
Efficient Reinforcement Learning Through

Evolutionary Acquisition of Neural Topologies

Yohannes Kassahun and Gerald Sommer ∗

Christian Albrechts University, Department of Cognitive Systems,
Olshausenstr. 40, D-24098 Kiel, Germany

Abstract. In this paper we present a novel method, called Evolution-
ary Acquisition of Neural Topologies (EANT), of evolving the structure
and weights of neural networks. The method introduces an efficient and
compact genetic encoding of a neural network onto a linear genome that
enables one to evaluate the network without decoding it. The method
explores new structures whenever it is not possible to further exploit the
structures found so far. This enables it to find minimal neural structures
for solving a given learning task. We tested the algorithm on a benchmark
control task and found it to perform very well.

1 Introduction

A meaningful hybridization of neural networks and evolutionary methods has
been proven to be effective in solving reinforcement learning problems [1, 2, 3,
4, 5, 6]. A very good review of hybridizing neural networks with evolutionary
methods is given in [7].In evolutionary reinforcement learning, the neural net-
works are used to represent either a value function or a policy and evolutionary
methods are used to search for the optimal value function or optimal policy
directly in space of value functions or policies respectively.

The work presented in this paper is related to NeuroEvolution of Augmenting
Topologies (NEAT) [4] and NeuroEvolution for Reinforcement Learning using
Evolution Strategies [3]. The presented work starts with networks of minimal
structures and complexifies them along the evolution path. It optimizes the
weights of the neural networks using an efficient evolution strategy called CMA-
ES [8]. But it has the following important features which makes it different from
the earlier works:

1. A compact and efficient encoding of a neural network that enables one to
evaluate the neural network without decoding it.

2. Exploitation of structures found so far and automatic exploration of new
structures whenever it is not possible to further exploit the existing struc-
tures.

∗This work is sponsored by the German Academic Exchange Service (DAAD) under grant
code R-413-A-01-46029 and the COSPAL project under the EC contract no. FP6-2003-IST-
2004176, which are duly acknowledged. We would like to thank N. Hansen and A. Ostermeier
for making their MATLAB implementation of their CMA-ES algorithm publicly available on
the web.



2 Evolutionary Acquisition of Neural Topologies (EANT)

The above two features are considered while designing EANT. We begin by
describing the genetic encoding used and continue with the explanation of eval-
uating a linear genome, structural mutation and exploitation and exploration of
structures.

2.1 Genetic Encoding

A flexible encoding enables one to design an efficient evolutionary method that
can evolve both the structure and weights of neural networks. The genome in
EANT is developed by taking this fact into consideration. A genome in EANT
is a linear genome of genes (nodes) that can take different forms (alleles). The
forms that can be taken by a gene can either be a neuron, or an input to a
neural network, or a jumper gene connecting two neurons. The jumper genes
are introduced by structural mutation along the evolution path. They encode
either a forward or a recurrent jumper connections. A jumper gene encoding a
forward connection represents a connection starting from a neuron at a higher
depth and ending at a neuron at a lower depth. On the other hand, a jumper
gene encoding a recurrent connection represents a connection between neurons
of the same depth, or a connection starting from a neuron at a lower depth and
ending at a neuron at a higher depth. Every node in a linear genome has a weight
associated with it. The weight encodes the synaptic strength of the connection
between the node coded by the gene and the neuron to which it is connected.
Moreover, every node can save the results of its current computation. This is
useful since the results of signals at recurrent links are available at the next time
step. In addition to the synaptic weight, a neuron node has a unique global
identification number and number of input connections to it. A jumper node
has also additionally a global identification number, which shows the neuron to
which it is connected. An example of a linear genome encoding a neural network
is shown in figure 1.

EANT’s linear genome can be interpreted as a linear program encoding a
tree-based program if one assumes that all the inputs of the neural network and
all jumper connections are terminals, and the neurons are functions. A tree-
based program (a neural network) can be stored in an array (linear genome)
where the tree structure (topology of the network) is implicitly coded in the
ordering of the elements of the array. This results in a compact encoding of
neural structures using linear genomes.

