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Abstract. Neural networks, reinforcement learning systems and &eolary algo-
rithms are widely used to solve real-world problems. We étigmte learning and
adaptation capabilities of agents and show that the legttivite required in continual
learning is shorter than that of learning from scratch undeipous learning conditions.
We argue that agents using appropriate hybridization ohlag and evolutionary al-
gorithms show better learning and adaptation capabilityoaspared to agents using
learning algorithms only. We support our argument with ekpents, where agents
learn optimal policies in an artificial robot world.

1 Introduction

When an infant learns how to go and how to stand, it has no@kggacher, but it does have
a direct sensorimotor connection to its environment. Frioisixdonnection, the infant receives
a wealth of information about cause and effect, about caremsmes of actions, and about
what to do in order to achieve goals. This interaction is aomspurce of knowledge about
our environment and ourselves. Learning from interactioa fundamental idea underlying
nearly all theories of learning and intelligence [6]. It sed by agents at the individual level.
In this work, we shall investigate agents using learningifioteraction. This type of learning
is different from supervised learning, which is learningnfrexamples provided by a knowl-
edgeable external supervisor. Supervised learning is poriant type of learning but alone
it is not adequate for learning from interaction. Moreoveis usually impractical to obtain
examples of desired behavior that are both correct andgeptative of all the situations in
which the agent has to act and learn [5].

At the population level, it is clear that parents have inieerthe infants the ability to learn
and survive. This inherited ability is developed througblation. A generation of an organ-
ism can only survive or continue to live if the population pt$aitself to various situations in
the environment. This shows that the learning and adaptatpabilities of agents are also
affected by evolution.

Reinforcement learning [3] is one form of learning from hatetion. It is learning what to
do, how to map situations to actions so as to maximize a nealegward signal. The learner
is not told which actions to take, but instead must discoyeitself which actions yield the
most reward by trying them. Like the infant, an agent usingfoecement learning learns
and adapts itself through interaction with the environmbmthis paper, we use Q-learning
[6], which is one form of reinforcement learning, to invesiie the learning and adaptation
of agents at individual level.
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Evolutionary algorithms are, on the other hand, flavors efitlell known machine learn-
ing method called beam search where the machine learningagiean metric for the beam
is called the "fitness function” and the beam of the machimenieg is referred to as the
"population” [1]. Like other machine learning systems, lenmnary algorithms have oper-
ators that regulate the size, contents and ordering of taml{population). We use genetic
algorithms (GA), which are one form of evolutionary algbnits, to investigate the learning
and adaptation of agents at population level.

In this work, we try to answer the following important quesis:

1. Isthe learning time required by agents shorter in coatil@arning at both individual and
population levels, and under various learning conditions?

2. Is it possible to improve the learning and adaptation b#ipaof agents by hybridizing
learning and evolutionary algorithms?

We will use agents using Q-learning, hybrid of multi-layergeptron (MLP) and ge-
netic algorithm, and hybrid of Q-learning and genetic allfpon respectively in answering
the above questions. The agents live and operate in aniaftrbbot world.

2 The Robot World (Test Scenario)

A deterministic world of denumerable states is used as atesiario to investigate the learn-
ing and adaption capability of an agent. The agent is asstmrtaela point robot with simpli-
fied motor actionst ef t, f orwar d andri ght [3]. All actions can be tried in all states.
The robot world and its state of transitions as a functiorheffiresent state and action taken,
are shown in figure 1. The arrows in the cells show the oriemtaif the point robot when
the robot finds itself in these states.

The task of the agent is to reach a given goal state througbhbeest path. For rein-
forcement learning agents, a reward function given anyecistate, next state and actiop,
s¢+1 anda, is given by equation (1).

0 if St41 F St
R s =4 1 ?f si+1 = goal state . (1)
-1 if St+1 = St

The negative numerical reward in equation (1) discouragesta attempting an action against
the world boundary. This action does not change the stateeadtvironment. For genetic al-
gorithm, a fitness function given by equation (2) is used.

fn) =" (2)

The quantityf represents the fitness value of an individuais a constant laying in the
interval [0, 1), andn is the number of steps taken by the point robot from a given state
to a given goal state. Equation (2) encourages those indilsdhat go from the start state to
the goal state through a shortest path. The dynamics of tha world, which is described
by the state transitions table and the reward function, i&nown to the agents a priori.

