
Low-cost Junction Characterization Using Polar Averaging FiltersWeichuan Yu, Kostas Daniilidis, Gerald SommerInstitute of Computer ScienceChristian Albrechts UniversityPreusserstrasse 1-9, D-24105 Kiel, GermanyEmail: wy@informatik.uni-kiel.deAbstractJunction characterization is a very costly task sincejunctions are multi-scalar and multi-oriented struc-tures. Besides, high directional selectivity is also re-quired to deal with complex junctions. Steerable �ltersattenuate this computational burden by approximatinga �lter at an arbitrary scale and orientation with a �-nite set of so-called basis �lters. But due to the un-certainty principle high orientational selectivity can beonly achieved by applying a large number of basis �l-ters. In this paper we present a kind of �lter withsmall spatial support to alleviate this e�ort. The maskof our �lter is determined not by Fourier transform,but directly according to the coordinates. Hence, maskswith high orientational selectivity can be obtained with-out increasing any extra computation. Moreover, onlyaveraging values in the masks are calculated. The ex-pensive 2D convolution of normal �ltering is thereforeavoided.1 IntroductionJunctions of gray-value lines or edges are rare eventsin images carrying important information for manyimage processing tasks like point matching in objectrecognition, point tracking in motion analysis and at-tentive coding.In order to use junctions for such tasks we must beable to characterize them by means of signatures andto classify them in junction categories. Junctions arelocal structures with multiple intrinsic scales and orien-tations [2]. A signature characterizing such a junctioncan be only obtained by applying a �lter in di�erentscales and orientations. This results in enormous com-putational e�ort. To reduce such a complexity the con-cept of steerability has been introduced [4, 1]. Steer-ability is based on the approximation by a Fourier se-ries. The response of a �lter at an arbitrary scale andorientation can be approximated as a linear combina-tion of a �nite set of so-called basis �lters. Usually thenumber of basis �lters is much less than that of scalechanges and rotations. Therefore, the computational

cost is highly reduced.Although steerability provides us with a solid math-ematical theory, the complexity of its implementationremains high. Due to the uncertainty principle theproduct of orientational resolution of a steerable �lterand its corresponding spectral bandwidth has a lowerbound. Therefore, in order to achieve a high orienta-tional selectivity we have to apply a large number ofbasis �lters with each of them having supports coveringthe whole neighborhood of the corresponding keypoint[5, 6].But why is it necessary to cover the neighbor somany times? In principle we need to "scan" the neigh-bor only once to obtain the required information forcharacterization. This is the motivation of our polaraveraging �lter. The goal is to reduce the computa-tional cost by applying a rotated mask with small spa-tial support. Furthermore, we try to accomplish all�ltering by avoiding 2D convolution which is computa-tionally expensive if the �lter is non-separable and thecomputer does not contain a dedicated convolver.In the following we �rst describe the new polar av-eraging �lter in detail. Then the complexity of ourapproach is compared with the steerable wedge �lter[7]. Finally we show the performance of both �lters inreal experiments and give the conclusion about the new�lter.2 Polar Averaging FilterOur method applies a local polar mapping at a key-point. Then, it estimates averaging values over therectangular support in polar coordinates as shown in�gure 1. The positions of local maxima show theorientation of lines and the positions of steepest de-scent/ascent indicate the orientation of edges. Becausein natural images edges are more important than lineswe further apply a 1D derivative �lter with respect tothe angle to get the required information. In this paperwe use the �rst derivative of an 1D Gaussian functionG1 with tap size S. Thus, for a circular neighborhoodof a keypoint f(x; y) the impulse response yields:



