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Abstract

We propose a new 3D kernel for the recovery of 3D orientation signatures. In the Cartesian coordinates, the kernel has a shape of a

truncated cone with its axis in the radial direction and very small angular support. In the local spherical coordinates, the angular part of the

kernel is a 2D Gaussian function. A set of such kernels is obtained by uniformly sampling the 2D space of azimuth and elevation angles. The

projection of a local neighborhood on such a kernel set produces a local 3D orientation signature. In case of spatio-temporal analysis, such a

kernel set can be applied either on the derivative space of a local neighborhood or on the local Fourier transform. The well known planes

arising from one or multiple motions produce maxima in the orientation signature. The kernel’s local support enables the resulting spatio-

temporal signatures to possess higher orientation resolution than 3D steerable filters. Consequently, motion maxima can be detected and

localized more accurately. We describe and show in experiments the superiority of the proposed kernels compared to Hough transformation

or expectation–maximization based multiple motion detection.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The motivation of our approach is the local detection and

estimation of multiple motions in spatio-temporal imagery.

Optical flow estimation has been extensively studied and the

reader is referred to the surveys [4,12] for an overview of

existing methods. While research in single motion esti-

mation is already mature, estimation and analysis of

multiple motions (i.e. occlusion and transparency) are still

challenging problems.

In this paper, we focus on the estimation of multiple

motions from the spatio-temporal orientation aspect.

Adelson and Bergen [1] first pointed out that motion is

equivalent to spatio-temporal orientation. They intro-

duced a spatio-temporal energy model for single motion

representation. Knutsson proposed to use a 3D structure

tensor for orientation recovery and this approach was

followed by Bigün [6], Jähne [18,19], and others.

To describe multiple motions, Shizawa and co-workers

[24,25] proposed the superposition principle. Fleet and

Langley [7] as well as Beauchemin and Barron [5]

analyzed the spectral structure of occlusion and transpar-

ency in detail. Briefly, transparency can be described as

two planes of energy concentration in the spectral

domain only, while occlusion produces two planes both

in the spectral domain and in the spatio-temporal domain

accompanied by distortion [5]. The corresponding motion

parameters are determined by the normal vectors of

these planes. However, determining the precise orien-

tation of two motion planes remains a difficult task,

particularly when the angle between two motion planes

is small and the energy concentrates at the low

frequencies.

Many authors proposed spectral sampling with Gabor

or similar filters [10,13,14,29] to detect the motion planes

in the frequency domain. One of the main concerns of

these approaches is the enormous complexity of compu-

tation in sampling the spectrum with fine resolution. To
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resolve the conflict between performance and complexity,

the concept of steerability was introduced [9] and many

2D steerable filters have been applied in image proces-

sing and low level computer vision [8,20,21,26]. Never-

theless, only few approaches dealt with 3D steerability

[2,9,27]. These approaches either steer derivatives of

Gaussians [9,27] or construct the steerable filter directly

in the spectral domain [2]. To achieve high orientation

resolution, we need a huge number of basis functions

with their angular support covering the entire sphere of

orientation. Since detection of multiple motions presumes

a high orientation resolution either in the spatio-temporal

or in the frequency space, current steerability approaches

proved to be impractical.

This motivated us to construct a new 3D kernel with

tiny angular support to recover 3D orientation signature.

This radial-angular-separable kernel has a conic profile in

the 3D Cartesian coordinates and its angular part is a 2D

Gaussian with tiny support. In applications, we project

the local spatio-temporal imagery onto a huge number of

such kernels to form a signature with high orientation

resolution.

The rest of the paper is organized as follows: Section

2 describes the details of the new 3D kernel and

compares it with current 3D steerable filters. The filter

response to 3D planes is also discussed. In Section 3, we

explain the algorithm of obtaining 3D orientation

signatures in the local derivative space or in the local

Fourier domain. In the same section, we also compare

this kernel projection to the Hough transform and the

expectation – maximization (EM) algorithm in

multiple plane estimation. After that, the experiments

with both occlusion and transparency sequences

are shown in Section 4. Finally, we conclude this

paper in Section 5.

2. Conic kernel

2.1. Definition

There are several equivalent coordinates to represent

3D orientation. They differ in the number and form of

orientation variables. For example, a 2D polar angle and

an implicit elevation angle (between the polar radius and

the z-coordinate) are used together to describe 3D

orientation in the cylindrical coordinates, while three

directional angles (i.e. three angles between three

coordinates axes and one vector) are used in the

Cartesian coordinates [9]. For orientation analysis, we

believe that the orientation variables should be explicit

and the number of variables should be as small as

possible to alleviate the complexity of indexing and

visualization. Thus, we choose the spherical coordinates

in which only two angles (azimuth and elevation) are

needed to represent 3D orientation.

The input data for motion analysis can be either the

local image derivative space (i.e. a space coordinated by

partial derivatives of images with respect to different

coordinate axes) or the local Fourier spectrum. They are

the same for filtering purpose. For simplicity, we use the

same representation Iðx; y; zÞ for both kinds of input data.

Here we assume that Iðx; y; zÞ is correctly obtained for

every ðx; y; zÞ: Thus, the error in obtaining image

derivatives or spectrum is not considered. We start

orientation analysis by computing a local spherical

mapping on the input data: Iðx; y; zÞ! Iðr; u;fÞ; where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
; u ¼ arctanðy=xÞ; f ¼

arctanðz=
ffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ (Fig. 1). In order to have fine

orientation resolution, we use conic kernels with small

angular support to sample the orientation space locally.