The robot world is a very highly simplified scenario of a reabaot world. First, it is
impossible to think a dimensionless robot or completelyimigiishable states. Second, it is
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Figure 1: A two-dimensional robot world (a) The point robatshfind the shortest path from any start state to the
goal state. (b) The state transitions table that governmtiten of the point robot. (c) Interpretation of the robot
world. It consists of four positions. In each of these posii, the robot can take one of the four orientations. A
robot in state O or a robot in position | with orientation towtill bump against the world boundary if it executes
af or war d action. In this case, the state of the robot world will notredpa If it executes ai ght action, then

it changes its orientation to east or goes to state 1.

not possible to throw the details of low level control and|de#&h only simplified motor
actions. Even though these assumptions are unrealisticageour experiments on artificial
robot world due to the following justifiable reasons:

1. The experiments have to be carried out for a large numhanes for different conditions
of learning and adaptation experiments. This requires afltine and energy to execute
all the experiments on real robot until one gets agents vaitisfactory behaviors.

2. There is a danger of coming up with wrong conclusions witeeiments on real robots.
This is because of the fact that noise and error makes cgrdais of the agent’s policy to
fluctuate.

A more efficient and inexpensive method is, therefore, tothenexperiments on an arti-
ficial robot world that needs much less experimental effod et to come up with domain
free results.

3 What to Learn?

In this work, the agent learns on-line through interactiathwhe environment either the
optimal policy for perceived states or the action valueshef gtates of the environment. A
policy defines the learning agent’s way of behaving at a giiee. It is a mapping from

perceived states of the environment to actions to be takemwhthose states. An action
value of a state shows “how good” it is for an agent to perforgivan action in a given state.
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By optimal policy, we mean a policy that enables the agenbtis@m a given start state to
a given goal state with minimum number of actions or stepgh\@&netic algorithm, the agent
learns directly the optimal policy without having to leahetmodel of the environment. In
Q-learning, the agent learns the action values and savesithe Q-table [3]. It can generate
the optimal policy for perceived states from the Q-table.

4 Experimental Setup

The following test cases are selected for the experimeiatsh Bf the cases shows the level
of the knowledge of the agent about what is going to be learned

Test Case A

In this test case, we assume that the states of the policystiyaing to be learned are com-
pletely contained in the previously learned optimal poliegr example, one of the optimal
policies from start stat@ to goal statel5 contains the statef?, 4, 5, 13, 12, 15}. The se-
quences of actions that are contained in the policy{ aight, right, forward, left, left}.

Assuming that the previously learned optimal policy is {hadicy, any policy with start
states.,+ € {7, 4, 5, 13, 12, 15} and goal state,,,; = 15 can be considered as a test policy,
since it is known from Bellman optimality equation [3, 6] tlzen optimal policy withs;,.; €
{7,4,5,13,12, 15} and goal state 15 has its states completely contained infdhe optimal
policies with start state 7 and goal state 15.

Test Case B

Here it is assumed that the previously learned optimal palid the policy which is going to
be learned have common states. A policy with st4&$®, 1, 5, 4, 7} generated by sequence
of actions{right, right, forward, left, left} and a policy with state§2, 1, 5, 13, 12, 15}
generated by actiondeft, forward, forward, left, |eft} are good examples of policies having
common state$1, 5}.

Test Case C

The previously learned optimal policy and the policy whistgbing to be learned have no
common states. Examples of optimal policies which have monson states arél, 5, 13, 9,

8, 11} generated by actionorward, forward, forward, left, left} and{15, 7, 3, 0} generated
by actions{forward, forward, right}.

