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Abstract. In this paper we present an automatic design of neural con-
trollers for robots using a method called Evolutionary Acquisition of
Neural Topologies (EANT). The method evolves both the structure and
weights of neural networks. It starts with networks of minimal structures
determined by the domain expert and increases their complexity along
the evolution path. It introduces an efficient and compact genetic encod-
ing of neural networks onto a linear genome that enables one to evaluate
the network without decoding it. The method uses a meta-level evolu-
tionary process where new structures are explored at larger time-scale
and existing structures are exploited at smaller time-scale. We demon-
strate the method by designing a neural controller for a real robot which
should be able to move continously in a given environment cluttered with
obstacles. We first give an introduction to the evolutionary method and
then describe the experiments and results obtained.

1 Evolutionary Acquisition of Neural Topologies

Evolutionary Acquisition of Neural Topologies (ENAT) [6,7] is an evolutionary
reinforcement learning system that is suitable for learning and adaptation to
the environment through interaction. It combines meaningfully the principles of
neural networks, reinforcement learning and evolutionary methods.

The method introduces a novel genetic encoding that uses a linear genome
of genes (nodes) that can take different forms. The forms that can be taken by
a gene can either be a neuron, or an input to the neural network, or a jumper
connecting two neurons. The jumper genes are introduced by the structural
mutation along the evolution path. They encode either forward or recurrent
connections.

Figure 1 shows an example of encoding a neural network using a linear
genome. As can be seen in the figure, a linear genome can be interpreted as
a tree based program if one considers all the inputs to the network and all
jumper connections as terminals.

The linear genome has some interesting properties that makes it useful for
evolution of neural controllers. It encodes the topology of the neural controller
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Fig. 1. An example of encoding a neural network using a linear genome. (a) The neural
network to be encoded. It has one forward and one recurrent jumper connection. (b)
The neural network interpreted as a tree structure, where the jumper connections are
considered as terminals. (c) The linear genome encoding the neural network shown in
(a). In the linear genome, Nstands for a neuron, | for an input to the neural network,
JF for a forward jumper connection, and JR for a recurrent jumper connection. The
numbers beside N represent the global identification numbers of the neurons, and X or
y represent the inputs coded by the input gene (node).

implicitly in the ordering of the elements of the linear genome. This enables one
to evaluate a neural controller represented by it without decoding the neural
controller. The evaluation of a linear genome is closely related to executing a
linear program using a postfix notation. In the genetic encoding the operands
(inputs and jumper connections) come before the operator (a neuron) if one
goes from right to left along the linear genome. The linear genome is complete in
that it can represent any type of neural network. It is also a compact encoding
of neural networks since the length of the linear genome is the same as the
number of synaptic weights in the neural network. It is closed under structural
mutation and under a specially designed crossover operator. An encoding scheme
is said to be closed if all genotypes produced are mapped into a valid set of
phenotype networks [5]. The crossover operator exploits the fact that structures
originating from some initial structure have some parts in common. By aligning
the common parts of two randomly selected structures, it is possible to generate a
third structure which contains the common and disjoint parts of the two mother
structures. This type of crossover is introduced by Stanley [10]. An example of
the crossover operator under which the linear genome is closed is shown in figure
2.

If one assigns integer values to the nodes of a linear genome such that the
integer values show the difference between the number of outputs and number
of inputs to the nodes, one obtains the following rules useful in the evolution of
the neural controllers. The first is that the sum of integer values is the same as
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Fig. 2. Performing crossover between two linear genomes. The genetic encoding is
closed under this type of crossover operator since the resulting linear genome maps to
a valid phenotype network. The weights of the nodes of the resulting linear genomes
are inherited randomly from both parents.

the number of outputs of the neural controller encoded by the linear genome.
The second is that a sub-network (sub-linear genome) is a collection of nodes
starting from a neuron node and ending at a node where the sum of integer
values assigned to the nodes between and including the start neuron node and
the end node is one. Figure 3 illustrates the concept.

The main search operators in EANT are the structural mutation, paramet-
ric mutation and crossover operator. The structural mutation adds or removes
a forward or a recurrent jumper connection between neurons, or adds a new
sub-network to the linear genome. It does not remove sub-networks since re-
moving sub-networks causes a tremendous loss of the performance of the neural
controller. The structural mutation operates only on neuron nodes. The weights
of a newly acquired topology are initialized to zero so as not to disturb the
performance of the network. The parametric mutation is accomplished by per-
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Fig. 3. An example of the use of assigning integer values to the nodes of the linear
genome. The linear genome encodes the neural network shown in figure 1. The numbers
in the square brackets below the linear genome show the integer values assigned to the
nodes of the linear genome. Note that the sum of the integer values is one showing that
the neural network encoded by the linear genome has only one output. The shaded
nodes form a sub-network. Note also that the sum of the integer values assigned to a
sub-network is always one.

turbing the weights of the controllers according to the uncorrelated mutation
in evolution strategy or evolutionary programming. Figure 4 shows an example
of structural mutation where a neuron node lost connection to an input and
received a self-recurrent connection.
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Fig. 4. An example of structural mutation. Note that the structural mutation deleted
the input connection to N1 and added a self-recurrent connection to it.