These kernels are radial-angular-separable. A conic

kernel centered at ðui;fjÞ reads

Kðui;fjÞ
ðr; u;fÞ ¼

G
ðui ;fjÞ

0 ðu;fÞ

N
ðui ;fjÞ

Rmin ;Rmax
ðrÞ

; ð1Þ

where N
ðui ;fjÞ

Rmin;Rmax
ðrÞ is a compensation function along the

radial direction, which we will describe in Section 2.2.

First we focus on the angular part of the kernel, which is

a 2D Gaussian function in the (u, f)-space:

G
ðui;fjÞ

0 ðu;fÞ ¼
1

2ps2
exp 2

ðMðu;uiÞÞ
2 þðf2fjÞ

2

2s2

 !
: ð2Þ

As the azimuth angle u is periodic, we define a Mð·Þ to

represent the minimal circular difference between u and

ui ðu;ui [ ½08;3608ÞÞ

Mðu;uiÞ ¼minðlu2uil; lu2ui 23608l; lu2ui þ3608lÞ:

Theoretically, a Gaussian function is not compactly

supported. To form an FIR filter we cut off the central

part of G
ðui;fjÞ

0 ðu;fÞ at the boundary of a circular mask

with a fixed diameter D. Usually, D is a function of s:

Here, we set D¼ 6s so that the energy loss of the cut-off

area is negligible. Fig. 1 shows one example of such a

conic kernel.

Fig. 1. A conic kernel centered at ðui;fjÞ with radial boundaries Rmin

and Rmax: Left: The definition of the spherical coordinate system.

Middle: The conic kernel in the 3D Cartesian coordinate system. The

keypoint is at the center of the sphere. Right: The conic kernel with u;

f and r as coordinates. It turns into a cylinder with a diameter D and a

height Rmax 2 Rmin: In the (u, f)-plane the circular mask of the

cylinder is weighted by a 2D Gaussian function, as shown above the

cylinder.
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After applying such a conic kernel on Iðr; u;fÞ; we

obtain a sample at ðui;fjÞ

Aðui ;fjÞ
¼

XX
{ðu;fÞl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2uiÞ

2þðf2fjÞ
2

p
#ðD=2Þ}

G
ðui;fjÞ

0 ðu;fÞ
XRmax

r¼Rmin

Iðr;u;fÞ

N
ðui;fjÞ

Rmin;Rmax
ðrÞ

:

ð3Þ

It is easy to find out that a spherical surface containing all

possible 3D orientation becomes a rectangular region in

the (u, f)-plane with a range of 21808#u,1808 and

2908#f#908; which is periodic along the u direction and

is mirror-symmetric about the boundary along the f

direction. Now let us consider the sampling of the (u, f)-

space using a set of conic kernels. In order to cover the

entire rectangular region, we overlap neighboring kernels

(Fig. 2). We also use the periodicity along the u direction

and mirror-symmetry along the f direction to solve the

boundary problem. The number of required conic kernels

in sampling the entire rectangular region is determined by

the scale parameter s (cf. Eq. (2)) and the sampling

interval (i.e. the distance between two neighboring

sampling masks, cf. Fig. 2). In this paper, we set the

horizontal- and vertical-sampling interval as du¼df¼3s:

By setting s¼1=38; we need totally 360£181¼65;160

conic kernels to sample the rectangular (u, f)-region. In

Section 2.3 we will show that the complexity of this

sampling is still at a moderate level comparing to current

steerable filter approaches.

The proposed decomposition of the spherical surface

is not uniform since the azimuth angle u and the

elevation angle f are defined differently in the spherical

coordinates. All points on a spherical surface with the

same u lie on a great circle of this sphere, whereas all

points with the same f (except f ¼ 08) lie on a small

circle. If we divide the entire (u, f)-space with a

homogeneous grid, it is easy to see that the higher the

latitude value is, the denser the grid points are on the

spherical surface [15]. As a result, it produces a rotation-

variant signature. Fortunately, this variation is very small

due to the huge number of kernels and their tiny support.

Practically, the proposed decomposition with 65,160

kernels arranged uniformly in the (u, f)-space (not

uniformly on the spherical surface) has approximately the

same effect as sphere tessellation with the same huge

number of kernels whose centers lying on a subdivision

of the truncated icosahedron. The reason of using our

decomposition method mainly lies in the simplicity of

indexing and displaying.

We build a look-up-table (LUT) ‘off-line’ to store the

local spherical mapping. The complexity of applying the

LUT online is negligible in comparison with the complexity

of calculating the filter responses. The LUT-based mapping

can be applied both in the spatio-temporal as well as in the

spectral domain, though the filter support in Fig. 1 is only

displayed in the spatial domain.

After applying the conic kernels, the entire set of samples

Aðui ;fjÞ
forms a discrete orientation signature Aðu;fÞ in the

orientation space. To obtain a continuous orientation

signature Sðu;fÞ from the discrete one, we use 2D Gaussian

functions with local support G
ðui;fjÞ

0 ðu;fÞ as interpolation

functions:

Sðu;fÞ ¼
X1798

ui¼21808

X908

fj¼2908

Aðui ;fjÞ
G

ðui;fjÞ

0 ðu;fÞ: ð4Þ

This constitutes an approximation and not an interpolation

of orientation signature. The same method also appears in

Radial Basis Functions approaches [22].