5 Experiments and Results

For all the experiments, the start and goal sté®45}, {3, 11} and{15, 0} are selected for
the previously learned optimal policy for the test case An8 & respectively, and the start
and goal state§5, 15}, {7, 15} and{1, 11} are selected for the optimal policy which is going
to be learned for the test case A, B and C respectively. Eatiegflots of the results of the
experiments in this section shows the average taken ovexgdriements by using different
random seed values for the Q-learning and genetic algorithm
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5.1 Learning and Adaptation at Individual Level

In this section, we use Q-learning in investigating leagnamd adaptation of agents at in-
dividual level. Q-learning [6] is a reinforcement learnialgorithm which is used whenever
there is no explicit model of the environment. In Q-learnitige agent learns the action val-
ues of the states of the environment and it can generate timapolicy for the perceived
states from the learned action values. The algorithm woykmhbintaining an estimate of
the expected return for each state-action pair (Q-valusddjusting these values based on
actions taken and rewards received. The current Q-valyadatad by a change,

AQ (s,a) = « T+7méiXQ(w,a)—Q(s,a) (3)

where w is the next state. The parameterontrols the learning rate and the parameter
0 <~ < 1, determines the present value of the future rewards. A ebwereived: time
steps in the future is worth only*~! times what it would be worth if it were received after
executing an action. In order to balance the explorationexpdoitation in the Q-learning,
we have used the simpde- greedy action selection method [3].

In the experiment the parametersnd~y are set td.3. For learning from scratch, we have
initialized the Q-table randomly and saved the learned Regfor later use in the continual
learning.

Start state =5 Goal state = 15 2] Start state =7 Goal state = 15 2 V Start state =1 Goal state = 11
Learning from scratch
Test case C

Learning from scratch Learning from scratch
Testcase B

b,
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Number of Actions
Number of Actions
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Start state =5 Goal state = 15 Start state =7 Goal state = 15 2 Start state =1 Goal state = 11
Continual Learning Continual Learning Continual Learning
Test case A Testcase B Test case C
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5
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Figure 2: Result obtained for Q-learning. The top row shawsaifleft to right results of learning from scratch
for test case A, B and C respectively. The bottom row showsdhneesponding result in continual learning.

From the result shown in figure 2, one can conclude that thailegtime is shorter in
continual learning for all test cases. In the figure, a tgahiade up of a sequence of actions
performed by an agent in an attempt to reach a goal state frginea start state. In a trial,
an agent may or may not reach the goal state. For test caseAanrsee that the agent does
not need to learn the optimal policy in continual learninglht Test case B shows that the
learning time of the agent is decreased in continual legra;ncompared to the learning time
in learning from scratch. In test case C, one can see thattbeeigh the previously learned
policy and the policy which is going to be learned have no camrstates, the agent needs
shorter learning time in continual learning. This is poksdue to the fact that the agent has
collected information about other states which are notaioet in the previously learned
policy while learning it.
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5.2 Learning and Adaptation at Population Level

Genetic algorithms (GA) are used in investigating the legyrand adaptation of agents at
population level. Genetic algorithms [7] are computatlanadels inspired by natural evo-
lution. They encode a potential solution of a given problamacsimple chromosome-like
data structure and apply genetic operators to these stescto as to preserve critical infor-
mation. A genetic algorithm starts with a population of chosomes which are randomly
generated. Chromosomes are then evaluated and given vefivedopportunities according
to the result of their evaluations. Those chromosomes wiegphesent a better solution to
the target problem are given more chances to reproduce lioae thromosomes which are
poorer solutions.

In this section, we have used multi-layer perceptrons (Mit&sepresent the optimal pol-
icy. A population of MLPs with two layers forms a populatioihcontrollers. The structure of
the networks and the number of hidden units is fixed but thghisiare determined directly
by the genetic algorithm. The MLP controls the point robotha robot world. One should
note that the MLPs have no any capability of learning throanggraction. That means, learn-
ing and adaptation occurs only at population level and ningividual level. The genetic
algorithm lets each individual to control the point robotiavaluates and selects an individ-
ual (controller) that moves the point robot from a giventsséaite to a given goal state with
minimal number of steps. It then applies genetic operatogenherate the next population of
MLPs for predefined number of trials.

Figure 3 shows an example of an MLP used in this experimentt@éncoding of the
states and actions. A binary code is used for both inputgstand output (actions) of the
neural network.