The linear genome has some interesting properties that makes it useful for
evolution of the structure of neural networks. If one assigns integer values to
each of the nodes of a linear genome such that an integer value represents the
difference between the number of outputs of a node, which is always one, and
the number of inputs to the node, one can easily see that the sum of the integer
values is the same as the number of outputs of the neural network encoded
by the linear genome. An integer value of one is assigned to all input nodes
and forward/recurrent jumper nodes since input nodes and forward/recurrent



Fig. 1: An example of encoding a neural network using a linear genome. In the
linear genome, N stands for a neuron, I for an input to the neural network, JF
for a forward jumper connection, and JR for a recurrent jumper connection. The
numbers beside N represent the global identification numbers of the neurons, and
x or y represent the inputs coded by the input gene (node).

jumper nodes are considered as source of signals. An integer value of 1 − n,
where n is the number of inputs to a neuron, is assigned to a neuron node. A
sub-network starting from any neuron node on a linear genome can be easily
identified using a rule which states that the sum of integer values assigned to
the nodes between and including the start neuron node and the end node of a
sub-network is one.

2.2 Evaluating a Linear Genome

In addition to the compact representation of neural structures, the linear genome
offers a possibility of evaluating the neural network encoded by the linear genome
without decoding it. The process of evaluating a linear genome without decoding
the neural network encoded by it is performed as follows. One starts from the
right most node of the linear genome and then moves to the left in computing
the output of the nodes. If the current node is an input node, we push its current
value and the weight associated with it onto the stack. If the current node is a
neuron, we pop n values with their associated weights from the stack and push
the result of computation with the weight associated with the neuron node onto
the stack. If the current node is a recurrent jumper node, we get the last value
of the neuron node whose global identification number is the same as that of
the jumper node. Then we push the value obtained with the weight associated
with the jumper node onto the stack. If the current node is a forward jumper
node, we first copy the sub-linear genome (sub-network) starting from a neuron
whose global identification number is the same as that of the forward jumper
node. We compute the response of the sub-linear genome in the same way as
that of the linear genome. Finally, we push the result of computation with the



weight associated with the forward jumper node onto the stack. After traversing
the genome from right to left completely, we pop the resulting values from the
stack. The number of the resulting values is the same as the number of outputs
of the neural network encoded by the linear genome. An example of evaluating
a linear genome is shown in figure 2.

Fig. 2: An example of evaluating a linear genome without decoding the neural
network encoded by it. The linear genome encodes the neural network shown in
figure 1. For this example, the current values of the inputs to the neural network,
x and y, are both set to 1. In the example, all neurons have a linear activation
function of the form z = a, where a is the weighted linear combination of the
inputs to a neuron. The overlapped numbers above the linear genome show
the status of the stack after computing the output of a node. The numbers in
brackets are the weights associated with the nodes. The numbers in the square
brackets below the linear genome show the integer values assigned to the nodes
of the linear genome. Note that the sum of the integer values is one showing
that the neural network encoded by the linear genome has only one output. The
shaded nodes form a sub-network. Note also that the sum of the integer values
assigned to a sub-network is always one.

The evaluation of a linear genome discussed above is equivalent to the evalua-
tion of a decoded neural network represented by the genome, where the activation
of a neuron of the network is given by

ai(t) = g




nf∑

j=1

wijaj(t) +

n∑

j=nf+1

wijaj(t− 1)


 . (1)

In the equation, g is the activation function of the neuron and n is the number
of input connections to the neuron. The number of forward connections and
recurrent connections to the neuron are nf and n− nf respectively.

The evaluation of a linear genome is closely related to executing a linear
program using a postfix notation. In the genetic encoding the operands (inputs
and jumper connections) come before the operator (the neural network).