2.2. Compensation via radial variation

In this section, we address the design of the radial part of

the kernel (i.e. NðrÞ in Eq. (1)). In Section 2.1, we have

pointed out that there is a distribution variation on the

spherical surface. If we like to compensate for this non-

uniform distribution, we may construct the term NðrÞ as the

sum of discrete weights in the conic kernels. This

compensation ‘strengthens’ the outputs of conic kernels

with a few points and ‘suppresses’ those outputs of conic

kernels with many points. As a result, we are no more able to

know the real point distribution in the (u, f)-space.

However, the distribution information is desired in many

applications. For example, in the EM algorithm we purely

use statistics to extract parameters from a set of sample

points with the belief that there are more normal points with

similar statistic properties than noise and ‘incorrect’ sample

points with large deviation from the bulk of all data points

[23]. The distribution actually works as a weighting factor in

the parameter regression procedure. If we lose the

distribution information, the estimation result will be

much worse. For this reason, we would like to preserve

the distribution information by simply setting NðrÞ ¼ 1:

In Fig. 3, we demonstrate the advantage of keeping

distribution information using a range image example. From

the 3D plot we observe that the bottom of the cup, the rim

Fig. 2. One example of sampling (u, f)-plane with a set of conic kernels.

The horizontal and vertical distance between two neighboring masks are

equal to the mask radius.
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and the upper part of the handle are well represented in the

range image, while there are very few pixels corresponding

to the side of the cup. We set the center of the cup bottom as

keypoint and normalize the z coordinate according to the

maximal value of x coordinate. If we compensate for this

non-uniform distribution, the side of the cup is very much

‘strengthened’ in the corresponding orientation signature

(bottom left in Fig. 3). In contrast, if we keep NðrÞ ¼ 1; the

corresponding orientation signature (bottom right in Fig. 3)

keeps the distribution information: The bottom and the rim

of the cup are much stronger than the side of the cup in the

signature. Particularly, the filter response of upper part of

the handle is more distinctive near u ¼ 21208; f [
½308; 508�: Note that the white pixel near ðu;fÞ ¼

ð808;2508Þ (corresponding to the dark point outside the

cup in the range image) is also suppressed. This comparison

shows that setting NðrÞ ¼ 1 helps to preserve main

structure information and to suppress small disturbance.

2.3. Comparison with current 3D steerable filters

Current 3D steerable filters are rotated copies of either

3D Gaussians [9,27] or specified basis filters in the

frequency space [2]. For example, the n-th derivative of

3D Gaussian along the x-axis reads

Gn ¼
›n

›xn
exp{ 2 ðx2 þ y2 þ z2Þ=2}

with n [ N denoting the order of derivative. For clarity we

omit normalization constants. The angular terms of the

first three derivatives in the spherical coordinates are then

2cosðuÞcosðfÞ; cos2ðuÞcos2ðfÞ (we omit the term 21

from the actual representation r2 cos2ðuÞcos2ðfÞ2 1

because it makes no difference to angular variation), and

3 cosðuÞcosðfÞ2 cos3ðuÞcos3ðfÞ; respectively. All of them

are different combinations of spherical harmonic functions.

As an extension of the 2D filter design technique used by

Simoncelli and Farid [26], we could choose eligible

components of spherical harmonics to construct 3D

steerable filters with arbitrarily narrow angular support.

However, we would also have to face the considerably

higher computation effort in order to build a 3D filter mask

with narrow angular shape (see Ref. [31] for a similar

argument in 2D space). One might think that higher order

derivatives would increase orientation resolution. This can

hardly be achieved because Gaussian derivatives are fixed

combinations of spherical harmonics. As a result, we cannot

change these combinations to adjust the angular support of

filters—the reader may plot the angular support of Gaussian

derivatives for an illustrative proof. For comparison of

orientation resolution and computation complexity, we

choose the first derivative of 3D Gaussian G1 because the

number of required basis filters is minimal and we can make

a fair comparison.

Andersson [2] designed an alternative 3D steerable filter

directly in the frequency domain. He designed the spectral

basis filters as

Blið�uÞ ¼ GðrÞðn̂li·ûÞ
l
;

where �u and û are an arbitrary frequency coordinate vector

and its corresponding normalized unit vector, respectively.

The vector n̂li denotes the orientation of the i-th basis filter

of order l, and GðrÞ represents the radial frequency response.

Fig. 3. Top Left: Range image of a cup. Top Right: 3D plot of the range image. We normalize the z coordinate according to the maximal value of x coordinate.

Bottom Left: Orientation signature with distribution compensation. We set the center of cup bottom as keypoint. The side of the cup is very much strengthened.

We can see the filter response of the handle near u ¼ 21208; f [ ½308; 508�: The white point near ðu;fÞ ¼ ð808;2508Þ is the response of the dark point outside

the cup. Bottom Right: Orientation signature without distribution compensation. This signature represents the real distribution. We can observe the filter

response of the upper part of the handle more clearly. The filter response of the dark point outside the cup is suppressed now.
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While Andersson succeeded in improving the orientation

resolution by using higher order filters, this improvement is

very limited. After studying the regular polyhedra in detail,

Andersson held that it is impossible to distribute more than

10 basis filters evenly on the spherical surface [2].

