anda, is given by equation (1).

Ra
st,st+1

=











0 if st+1 6= st

1 if st+1 = goal state
−1 if st+1 = st

. (1)

The negative numerical reward in equation (1) discourages agents attempting an action against
the world boundary. This action does not change the state of the environment. For genetic al-
gorithm, a fitness function given by equation (2) is used.

f (n) = γn. (2)

The quantityf represents the fitness value of an individual,γ is a constant laying in the
interval [0, 1), andn is the number of steps taken by the point robot from a given start state
to a given goal state. Equation (2) encourages those individuals that go from the start state to
the goal state through a shortest path. The dynamics of the robot world, which is described
by the state transitions table and the reward function, is not known to the agents a priori.

The robot world is a very highly simplified scenario of a real robot world. First, it is
impossible to think a dimensionless robot or completely distinguishable states. Second, it is
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Figure 1: A two-dimensional robot world (a) The point robot must find the shortest path from any start state to the
goal state. (b) The state transitions table that governs themotion of the point robot. (c) Interpretation of the robot
world. It consists of four positions. In each of these positions, the robot can take one of the four orientations. A
robot in state 0 or a robot in position I with orientation north will bump against the world boundary if it executes
aforward action. In this case, the state of the robot world will not change. If it executes aright action, then
it changes its orientation to east or goes to state 1.

not possible to throw the details of low level control and deal with only simplified motor
actions. Even though these assumptions are unrealistic, webase our experiments on artificial
robot world due to the following justifiable reasons:

1. The experiments have to be carried out for a large number oftimes for different conditions
of learning and adaptation experiments. This requires a lotof time and energy to execute
all the experiments on real robot until one gets agents with satisfactory behaviors.

2. There is a danger of coming up with wrong conclusions with experiments on real robots.
This is because of the fact that noise and error makes certainparts of the agent’s policy to
fluctuate.

A more efficient and inexpensive method is, therefore, to runthe experiments on an arti-
ficial robot world that needs much less experimental effort and yet to come up with domain
free results.

3 What to Learn?

In this work, the agent learns on-line through interaction with the environment either the
optimal policy for perceived states or the action values of the states of the environment. A
policy defines the learning agent’s way of behaving at a giventime. It is a mapping from
perceived states of the environment to actions to be taken when in those states. An action
value of a state shows “how good” it is for an agent to perform agiven action in a given state.
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By optimal policy, we mean a policy that enables the agent to go from a given start state to
a given goal state with minimum number of actions or steps. With genetic algorithm, the agent
learns directly the optimal policy without having to learn the model of the environment. In
Q-learning, the agent learns the action values and saves them in a Q-table [3]. It can generate
the optimal policy for perceived states from the Q-table.

4 Experimental Setup

The following test cases are selected for the experiments. Each of the cases shows the level
of the knowledge of the agent about what is going to be learned.

Test Case A

In this test case, we assume that the states of the policy thatis going to be learned are com-
pletely contained in the previously learned optimal policy. For example, one of the optimal
policies from start state7 to goal state15 contains the states{7, 4, 5, 13, 12, 15}. The se-
quences of actions that are contained in the policy are{right, right, forward, left, left}.

Assuming that the previously learned optimal policy is thispolicy, any policy with start
statesstart ∈ {7, 4, 5, 13, 12, 15} and goal statesgoal = 15 can be considered as a test policy,
since it is known from Bellman optimality equation [3, 6] that an optimal policy withsstart ∈
{ 7, 4, 5, 13, 12, 15} and goal state 15 has its states completely contained in one of the optimal
policies with start state 7 and goal state 15.

Test Case B

Here it is assumed that the previously learned optimal policy and the policy which is going to
be learned have common states. A policy with states{3, 0, 1, 5, 4, 7} generated by sequence
of actions{right, right, forward, left, left} and a policy with states{2, 1, 5, 13, 12, 15}
generated by actions{left, forward, forward, left, left} are good examples of policies having
common states{1, 5}.