The initial structures are generated using either the grow or full method
[2]. The initial complexity of the neural structures is determined by the domain
expert and is specified by the maximum depth that can be assumed by the
initial structures. The depth of a neuron node in a linear genome is the minimal
number of neuron nodes that must be traversed to get from the output neuron
to the neuron node, where the output neuron and the neuron node lie within the
same sub-network that starts from the output neuron. The system starts with



exploitation of structures that are already in the system. By exploitation, we
mean optimization of the weights of the structures. This is accomplished by an
evolutionary process that occurs at smaller time-scale. The evolutionary process
at smaller time-scale uses parametric mutation and recombination operators as
a search operator. Exploration of structures is done through structural mutation
and crossover operator. The structural selection operator that occurs at larger
time-scale selects the first half of the population to form the next generation. In
order to protect the structural innovations or discoveries of the evolution, young
structures that are less than few generations old with respect to the larger time-
scale are carried over along the evolution regardless of the results of the selection
operator. New structures that are introduced through structural mutation and
which are better according to the fitness evaluations survive and continue to
exist. Since sub-networks that are introduced are not removed, there is a gradual
increase in the complexity of structures along the evolution. This allows EANT to
search for a solution starting from a minimum structural complexity specified by
the domain expert. The search stops when a neural controller with the necessary
optimal structure that solves a given task is obtained.

2 Evolving Neural Controller for Navigation

The aim of this experiment is to demonstrate the automatic design of neural
controllers for robots using EANT. We start with sonar based robot navigation
for developing the controllers in simulation and then transfer the developed
controllers to real robot. We evolved the structure and weights of the neural
controller which enables B21 [9] robots to autonomously explore the environment
and avoid obstacles. The controller is expected to avoid dead lock situations
where Braitenberg-like controllers [3] have difficulties of escaping them. In these
situations, they either come to a rest or start to oscillate left to right.

We used the sonar sensors of the B21 robot for detecting the obstacles. The
B21 robot has 24 sonar sensors which are symmetrically distributed around its
cylindrical body. We used the 8 in front and 2 in the rear sonar sensors as
inputs to the neural controller. The sonar sensors give the distance of obstacles
in millimeters measured from the center of the robot. The values returned by
the sonar sensors are transformed using equation(1) before feeding them to the
neural controller.

(1)

In the equation, V,, is the transformed and normalized sonar reading and Vj
is the actual reading returned by a particular sonar sensor. The value V,, lies
between 0 and 1 for obstacles which are located at a distance less than 2 m from
the center of the robot.

The initial controller has two output neurons and each neuron is connected
to all sensors. The outputs of the neurons are connected to the motor apparatus
of the robot. In addition to the sensor inputs, each neuron has a constant bias

v = | T if Ve <1000
"0 otherwise



input connected to it. The forward translational velocity and rotational velocity
of the robot are given by V; = 0.5(O1 + O2) and R; = O1 — O3, respectively. The
quantities O and O, are the outputs of the neural network. Since the output of
the neurons is between —1 and 1, the maximum and minimum forward velocity of
the robot is 1 m/s and —1 m/s, respectively. The rotational velocity is bounded
between 2 rad/s and —2 rad/s.

The initial controller is similar to Braitenberg-like controller and is not ca-
pable of avoiding dead lock situations. The algorithm is expected to find a con-
troller which is complex enough for solving the navigation problem with the
ability of avoiding dead lock situations. The fitness function used to evaluate
the controllers is given by

F =" D(t)e OHO-HED (1 5, (1), (2)
t=1

where D(t), H(t) and S,,q4(t) are the distance traveled, the heading of the robot,
and the maximum value of the currently perceived normalized sonar readings re-
spectively. The fitness function favors controllers that move straight as long and
as fast as possible and controllers that give the robot the maximum distance
from the obstacles. Figure 5 shows the initial neural controller and the final
controller obtained by our algorithm. The ability of avoiding the deal lock situ-
ations comes because of the recurrent connections. The result is similar to that
obtained by Nolfi and Floreano [8] and Hiilse and Pasemann [4] but in both cases
the structure of the neural controller is determined manually beforehand. Ahrns
et.al [1] designed a fuzzy-neuro controller for solving the robot navigation with
obstacle avoidance. They solved the dead lock situations problem by designing a
feature extraction mechanism that extracts a free space direction closest to the
heading of the vehicle. They further stored the sonar readings in a short time
memory to extract the coarse model for the direct robot surroundings. They
used the feature extraction mechanism since the fuzzy-neuro controller does not
have recurrent connections.

3 Conclusion

In this paper we have demonstrated the automatic design of controllers for real
robots using EANT taking as an example robot navigation with reactive obstacle
avoidance. EANT found a clever solution that gives the robot the ability to
explore the environment without being trapped in dead-lock situations, where
simple designs like Braitenberg-like controllers have difficulties of escaping them.
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Fig. 5. (a) The initial Braitenberg-like controller (b) The best neural controller found
by EANT that is capable of avoiding dead lock situations. (c¢) Trajectory of the robot
controlled by the best neural controller.
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