Consequently, basis filters with order l $ 4 cannot span

evenly on the spherical surface since the number of basis

filters is equal to ðl þ 1Þðl þ 2Þ=2:

In Fig. 4, we show the first derivative of Gaussian G1;

Andersson’s third order filter B3 [2] (B3 has the finest

angular support among all Andersson’s filters), and our

conic kernel, respectively. In the bottom row we also show

their angular support in the (u, f)-space. Note that the

angular support of a filter like Andersson’s in the spatial

domain is the same as that in the frequency domain since the

Fourier transform is an isometric mapping (i.e. it keeps

angles). The irregularity of G1 in the (u, f)-space with lfl .
408 is caused by the discrete representation of filter kernels.

The Gaussian derivative G1 has such a large angular support

that only the gap between its two lobes may be useful.

Actually, Huang and Chen used this gap to obtain the

orientation of one plane in single motion estimation [17].

Andersson’s filter B3 has a higher orientation resolution than

G1: But this improvement is limited (cf. Fig. 8 as well). This

resolution limitation explains why no steerable filters are

applied in the analysis of multiple motions. In contrast, our

filter has a much higher orientation resolution, which

enables us to analyze multiple orientations precisely.

The computational burden of applying a steerable filter is

determined by the number of basis filters and the spatial

support of each basis filter. Given the fact that current

steerable filters are based on a global decomposition

principle and our filter is based on a local decomposition

principle, it is more reasonable to compare their complexity

by considering the computational burden per voxel in the

3D input data. Concretely,

† The Gaussian derivative G1 is composed of three basis

filters with global support. Each voxel in the input data is

therefore involved three times in the scalar product as

well as in the interpolation procedure.

† Andersson’s B3 filter has 10 basis filters. Thus, each

voxel is involved 10 times.

† In our filter the quadratic area (ui # u # uiþ1;

fj # f # fjþ1) is covered by four quadrant masks (cf.

Fig. 2). Roughly speaking, a voxel falling into this area is

involved four times in the scalar product. As the

interpolation function has the same support as the conic

kernel, a voxel is also involved four times in the

interpolation.

According to above analysis, the conic kernel is more

efficient than Andersson’s B3 but slightly less efficient than

G1: We should be aware that a complexity comparison is

fair only when the corresponding filters are comparable in

orientation resolution. Obviously, the above comparison

does not have this basis and should be therefore only

regarded as an illustration of the relative implementation

complexity of our conic kernel.

The proposed conic filtering is also related to 3D

orientation histogram [15] usually obtained in the gradient

space. It differs in the sampling of the orientation space: the

orientation histogram follows merely the Hough sampling

principle [16], whereas the conical kernels here overlap in

the angular space. Besides, The 3D histogram is applied for

3D surface analysis. If the object is convex, the correspond-

ing 3D orientation histogram is shift- and scale-invariant. In

contrast, our 3D kernel is applied not only for surface

Fig. 4. Top: Rendering images of filter kernels. The filter G1 (left, redrawn from Ref. [17]), B3 (middle, redrawn from Ref. [2]), and our filter (right) are all

centered at ðu;fÞ ¼ ð45:008; 35:268Þ: Bottom: Corresponding angular support of above filters is shown with white regions in the (u, f)-space. The smaller the

angular support is, the finer the orientation resolution. For clarity we enlarge the angular Gaussian support of our filter in an extra image.
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analysis, but also for volume data analysis. It lends itself

both to convex and concave objects. Certainly we have to fix

the keypoint and the radial boundaries at first.

2.4. Conic kernel response to 3D planes

In the 3D Cartesian coordinate system, a plane passing

through the origin ð0; 0; 0Þ with a unit normal vector

n ¼ ðn1; n2; n3Þ
T reads

xn1 þ yn2 þ zn3 ¼ 0: ð5Þ

In order to represent a plane with parameters u and f; we

convert the Cartesian coordinates into spherical coordinates

ðx; y; zÞ! ðr; u;fÞ and ðn1; n2; n3Þ! ð1; un;fnÞ: After drop-

ping out r we obtain an equation with variables u and f

cosðfÞcosðfnÞcosðu2 unÞ þ sinðfÞsinðfnÞ ¼ 0: ð6Þ

For horizontal and vertical planes with normal vectors

parallel to the coordinate axes, their corresponding

representations in the (u, f)-space are straight lines. In

motion analysis, we usually encounter tilted planes which

turn into harmonic curves with different amplitudes and

phases in the (u, f)-space (cf. Fig. 5). The normal vector of

each plane (i.e. ðun;fnÞ) is related to the extreme point

ðum;fmÞ on the corresponding curve as follows (see

Appendix A for derivation):

un ¼ um þ 1808

fn ¼ 908 2 fm

:

(
ð7Þ

The motion parameters ðu; vÞ can then be estimated using un

and fn

u ¼ cosðunÞcotðfnÞ

v ¼ sinðunÞcotðfnÞ
:

(
ð8Þ

Further, each harmonic curve has two zero-crossing

points on the u axis with a distance of 1808 and um lies

exactly in the middle of these two zero-crossing points.

This extra geometry constraint is very useful in

determining the number of motions automatically as

well as in obtaining reasonable initial values of motion

parameters. In practice, we obtain a set of points in the

(u, f)-space. Extracting the parameters ðun;fnÞ from

these points is then a standard regression problem. For a

single curve, least square estimation is applicable. For

multiple curves, we may apply the EM algorithm. In the

following, we will describe the concrete algorithm in

detail.