State | Code | [ Action Code
0 000
Input o0 Ieﬁ OO
states p ;ﬂ:g#; rg ht 01
o1 14 1110 forward 10
15 | 1111 ‘Don'tcare” | 11
(@) (b) (©)

Figure 3: The MLP used (a) and the encoding of the states (baetions (c).

A fitness function given by equation (2) is used to evaluageitidividuals. An example
of a chromosome representing an MLP (an individual) is shmwfigure 4. The parameters
of the neural network and genetic algorithms are given itetab

(Worn | | W [ Wons | = | Woan | Whin | = | Whns | Whs | =] Wi |

Figure 4: A chromosome encoding an MLIP.o’s show the synapses going to the output units Biids show
synapses going from input to hidden uni®é.is the number of hidden units. In this experiment, we used two
output and four input units, and six hidden nodes.

We have run the experiment for all test cases and obtaineeshié shown in figure 5. As
can be seen in the figure, the population attains a certanageditness value. The average
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Table 1: Parameters of the MLPs and genetic algorithm.

Number of individuals 50

Crossover probability 0.2

Mutation probability per bit 0.05

Selection method Truncation selectior
Number of hidden nodes 6

Number of bits per gene coding a synaps@

Number of generations 100

fitness value, which is controlled by the genetic operairsys an equilibrium point of two
"forces”. One of the forces, which is controlled by seleotmperator, tries to pull the pop-
ulation towards the global maximum fitness value (fithessevalf the best individual) and
the other force, which is controlled by the crossover andatmr operators, tries to main-
tain the variation between individuals. The learning tinee imdividual, which is measured
in number of generations, required in attaining a certagraye fithess value is shorter in
continual learning than the learning time in learning fracrasch for all test cases. Note that
an individual has only one trial per generation in contngjlthe point robot from a given start
state to a given goal state.

We have also run experiments for agents using a hybrid of @rnextt neural network
and genetic algorithm for both Elman and Jordan architest{#]. In the experiments, the
weights of the neural networks is determined directly byegeralgorithm.

Fitness value of the best individual °* Fitness value of the best individual **I Fitness value of the best individual

‘rAverage fitness value of the population

Average fitness value of the population

o1 Average fitness value of the population

Fitness value
Fitness value
Fitness value

Test case B
Start state =5 Goal state = 15 Start state = 7 Goal state = 15
Learning from scratch Learning from scratch

Test case A

Test case C
Start state = 1 Goal state = 11
Learning from scratch

Generation * Generation . . ~ Generation

Fitness value of the best individual I Fitness value of the best individual °**I Fitness value of the best individual

Average fitness value of the population Average fitness value of the population

Average fitness value of the population

Fitness value
Fitness value
Fitness value

Test case A

Test case B
Start state =5 Goal state = 15 Start state = 7 Goal state = 15
Continual learning Continual learning

Test case
Start state =1 Goal state = 11
Continual learning

Generation © Generation . . ~ Generation .

Figure 5: Result obtained for a hybrid of neural networks gadetic algorithm. The top row shows from
left to right results of learning from scratch for test caseBfand C respectively. The bottom row shows the
corresponding result in continual learning.

5.3 Hybrid of Learning and Evolutionary Algorithm

A population of reinforcement learning agents using Q+deay and whose performance is
improved by a genetic algorithm are used to form the hybmg@ihm. In this section, we
investigate agents that use the Lamarckian strategy amtdsapat use the Darwinian strategy
[4]. For both agents, the algorithm starts with genetic atgm, which initializes the Q-tables
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of the agents. The agents learn through interaction in lifeiime and change the content of
the Q-table as they learn about their environment. At theoétitk life of an agent that use the
Lamarckian strategy, the collected knowledge which iseston the Q-table will be written
back to the chromosome which encodes it. In other words,uhert generation will inherit
to the next generation what it has learned about its enviemini-or agents using Darwinian
strategy, the contents of the Q-table will not be writtenkbcthe chromosome at the end
of the life of the agent. Figure 6 shows the Q-table and therabsome that encodes it and
used in this experiment.