Test Case C

The previously learned optimal policy and the policy which is going to be learned have no
common states. Examples of optimal policies which have no common states are{1, 5, 13, 9,
8, 11} generated by actions{forward, forward, forward, left, left} and{15, 7, 3, 0} generated
by actions{forward, forward, right}.

5 Experiments and Results

For all the experiments, the start and goal states{7, 15}, {3, 11} and{15, 0} are selected for
the previously learned optimal policy for the test case A, B and C respectively, and the start
and goal states{5, 15}, {7, 15} and{1, 11} are selected for the optimal policy which is going
to be learned for the test case A, B and C respectively. Each ofthe plots of the results of the
experiments in this section shows the average taken over 10 experiments by using different
random seed values for the Q-learning and genetic algorithm.
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5.1 Learning and Adaptation at Individual Level

In this section, we use Q-learning in investigating learning and adaptation of agents at in-
dividual level. Q-learning [6] is a reinforcement learningalgorithm which is used whenever
there is no explicit model of the environment. In Q-learning, the agent learns the action val-
ues of the states of the environment and it can generate the optimal policy for the perceived
states from the learned action values. The algorithm works by maintaining an estimate of
the expected return for each state-action pair (Q-values) and adjusting these values based on
actions taken and rewards received. The current Q-value is updated by a change,

∆Q (s, a) = α

[

r + γ max
a

Q (w, a) − Q (s, a)
]

(3)

where w is the next state. The parameterα controls the learning rate and the parameterγ ,
0 ≤ γ ≤ 1 , determines the present value of the future rewards. A reward receivedk time
steps in the future is worth onlyγk−1 times what it would be worth if it were received after
executing an action. In order to balance the exploration andexploitation in the Q-learning,
we have used the simpleǫ− greedy action selection method [3].

In the experiment the parametersα andγ are set to0.3. For learning from scratch, we have
initialized the Q-table randomly and saved the learned Q-values for later use in the continual
learning.
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Figure 2: Result obtained for Q-learning. The top row shows from left to right results of learning from scratch
for test case A, B and C respectively. The bottom row shows thecorresponding result in continual learning.

From the result shown in figure 2, one can conclude that the learning time is shorter in
continual learning for all test cases. In the figure, a trial is made up of a sequence of actions
performed by an agent in an attempt to reach a goal state from agiven start state. In a trial,
an agent may or may not reach the goal state. For test case A, one can see that the agent does
not need to learn the optimal policy in continual learning atall. Test case B shows that the
learning time of the agent is decreased in continual learning as compared to the learning time
in learning from scratch. In test case C, one can see that eventhough the previously learned
policy and the policy which is going to be learned have no common states, the agent needs
shorter learning time in continual learning. This is possible due to the fact that the agent has
collected information about other states which are not contained in the previously learned
policy while learning it.
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5.2 Learning and Adaptation at Population Level

Genetic algorithms (GA) are used in investigating the learning and adaptation of agents at
population level. Genetic algorithms [7] are computational models inspired by natural evo-
lution. They encode a potential solution of a given problem on a simple chromosome-like
data structure and apply genetic operators to these structures so as to preserve critical infor-
mation. A genetic algorithm starts with a population of chromosomes which are randomly
generated. Chromosomes are then evaluated and given reproductive opportunities according
to the result of their evaluations. Those chromosomes whichrepresent a better solution to
the target problem are given more chances to reproduce than those chromosomes which are
poorer solutions.

In this section, we have used multi-layer perceptrons (MLPs) to represent the optimal pol-
icy. A population of MLPs with two layers forms a population of controllers. The structure of
the networks and the number of hidden units is fixed but the weights are determined directly
by the genetic algorithm. The MLP controls the point robot inthe robot world. One should
note that the MLPs have no any capability of learning throughinteraction. That means, learn-
ing and adaptation occurs only at population level and not atindividual level. The genetic
algorithm lets each individual to control the point robot and evaluates and selects an individ-
ual (controller) that moves the point robot from a given start state to a given goal state with
minimal number of steps. It then applies genetic operators to generate the next population of
MLPs for predefined number of trials.