3. Multiple motion estimation using conic kernel

3.1. Algorithm

1. Fix radial parameters Rmin and Rmax as well as the angular

parameter s ðs ¼ 1=38Þ: The parameters D, du; and df

are determined by s: Also fix another threshold

parameter h ðh ¼ 28Þ:

2. Set ui ¼ 21808; fj ¼ 2908;

3. If ui , 1808

if fj # 908

apply the conic kernel centered at ðui;fjÞ on the

local derivative space or the local energy spectrum

by using the LUT (cf. Aðui;fjÞ
in Eq. (3));

fj ¼ fj þ df;

end

ui ¼ ui þ du;

end.

Cluster the non-zero Aðui ;fjÞ
near u axis (i.e. 2h # f # h)

into the same group if their distance is less than 2h:

If the centroids of two groups have a distance [
½1808 2 h; 1808þ h�; these two groups form a group-pair.

The number of group-pairs indicates the number of motions.

For each group-pair, search for the non-zero Aðui;fjÞ
along

the positive f direction from their middle point and cluster

the non-zero Aðui ;fjÞ
into different polar groups like in step 4.

The weight-center of the vertical group gives us a guess of

ðum;fmÞ and consequently an initialization of ðun;fnÞ (cf.

Eq. (7)).

Fig. 5. Left: Plane A with normal vector (22, 1, 1) (drawing with small circles) and plane B with normal vector (1, 1, 1) (drawing with dots) in the Cartesian

coordinates. The points on plane B only have positive z coordinates. Right: The corresponding curves in the (u, f)-space. As the points on plane B have only

positive z coordinates, curve B only has components with positive f coordinates. See text for details about the extreme point and the distance between two

zero-crossing points.
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Apply Eq. (6)-based EM to obtain the final ðun;fnÞ: Then

use Eq. (8) for motion estimation.

Since Eq. (5)-based 3D Hough transform as well as the

planar EM algorithm can extract the orientation par-

ameters of planes directly, the readers may ask why we

project the 3D data onto the 2D feature space before

parameter extraction. The answer lies in the following

analysis of the 3D Hough transform and the EM

algorithm.

3.2. Comparison with Hough transform and EM estimation

The Hough transform [16] is a sampling and searching

method for parameter extraction. Concretely, for a set of

points coordinated with ðxi; yi; ziÞ ði ¼ 1;…;NÞ we draw the

corresponding vectors in the ðn1; n2; n3Þ space satisfying

Eq. (5). Then we search throughout the ðn1; n2; n3Þ space

for the position with the maximal number of vector

intersections to obtain the desired normal vector

ðn1m; n2m; n3mÞ: This vector is used for motion estimation

um ¼
n1m

n3m

vm ¼
n2m

n3m

:

8>><
>>: ð9Þ

Practically, we sample the speed space (i.e. ðum; vmÞ-space)

with a finite interval and relax the orthogonality criterion

with a positive threshold 1

lxium þ yivm þ zil # 1: ð10Þ

The Eq. (10)-based 3D Hough transform is equivalent to a

3D filter with a concave disk shape centered at the origin of

the 3D space (cf. Fig. 6). The comparison between our filter

shape (Fig. 1) and the shape of the disk leads to the

conclusion that our filter samples the orientation space more

efficiently than the 3D Hough transform. The conclusion is

also confirmed by the Hough image of a point in Fig. 7,

which is actually the impulse response of the concave disk

filter. The Hough image is very similar to our filter response

of a 3D plane except that it has no negative f value (the

third component of the normal vector is always positive in

Eq. (10)). Taking into account that the filter response of a

3D plane consists of plenty of filter responses of points, we

justify the above conclusion easily. The aforementioned

superiority enables our filter to reduce the enormous

memory requirement in Hough-based approaches [30],

especially the gigantic overlapping of the Hough curves

(Fig. 7). As a result, we can extract the parameters of motion

planes with much less complexity.

Further, the intersections of different curves in the

Hough image are blurred due to the introduction of 1: As

a result, the global maximal position is no more a peak,

but a smooth uni-modal distribution. While searching for

the global maximal position is still feasible, searching

for the second maximal position is generally problematic.

For example, we do not know how to automatically

choose the neighborhood of the second maximum,

especially when the properties of the uni-modal distri-

bution around the first maximum are unknown. Even if we

can choose the neighborhood manually, the second

maximum is blurred and its position is biased by the

distribution around the first maximum. The bias is even

Fig. 7. Left: Vectors satisfying Eq. (10) form a curve similar to our filter response to a 3D plane in the (u, f)-space. The width of the curve is determined by the

clustering threshold 1 in Eq. (10). Right: The Hough image of an occlusion sequence (cf. Fig. 8) with two velocities of (1, 1) [pixel/frame] and (1, 21)

[pixel/frame]. The global maximum is blurred due to the introduction of 1: Automatically searching for the second maximum is problematic. See text for

details.

Fig. 6. The 3D Hough transform is equivalent to a filter with a concave disk

shape. A: A general view of the filter mask. The vector n is normal to the

filter mask. B: Side view of the filter mask. The angular thickness T of the

disk is determined by the clustering threshold 1 in Eq. (10). C: Vertical view

of the filter mask.
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worse, when these two maxima locate near each other.

Both will result in an inaccurate estimation.