States
Acions || 0 | 1 |- 14 | 15
left Qo0 | Qo | -+ | Qo1a | Qo5
right Qo | Q|| Quia | Quis
forward || Q20 | @21 | --- | Q2,14 | Q2,15

| Qoo |-+ | Qoas | Qo | -+ [ Quis | Qoo [ -+ | Qa5 |

Figure 6: The Q-table and the chromosome that encodes it.

The reward function given by equation (1) is used for thefaggement learning agents,
and the fitness function given by equation (2) is used for teetc algorithm. The pa-
rameters for the genetic algorithm and the reinforcemearhiag are shown in table 2. The
experiment is run for all the test cases and the results axersim figure 7. As can be seen in
the figure, the learning time in continual learning is shattt@n the learning time in learning
from scratch for all test cases and for both strategies. Vheage fitness value attained by
population of agents using Darwinian strategy is greatan tihat attained by population of
agents using Lamarckian strategy for both learning froratsbrand continual learning.

Table 2: The parameters of genetic algorithm and reinfoesgnearning.

Number of individuals in the Population 50
Crossover probability 0.2
Mutation probability per bit 0.05
Selection method Truncation selection
Learning rate of reinforcement learning 0.3
Discount rate of reinforcement learning 0.3

Number of bits coding a Q-value 8

Number of generations 100

6 Summary and Analysis of Results

Table 3 summarizes the results of the experiments run imosest
The results of experiments clearly show that the learnmeg tiequired in continual learn-
ing is shorter than that required in learning from scratchath individual and population
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Figure 7: Result obtained for a hybrid of reinforcementhéag and genetic algorithm for agents using Dar-
winian and Lamarckian strategies . The first two columns shesults obtained for agents using Darwinian
strategy and the last two columns show results obtainedyfenta using Lamarckian strategy.

Table 3: Summary of results obtained after running the empmts for test case A, B and C respectively. For
evolutionary experiments, all individuals have exactlg drial per generation.

#of trials
in continual

#of trials
in learning
from scratch | learning

A[BJCJ]A[B]C
Q-Learning 40| 50| 40| 0| 14| 20
Hybrid of MLP and GA 4
Hybrid of Q-Learning and GA (Lamarckiar) 10
Hybrid of Q-Learning and GA (Darwinian)| 5

Learning and evolutionary
methods used by agents

1| 01 ©
| | ©
[ellele]
W Wb
INELES
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levels and under various learning conditions. They alsovshat the learning time in con-

tinual learning depends on the number of states of a polibiginis going to be learned, that
are contained in the previously learned optimal policy. fifae states the two policies have
in common, the shorter will be the time required in contifdaalning. For test case A, where
the states of a policy are completely contained in the presholearned optimal policy, the

agent does not need to learn the optimal policy in contireaiing. It is also interesting to

see that, even though the two policies have no common statgsése C), the time required
in continual learning is shorter than the time required arméng from scratch.

By comparing the results of agents using Q-learning andtagesing a hybrid of Q-
learning and GA, one can see that agents using a hybrid oa@ifey and GA required less
number of trials to learn the action values of the states @fefivironment in both learning
from scratch and continual learning than agent using Qalegralgorithm only. This supports
our argument that agents using appropriate hybridizatideasning and evolutionary algo-
rithms show better learning and adaptation capability aspared to agents using learning
algorithms only.

7 Conclusion and Outlook

We have shown that continual learning requires shorteniegtime as compared to learning
from scratch under various learning conditions. The déffiertest cases of the experiments
show that an agent can use a related knowledge to a new aityathich is going to be
learned, to adapt itself faster and make the learning timogah Furthermore, the adaptation
time required by an agent to adapt to a new situation depemtt'ecamount of knowledge it
has about the new situation.

Hybridization of various learning algorithms with evolutiary algorithms will give agents
two levels of adaptation capabilities. The first is an indiial level adaptation capability, and
the second is a population level adaptation capability.imtizidual level adaptation capabil-
ity depends on the the learning algorithm used. At poputdggel, the adaptation capability
is contained in the variation between individuals.

With adequate hybridization of learning algorithms andletronary methods (like ge-
netic algorithms, genetic programming and genetic str@$@gt is our believe that one can
design better agents with better learning and adaptatipalilty for either lower or higher
cognitive levels.
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