Figure 3 shows an example of an MLP used in this experiment andthe encoding of the
states and actions. A binary code is used for both input (states) and output (actions) of the
neural network.

0

1

1

0

0

1

Output
Input

actions
states

State Code
0 000
...

...
14 1110
15 1111

Action Code
left 00
right 01
forward 10
“Don’t care” 11

(a) (b) (c)

Figure 3: The MLP used (a) and the encoding of the states (b) and actions (c).

A fitness function given by equation (2) is used to evaluate the individuals. An example
of a chromosome representing an MLP (an individual) is shownin figure 4. The parameters
of the neural network and genetic algorithms are given in table 1.

Wo1,1 ··· Wo1,N Wo2,1 ··· Wo2,N Wh1,1 ··· Wh1,4 WhN,1 ··· WhN,4

Figure 4: A chromosome encoding an MLP.Wo’s show the synapses going to the output units andWh’s show
synapses going from input to hidden units.N is the number of hidden units. In this experiment, we used two
output and four input units, and six hidden nodes.

We have run the experiment for all test cases and obtained theresult shown in figure 5. As
can be seen in the figure, the population attains a certain average fitness value. The average



Improving Learning and Adaptation Capability of Agents

Table 1: Parameters of the MLPs and genetic algorithm.

Number of individuals 50
Crossover probability 0.2
Mutation probability per bit 0.05
Selection method Truncation selection
Number of hidden nodes 6
Number of bits per gene coding a synapse8
Number of generations 100

fitness value, which is controlled by the genetic operators,shows an equilibrium point of two
”forces”. One of the forces, which is controlled by selection operator, tries to pull the pop-
ulation towards the global maximum fitness value (fitness value of the best individual) and
the other force, which is controlled by the crossover and mutation operators, tries to main-
tain the variation between individuals. The learning time per individual, which is measured
in number of generations, required in attaining a certain average fitness value is shorter in
continual learning than the learning time in learning from scratch for all test cases. Note that
an individual has only one trial per generation in controlling the point robot from a given start
state to a given goal state.

We have also run experiments for agents using a hybrid of a recurrent neural network
and genetic algorithm for both Elman and Jordan architectures [4]. In the experiments, the
weights of the neural networks is determined directly by genetic algorithm.
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Figure 5: Result obtained for a hybrid of neural networks andgenetic algorithm. The top row shows from
left to right results of learning from scratch for test case A, B and C respectively. The bottom row shows the
corresponding result in continual learning.

5.3 Hybrid of Learning and Evolutionary Algorithm

A population of reinforcement learning agents using Q-learning and whose performance is
improved by a genetic algorithm are used to form the hybrid algorithm. In this section, we
investigate agents that use the Lamarckian strategy and agents that use the Darwinian strategy
[4]. For both agents, the algorithm starts with genetic algorithm, which initializes the Q-tables
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of the agents. The agents learn through interaction in theirlifetime and change the content of
the Q-table as they learn about their environment. At the endof the life of an agent that use the
Lamarckian strategy, the collected knowledge which is stored in the Q-table will be written
back to the chromosome which encodes it. In other words, the current generation will inherit
to the next generation what it has learned about its environment. For agents using Darwinian
strategy, the contents of the Q-table will not be written back to the chromosome at the end
of the life of the agent. Figure 6 shows the Q-table and the chromosome that encodes it and
used in this experiment.

States
Actions 0 1 · · · 14 15

left Q0,0 Q0,1 · · · Q0,14 Q0,15

right Q1,0 Q1,1 · · · Q1,14 Q1,15

forward Q2,0 Q2,1 · · · Q2,14 Q2,15

Q0,0 · · · Q0,15 Q1,0 · · · Q1,15 Q2,0 · · · Q2,15

Figure 6: The Q-table and the chromosome that encodes it.