2.3 Structural Mutation

The structural mutation in EANT adds or removes a forward or recurrent jumper
connection between neurons, or adds a new sub-network to the linear genome.
The structural mutation does not remove a sub-network because removing a
sub-network results in a removal of all jumper connections that are coming or
going out of the sub-network. This causes a tremendous loss of the performance
of the neural network. The structural mutation operates only on neuron nodes.
Assuming that we have currently N neurons in the population, the number
of neuron nodes whose structural property will be changed by the structural
mutation is given by nm = pmN where nm is the number of neuron nodes
whose structural property is changed through structural mutation and pm is
the probability of executing a structural mutation. In applying the structural
mutation, each neuron node is tested if it is going to be mutated or not by
drawing a random number from a uniform distribution between 0 and 1. If
the currently drawn random number is less than pm, the neuron node will be
mutated. Once it is known that the neuron node is going to be mutated, a
random number is again drawn from a uniform distribution between 0 and 1 for
determining the kind of structural mutation to execute. Adding connections,
adding sub-networks and removing connections are all given equal probabilities
of execution. Even though it is relatively easy to define a crossover operator for
the linear genome, it is not used as a structural search operator since it results
in another structure which can be achieved through structural mutation.

2.4 Exploitation and Exploration of Structures

The algorithm starts with networks of minimal structures and complexifies them
along the evolution path. The exploration of new structures is initiated whenever
it is not possible to further exploit the existing structures. By exploitation we
mean optimization of the weights of the neural networks. In order to initiate
the structural mutation, one has to detect the condition that it is not possible
to further exploit the existing structures. For this purpose, a buffer length of n
is used to store the best fitness values of the last n generations. Assuming that
we are at the ith generation, and if Fi − Fi−n, where Fi and Fi−n are the best
fitness values of the ith and (i − n)th generations, is less than some threshold,
then it means that the system can not further exploit the existing structures
and structural mutation is automatically initiated to search for new structures.
In other words, if the rate of increase of the fitness value of the best individual,
where the rate is defined over n generations, is less than some threshold, then
structural mutation is initiated.

The probability of executing a structural mutation is adjusted so that when-
ever the structural mutation is initiated, the number of neurons whose structural
property will be changed remains constant. The mutation probability is adjusted
using



pcurrent = pstart

(
Nstart
Ncurrent

)
, (2)

where Nstart and Ncurrent are the starting and the current number of neurons in
the population respectively. Likewise, pstart and pcurrent are the starting and the
current structural mutation probabilities respectively. This kind of adjustment
results in a strong structural mutation at the beginning of the evolution. As the
evolution goes on, the networks become more complex and the effect of structural
mutation decreases. That is, the effect of structural mutation decreases as the
performance of the neural networks increases or as the neural networks approach
the optimal minimal structure for a given learning task.

Whenever new structures are discovered, they are carried on along the evolu-
tion for a certain number of generations regardless of the results of the selection
operator. This will give them time to optimize their newly acquired structures
before they compete with other individuals globally. This way it is possible to
maintain the new structural discoveries of the evolution before they get extinct
pretty much earlier.

The exploitation of existing structures begins by clustering structures accord-
ing to their structural similarities. The members of a cluster are made identical
with respect to the weights of the nodes after each generation. Only a represen-
tative of a cluster is used in optimizing the weights of a structure. The number
of evaluations of a representative of a cluster per generation is determined by

ne = (Fk/Ft)PS, (3)

where ne is the number of evaluations used in optimizing the weights of a given
structure, Fk is the average fitness value of the individuals in the kth cluster and
Ft is the sum of the average fitness values of all clusters in the population and
PS is the population size.

CMA-ES [8] is used in optimizing the weights of the neural networks. Every
cluster has its own covariance matrix C and a global step-size σ. As long as the
cluster exists in the population, the covariance matrix and the global step-size
continue to develop using the covariance matrix adaptation (CMA). The number
of evaluations per generation used in optimizing the weights of a representative
of a cluster is given by equation (3). A newly formed cluster first initializes its
covariance matrix to identity matrix and then copies the entries of the covariance
matrix of the parent cluster so that the already developed correlations between
the old nodes is maintained. The global step-size is however initialized to some
initial value σo.