The EM algorithm consists of subsequent iterations of

expectation and maximization step until there is no

significant difference in the parameter estimates. In the

expectation step, the membership weights of points are

updated by the new results of parameter estimation; in the

maximization step, we use the usual maximum likelihood

method to estimate parameters with the updated assignment

of points to groups.

Since the EM algorithm is an iterative method, it has

no closed-form solution. Generally, we do not know the

number of motions exactly. Unlike other implicit

constraints [3,11,28], our filter helps to determine the

number of motions explicitly. Moreover, convergence and

robustness of the EM algorithm are very much dependent

on the initial values. Using the orientation signature of our

filter we can facilitate a good initial value close to the

correct solution.

4. Experiment

We begin with an artificial occlusion sequence (Fig. 8).

The occluding signal has a constant flow of (1, 1) [pixel/

frame] and the occluded signal has a flow of (1, 21).

We use the Gaussian derivative G1 with a support of

5 £ 5 £ 5 pixels inside a 33 £ 33 £ 1 window for

orientation analysis in the derivative space. For spectral

orientation analysis, we choose a 32 £ 32 £ 32 window

and adapt all spectral components in this window. Here

we cannot take a narrower mask like in the derivative

Fig. 8. Top: One frame of an occlusion sequence can be separated as overlapping of two motions. The white window indicates the multiple motion region in

which we compare orientation signatures of different filters. The white arrows denote the moving directions and the black regions denote static background.

Middle: The amplitudes of orientation signatures using G1 (left) and B3 (right). The structure of multiple planes is hardly to see. Bottom: The orientation

signatures using our filter in the derivative space (left) and in the spectral domain (right). The curves in the spectral orientation signature are blurred.

Table 1

Estimation results of the occlusion sequence shown in Fig. 8. We use (u10, v10) ¼ (0.8, 0.3) and (u20, v20) ¼ (1.2, 20.1) to simulate arbitrarily initial values.

The properly initial values are set as (u10, v10) ¼ (0.9, 1.1) and (u20, v20) ¼ (0.9, 21.1). For both approaches we use the same parameters

Model Initial values Compensation Iteration Occluding Occluded

Spatial model Arbitrarily set Yes 3 (0.927, 0.998) (0.949, 20.971)

No 3 (0.986, 0.999) (0.986, 20. 988)

Properly set Yes 1 (0.938, 1.005) (0.923, 20.960)

No 1 (0.980, 0.997) (0.963, 20.974)

Spectral model Arbitrarily set Yes 7 (1.187, 1.194) (1.112, 21.147)

No 4 (0.898, 0.948) (1.106, 21.099)

Properly set Yes 2 (1.182, 1.191) (1.110, 21.145)

No 2 (0.966, 1.002) (1.007, 21.026)
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space because otherwise the spectral resolution will be

too coarse. The orientation signatures of applying G1 and

B3 obviously fail to provide the correct structure of

multiple planes. In contrast, the orientation signatures

using our conic kernels recover the two planes both in

the derivative space and in the spectral space.

Table 1 lists the EM estimation results using our spatial

orientation signature and spectral orientation signature.

Here we take the orientation signatures both with and

without distribution compensation to confirm the analysis in

Section 2.2. In the first test, we set initial values arbitrarily.

In the second test, we take proper initialization according to

Fig. 9. Top: The first, 16-th and 32-th frame of an occlusion sequence. The white window in the 16-th frame indicates an occlusion region. Bottom: The

amplitudes of orientation signatures applying G1 (left), B3 (middle), and our conic kernel (right) in the derivative space of the white window in frame 16.

Fig. 10. Row 1: The 17-th, 32-th and 48-th frames of the flower garden sequence. Each frame has 240 £ 352 pixels. Here we consider the 32-th frame as the

central frame. Row 2: The amplitudes of orientation signatures applying G1 (left), B3 (middle), and our conic kernel (right). Row 3 Left: Estimation results using

the single motion model. At motion boundaries the results are not correct. Row 3 Middle: Two motion candidate regions according to the eigenvalue analysis.

Row 3 Right: Regions with the aperture problem. Row 4: Optical flow of the occluding signal (left) and of the occluded signal (right) using the EM algorithm on

our spatial orientation signatures.
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the extreme point analysis introduced in Section 2.4. The

estimation results without distribution compensation are

better than the results with compensation. Also, proper

initialization reduces the number of iterations greatly in the

EM algorithm. In addition, the data quality in the spatial

orientation signature is good enough so that the estimation

results with arbitrarily initial values are as precise as the

results with properly initial values. In the spectral

orientation signature, however, the curves are blurred and

the EM algorithm is susceptible to be blocked by a local

minimum. Properly initial values help the EM algorithm

converge to the desired global minimum. The spectral

estimation results are not comparable to the spatial

estimation results because the quality of two

orientation signatures are not at the same level, as already

shown in Fig. 8.

In order to test the performance of the EM algorithm on

determining the number of motions, we propose an example

of single motion with a velocity (1, 21). Both spatial and

spectral EM algorithms should converge to one speed, if

they are able to determine the number of motions

automatically. With the initial values (1.2, 20.1) and (0.8,

0.3), the spatial EM algorithm converges to (0.995, 21.001)

after 2 iterations, while the spectral EM algorithm

converges to (1.057, 21.045) and (0.951, 21.011) after 2

iterations. This result is not surprising since the curves in the

spectral orientation signature are blurred. To confirm the

spectral EM algorithm can converge with the properly

initial values, we run the program again by setting both

initial values as (0.9, 21.1). This time the spectral EM

algorithm converges to (1.004, 21.029) after 2 iterations.