The reward function given by equation (1) is used for the reinforcement learning agents,
and the fitness function given by equation (2) is used for the genetic algorithm. The pa-
rameters for the genetic algorithm and the reinforcement learning are shown in table 2. The
experiment is run for all the test cases and the results are shown in figure 7. As can be seen in
the figure, the learning time in continual learning is shorter than the learning time in learning
from scratch for all test cases and for both strategies. The average fitness value attained by
population of agents using Darwinian strategy is greater than that attained by population of
agents using Lamarckian strategy for both learning from scratch and continual learning.

Table 2: The parameters of genetic algorithm and reinforcement learning.

Number of individuals in the Population 50
Crossover probability 0.2
Mutation probability per bit 0.05
Selection method Truncation selection
Learning rate of reinforcement learning 0.3
Discount rate of reinforcement learning 0.3
Number of bits coding a Q-value 8
Number of generations 100

6 Summary and Analysis of Results

Table 3 summarizes the results of the experiments run in section 5.
The results of experiments clearly show that the learning time required in continual learn-

ing is shorter than that required in learning from scratch atboth individual and population
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Figure 7: Result obtained for a hybrid of reinforcement learning and genetic algorithm for agents using Dar-
winian and Lamarckian strategies . The first two columns showresults obtained for agents using Darwinian
strategy and the last two columns show results obtained for agents using Lamarckian strategy.

Table 3: Summary of results obtained after running the experiments for test case A, B and C respectively. For
evolutionary experiments, all individuals have exactly one trial per generation.

Learning and evolutionary # of trials # of trials
methods used by agents in learning in continual

from scratch learning
A B C A B C

Q-Learning 40 50 40 0 14 20
Hybrid of MLP and GA 4 9 8 0 4 4
Hybrid of Q-Learning and GA (Lamarckian) 10 5 7 0 3 4
Hybrid of Q-Learning and GA (Darwinian) 5 5 6 0 3 4
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levels and under various learning conditions. They also show that the learning time in con-
tinual learning depends on the number of states of a policy, which is going to be learned, that
are contained in the previously learned optimal policy. Themore states the two policies have
in common, the shorter will be the time required in continuallearning. For test case A, where
the states of a policy are completely contained in the previously learned optimal policy, the
agent does not need to learn the optimal policy in continual learning. It is also interesting to
see that, even though the two policies have no common states (test case C), the time required
in continual learning is shorter than the time required in learning from scratch.

By comparing the results of agents using Q-learning and agents using a hybrid of Q-
learning and GA, one can see that agents using a hybrid of Q-learning and GA required less
number of trials to learn the action values of the states of the environment in both learning
from scratch and continual learning than agent using Q-learning algorithm only. This supports
our argument that agents using appropriate hybridization of learning and evolutionary algo-
rithms show better learning and adaptation capability as compared to agents using learning
algorithms only.

7 Conclusion and Outlook

We have shown that continual learning requires shorter learning time as compared to learning
from scratch under various learning conditions. The different test cases of the experiments
show that an agent can use a related knowledge to a new situation, which is going to be
learned, to adapt itself faster and make the learning time shorter. Furthermore, the adaptation
time required by an agent to adapt to a new situation depends on the amount of knowledge it
has about the new situation.

Hybridization of various learning algorithms with evolutionary algorithms will give agents
two levels of adaptation capabilities. The first is an individual level adaptation capability, and
the second is a population level adaptation capability. Theindividual level adaptation capabil-
ity depends on the the learning algorithm used. At population level, the adaptation capability
is contained in the variation between individuals.

With adequate hybridization of learning algorithms and evolutionary methods (like ge-
netic algorithms, genetic programming and genetic strategies) it is our believe that one can
design better agents with better learning and adaptation capability for either lower or higher
cognitive levels.
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