3 Experiments

We have run two experiments to measure the performance of our algorithm.
The first experiment tries to answer if EANT is able to evolve the minimum
necessary neural structure for a given learning task and the second experiment



compares the performance of our algorithm on double pole balancing tasks with
other algorithms tested on the same tasks [1, 3, 4].

Evolving the Necessary Minimal Neural Structure

In this experiment, EANT is made to evolve an XOR network. A neural network
must have at least one hidden node in order to solve the XOR problem. The first
generation contains networks with no hidden nodes. On 100 runs, EANT is able
to find networks having on the average 1.52 hidden nodes and it takes EANT
on the average 1234 network evaluations to get a solution. EANT is consistent
in finding the minimal neural structure to the XOR problem.

Double Pole Balancing

Both double pole balancing tasks with and without velocity information are
considered in our experiments. All the specifications of the experiments including
the fitness functions are made to be the same as that described in [1, 3, 4]. Here
we give only results of our experiments with the results of other algorithms on
the double pole balancing tasks. The experiments in EANT are run for 120
times and the values for EANT in table 1 show the average value of network
evaluations needed to solve a given task.

Double pole balancing Double pole balancing
Method with velocity without velocity

Evaluations Evaluations Generalization

CE [9] 34000 840000 300
ESP [1] 3800 169466 289

NEAT [4] 3600 33184 286
CMA-ES [3] 895 6061 250

EANT 1580 15762 262

Table 1: The average network evaluations (trials) needed by various methods in
solving the double pole balancing tasks. For CMA-ES, results for a neural net-
work having 3 hidden nodes without a bias is shown. Generalization measures
the ability of an evolved neural network to balance the poles from different start-
ing states. The numbers under the column “Generalization” show the number
of successful balances starting from 625 different starting states.

From table 1 one can see that the EANT algorithm is better than other algo-
rithms that evolve both the structure and weights of a neural network (CE, ESP,
NEAT). The CMA-ES has outperformed EANT on both double pole balancing
tasks for an already manually chosen network topology.



4 Conclusion and Outlook

An efficient and compact genetic encoding of neural networks onto a linear
genome, which enables one to evaluate the network without decoding it, is pre-
sented. The topology of the network is implicitly encoded in the ordering of the
elements of the linear genome. The concept of exploiting the existing structures
and exploring for new ones whenever it is not possible to further exploit the
existing ones is also presented.

In the future, we are planning to extend the system to handle the evolution of
hierarchical structures and modular networks. We are also planning to develop
ways of describing the search space as well as the final resultant networks.

References

[1] F. J. Gomez and R. Miikkulainen. Robust non-linear control through neuroevolution.
Technical report, Department of Computer Sciences, The University of Texas, Austin, TX
78712, U.S.A., 2002.

[2] F. Pasemann. Evolving neurocontrollers for balancing an inverted pendulum. Network:
Computation in Neural Systems, 9:495–511, 1998.

[3] C. Igel. Neuroevolution for reinforcement learning using evolution strategies. In R. Sarker,
R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and T. Gedeon, editors, Congress
on Evolutionary Computation (CEC2003), volume 4, pages 2588–2595. IEEE Press, 2003.

[4] K. O. Stanley. Efficient Evolution of Neural Networks through Complexification. PhD
thesis, Artificial Intelligence Laboratory. The University of Texas at Austin., Austin, TX
78712, U.S.A., August 2004.

[5] P. J. Angeline, G. M. Saunders, and J. B. Pollack. An evolutionary algorithm that con-
structs recurrent neural networks. IEEE Transactions on Neural Networks, 5:54–65, 1994.

[6] K. Chellapilla and D. B. Fogel. Evolving an expert checkers playing program without using
human expertise. IEEE Transactions on Evolutionary Computation, 5, 2001.

[7] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447,
1999.

[8] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 9(2):159–195, 2001.

[9] F. Gruau, D. Whitley, and L. Pyeatt. A comparison between cellular encoding and direct
encoding for genetic neural networks. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and
R. L. Riolo, editors, Genetic Programming: Proceedings of the First Annual Conference,
pages 81–89, Standford University, CA, USA, 1996. MIT Press.