Thus, we verify that the EM algorithm cannot determine the

number of motions exactly and properly initial values play a

critical role for data with ‘bad’ quality.

In Fig. 9 is an occlusion sequence consisting of an

occluding signal moving right with a velocity of about (1, 0)

and an occluded signal moving left at about (21, 0). Using

this knowledge we compare the orientation resolution of

different filters. Inside the white window in the 16-th frame,

we apply G1; B3; and our conic kernel in the derivative

space to obtain orientation signatures. Both G1 and B3 fail to

characterize multiple orientations. Our filter provides

Fig. 11. Row 1: The first, 16-th and 32-th frame of the image sequence. Each frame has 288 £ 384 pixels. Row 2 Left: Estimation results using the single motion

model in the 16-th frame. Row 2 Right: Marked two motion candidate regions according to the eigenvalue analysis. Row 3: Optical flow of two signals using the

EM algorithm on our spectral orientation signatures.
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a reasonable signature. Its two extreme points lie near (08,

458) and (1808, 458) and are ideally consistent with the

motions.

Fig. 10 shows the well known flower garden occlusion

sequence. In one multiple motion region (white window) we

calculate the partial derivatives and apply G1; B3 and our

conic kernel to obtain orientation signatures in the

derivative space (cf. row 2) for resolution comparison. To

demonstrate the entire procedure of multiple motion

estimation, we first estimate motions with the single motion

model. At the occlusion boundaries the results are not

correct. After the eigenvalue analysis [18,19] we detect two

motion candidate regions and the regions with the aperture

problem. Only in the multiple motion candidate regions

apply we Eq. (8)-based EM algorithm to estimate motions in

the spatial domain (row 4).

In Fig. 11, we demonstrate a real example of transpar-

ency sequence. It contains a right moving portrait and a

mirrored left moving muesli package. We detect multiple

motion candidates using the eigenvalue analysis [19]. Then,

we apply the EM algorithm on the spectral signatures for

motion estimation. Note that the spatial estimation algor-

ithms cannot treat transparency sequences. The optical flow

in the spectral EM approach is sparse. This is due to the fact

that in some regions of the package we do not have

adequate texture information. For a robust performance we

ignore these regions in estimation after the eigenvalue

analysis [18,19].

5. Conclusion

In this paper, we studied the recovery of multiple

motions from the standpoint of orientation analysis. We

proposed a new 3D conic kernel for motion estimation. This

method is superior to current 3D steerability approaches in

achieving higher orientation resolution with lower complex-

ity. Comparisons showed that this new method is similar to

the 3D Hough transform, but more efficient and robust. In

addition, it facilitates the convergence of the EM algorithm

when its results are used as the starting values of the EM

estimation.
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Appendix A. The relation between ðun;fnÞ and ðum;fmÞ

In Fig. 12, we represent all possible unit vectors on the

3D plane with a circle. The normal vector n is perpendicular

to all vectors on this plane, including the vector m1

(pointing to the extreme point ðum;fmÞ) and m2 (pointing to

the point ðum 2 908; 0Þ). As m2 is also perpendicular to m1;

m2 is then the normal vector of the dotted plane containing n

and m1: Since m2 lies in the horizontal XY plane, the dotted

plane is then perpendicular to the XY plane. In this vertical

plane we have

fn þ 908þ fm ¼ 1808: ðA1Þ

In addition, the vertical plane always divides the circle

equally since it passes through the origin. As the angles in

the u direction are periodic, we have

lun 2 uml ¼ 1808:

Without affecting the estimation of the velocity, we simply

take

un 2 um ¼ 1808: ðA2Þ

Then we obtain Eq. (7).

References

[1] E.H. Adelson, J.R. Bergen, Spatiotemporal energy models for the

perception of motion, Journal of the Optical Society of America A,

2 (2) (1985) 284–299.

[2] M.T. Andersson, Controllable Multidimensional Filters and Models in

Low Level Computer Vision, PhD Thesis, Department of Electrical

Engineering, Linkoeping University, Linkoeping, Sweden, 1992.

[3] S. Ayer, H.S. Sawhney, Layered Representation of Motion Video

Using Robust Maximum-Likelihood Estimation of Mixture Models

and MDL Encoding, Proceedings of the International Conference on

Computer Vision, Boston, MA, June 20–23, 1995, pp. 777–784.

Fig. 12. The relation between ðun;fnÞ and ðum;fmÞ: The circle contains all

possible unit vectors on a 3D plane. The dotted plane containing the normal

vectors n and m1 is a vertical plane perpendicular to the XY plane.

W. Yu et al. / Image and Vision Computing 21 (2003) 447–458 457



[4] S.S. Beauchemin, J.L. Barron, The computation of optical flow, ACM

Computing Surveys 27 (1995) 433–467.

[5] S.S. Beauchemin, J.L. Barron, The frequency structure of 1d

occluding image signals, IEEE Transactions on Pattern Analysis

and Machine Intelligence 22 (2000) 200–206.

[6] J. Bigün, G.H. Granlund, J. Wiklund, Multidimensional orientation

estimation with application to texture analysis and optical flow, IEEE

Transactions on Pattern Analysis and Machine Intelligence 13 (8)

(1991) 775–790.

[7] D.J. Fleet, K. Langley, Computational analysis of non-Fourier motion,

Vision Research 34 (1994) 3057–3079.

[8] T.C. Folsom, R.B. Pinter, Primitive features by steering, quadrature,

and scale, IEEE Transactions on Pattern Analysis and Machine

Intelligence 20 (11) (1998) 1161–1173.

[9] W.T. Freeman, E.H. Adelson, The design and use of steerable filters,

IEEE Transactions on Pattern Analysis and Machine Intelligence 13

(1991) 891–906.

[10] N.M. Grzywacz, A.L. Yuille, A model for the estimate of local image

velocity by cells in the visual cortex, Proceedings of the Royal Society

of London, B 239 (1990) 129–161.

[11] H. Gu, Y. Shirai, M. Asada, MDL-based segmentation and motion

modeling in a long image sequence of scene with multiple

independently moving objects, IEEE Transactions on Pattern Analysis

and Machine Intelligence 18 (1) (1996) 58–64.

[12] H. Haußecker, H. Spies, Motion, in: B. Jähne, H. Haußecker, P.

Geißer (Eds.), Handbook of Computer Vision and Applications, vol.

2, Academic Press, New York, 1999, pp. 309–396, Chapter 13.

[13] D.J. Heeger, Optical flow using spatiotemporal filters, International

Journal of Computer Vision 1 (4) (1988) 279–302.

[14] F. Heitger, L. Rosenthaler, R. Von der Heydt, E. Peterhans, O.

Kuebler, Simulation of neural contour mechanisms: from simple to

end-stopped cells, Vision Research 32 (5) (1992) 963–981.

[15] B.K.P. Horn, Robot Vision, MIT Press, Cambridge, MA, 1986.

[16] P.V.C. Hough, A method and means for recognising complex

patterns, US Patent 3,069,654, 1962.

[17] C.L. Huang, Y.T. Chen, Motion estimation method using a 3d

steerable filter, Image and Vision Computing 13 (1995) 21–32.

[18] B. Jähne, Spatio-Temporal Image Processing, Springer, Berlin, 1993.

[19] B. Jähne, H. Haußecker, H. Scharr, H. Spies, D. Schmundt, U. Schurr,

Study of dynamical processes with tensor-based spatiotemporal image

processing techniques, in: H. Burkhardt, B. Neumann (Eds.),

Proceedings of the Fifth European Conference on Computer Vision,

Freiburg, Germany, June 2–6, Springer LNCS 1407, vol. II, 1998, pp.

322–335.

[20] M. Michaelis, G. Sommer, Junction classification by multiple

orientation detection, in: J.O. Eklundh (Ed.), Proceedings of the

Third European Conference on Computer Vision, Stockholm,

Sweden, May 2–6, Springer LNCS 800, vol. I, 1994, pp. 101–108.

[21] P. Perona, Deformable kernels for early vision, IEEE Transactions on

Pattern Analysis and Machine Intelligence 17 (5) (1995) 488–499.

[22] T. Poggio, F. Girosi, Networks for approximation and learning,

Proceedings of the IEEE 78 (9) (1990) 1481–1497.

[23] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,

Numerical Recipes in C, Cambridge University Press, Cambridge,

1992.

[24] M. Shizawa, T. Iso, Direct Representation and Detection of Multi-

Scale, Multi-Orientation Fields Using Local Differentiation Filters,

IEEE Conference on Computer Vision and Pattern Recognition, New

York, NY, June 15–17, 1993, pp. 508–514.

[25] M. Shizawa, K. Mase, A Unified Computational Theory for Motion

Transparency and Motion Boundaries Based on Eigenenergy

Analysis, IEEE Conference on Computer Vision and Pattern

Recognition, Maui, Hawaii, June 3–6, 1991, pp. 289–295.

[26] E.P. Simoncelli, H. Farid, Steerable wedge filters for local orientation

analysis, IEEE Transactions on Image Processing 5 (9) (1996)

1377–1382.

[27] E.P. Simoncelli, D.J. Heeger, A model of neuronal responses in visual

area MT, Vision Research 38 (5) (1998) 743–761.

[28] Y. Weiss, Smoothness in Layers: Motion Segmentation Using

Nonparametric Mixture Estimation, IEEE Conference on Computer

Vision and Pattern Recognition, Puerto Rico, June 17–19, 1997, pp.

520–526.

[29] Y. Xiong, S.A. Shafer, Moment, and hypergeometric filters for high

precision computation of focus, stereo and optical flow, International

Journal of Computer Vision 24 (1) (1997) 25–59.

[30] L. Xu, E. Oja, P. Kultanen, A new curve detection method:

randomized Hough transform (RHT), Pattern Recognition Letters

11 (5) (1990) 331–338.

[31] W. Yu, K. Daniilidis, G. Sommer, Approximate orientation

steerability based on angular Gaussians, IEEE Transactions on

Image Processing 10 (2) (2001) 193–205.

W. Yu et al. / Image and Vision Computing 21 (2003) 447–458458


	Three dimensional orientation signatures with conic kernel filtering for multiple motion analysis
	Introduction
	Conic kernel
	Definition
	Compensation via radial variation
	Comparison with current 3D steerable filters
	Conic kernel response to 3D planes

	Multiple motion estimation using conic kernel
	Algorithm
	Comparison with Hough transform and EM estimation

	Experiment
	Conclusion
	Acknowledgements
	The relation between ([theta]n,[phi]n) and ([theta]m,[phi]m)
	References