g(�i) def= 1N (f(�; �)) RmaxX�=Rmin �i+W2X�=�i�W2 f(�; �)h(�) def= j G1(�) � g(�) jwhere N ( ) means the number of pixels in the masksand �; �i 2 [0; 2�]. The maxima of g(�) and h(�) indi-cate the existence of lines and edges, respectively. Themeaning of other parameters are shown in �gure 1. Asan example we present synthetic image results in �g-ure 2.The support of the �lter does not contain the o�set-keypoint so that confusion is avoided due to artifactstructures close to the keypoint. The advantages ofintroducing Rmin can be seen in �gure 3.
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maxRFigure 1: Mask centered at angle �i. left: Mask in orig-inal Cartesian coordinates. Keypoint is at the centerof the circle. Right: Mask with � and � as Cartesiancoordinates. Radial boundaries of the mask are �xedby Rmax and Rmin, W is the angle width of the mask.
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180 0Figure 2: Top: Synthetic edge junctions. Bottom:Polar plots of h(�). The local maxima show the orien-tation of edges. Here G1 with tap size S = 11 is used.W = 8�, Rmin = 3, Rmax = 9. The small deviations inorientations are due to the fact that an edge can onlybe presented by two pixels in the grid, while we cannot set the center of a mask between two pixels.
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= 3Figure 3: (a): An edge junction corrupted by a smallwhite square. (b): WithRmin = 0 the output possessesmany local maxima. (c): With Rmin 6= 0 the confusingstructures are not corrupting the angular plot. W = 8�,Rmax = 7, S = 11.3 Complexity ComparisonMany kinds of steerable �lters are used to analyzejunctions. Since the steerable wedge �lter [7] representsbasic attributes of steerable �lters and is computation-ally more e�ective than normal steerable �lters due toits polar separability, we choose this �lter for compar-ison.Steerable �lter methods are based on convolution.The computational cost is proportional to the numberof basis �lters. In order to implement the steerablewedge �lter [7] with N basis �lters of mask size P � Pwe require N (2P + 360�� ) multiplications and N (2P �1) + 360�� (N � 1) additions, where � is the samplinginterval in the angle domain. Normally � = 1� is �neenough to characterize all possible junctions.In the polar averaging �lter, the complexity is re-duced in two-fold. First, we apply �lters with muchsmaller support than the basis �lters in [7]. Sec-ondly, due to averaging we have up to the Gaus-sian derivative with respect to the angle only addi-tions and about 360 multiplications (for � = 1�).Precisely, we need 360�� S + 360�� multiplications andW� �(Rmax � Rmin + 1)2 + 360�� (S � 1) additions toemploy our method, where S is the tap size of 1Dderivative �lter. As shown in �gure 4, to achievethe equivalent orientational selectivity, 90 basis �l-ters are required in the steerable wedge �lter method[7], yielding 37980 multiplications and 37530 additions(N = 90; P = 31) totally. The e�ort of the polar aver-aging �lter is only 4320 multiplications and 6817 addi-tions (W = 4�; Rmin = 0; Rmax = 15; S = 11).It should be noticed that the local polar mappingcan be done "o�-line" since it is a transform betweencoordinates and is therefore valid for all di�erent im-ages. The resulting table-look-up is of negligible com-plexity in comparison to the averaging step.



(a): junction (b): 46 bases (c): 90 bases (d): averaging method
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180 0Figure 4: (a): A so-called "Siemens star" with 16edges spanning evenly the orientation space. (b): Po-lar plot of the result using the steerable wedge �lter[7] composed of 46 basis �lters with 31-tap size. Theedges are hardly discernible. (c): The same as in (b)but using 90 basis �lters. (d): Results of polar aver-aging �lter. The orientations of the edges are clearlypresented. W = 4�, Rmin = 0, Rmax = 15, S = 11.4 ExperimentsIn real images junctions are often corrupted by noise.Experiment in �gure 5 shows that the polar averaging�lter is robust against noise. In addition, the detectionand localization of keypoints are not always precise [3].Therefore, it is necessary to study the behavior of thenew �lter with respect to the o�set variations. Our�lter is also stable in this case (�gure 6). In �gure 7 and8 we show the performance of the steerable wedge �lterand our polar averaging �lter in real edge junctions.The keypoints are not always at centers of the masks.Both of �lters are stable with respect to these o�sets.Our �lter characterizes the directions of junctions moredistinctively but is relatively sensitive to high frequencycomponents due to 1D derivative.
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180 0Figure 6: Top: Di�erent deviation of the keypointsfrom centers of masks. Bottom: Polar plots of h(�).W = 15�; Rmin = 3; Rmax = 15; S = 17.5 ConclusionThe main task of image analysis can be expressed asthe question "what is where". Usually di�erent kindsof �lters with di�erent shapes are applied to extractrequired information. Therefore, convolution is a stan-dard method. In order to optimize �lters many meth-ods of signal reconstruction such as Fourier series andwavelets are further introduced.But these may be not necessary to characterize junc-tions. It is known that images are represented in a reg-ular grid, i.e., a kind of topological structure. Applying�lters can be viewed as converting one structure intoanother more suitable structure for extracting requiredinformation. With this view of structure we can ob-tain the orientational information much more straight-forwardly by directly rearranging the structure fromCartesian coordinates to polar coordinates. The con-version avoids the cumbrous 2D convolution and repre-sents the required information more distinctively. Thepolar averaging �lter simpli�es image analysis. It canbe further applied to estimate multiple motions and tocope with scale problems.AcknowledgmentThe �nancial support of the �rst author by DAAD(German Academic Exchange Service) and of the sec-ond and third authors by DFG grant 320/1-2 is greatlyacknowledged. We thank H. Farid and G. Birkelbachfor their helpful discussions. H. Farid is also appreci-ated for providing the programs of the steerable wedge�lter.References[1] E.P. Simoncelli, W.T. Freeman, E.H. Adelson andD.J. Heeger. Shiftable multi-scale transforms. IEEETrans. Information Theory, 38(2):587{607, 1992.
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180 0Figure 7: Comparison between steerable wedge �lter[7] and polar averaging �lter. Row 1: An image of theNASA sequence with four kinds of marked junctions.Row 2: Junctions in detail. The keypoints are notalways at centers of the masks. Row 3: Polar plotsusing the steerable wedge �lter [7] composed of 46 basis�lters with 31 tap size. Row 4: Polar plot using thepolar averaging �lter. W = 10�; Rmin = 3; Rmax =15; S = 17. Both methods are stable with respect tothe o�sets of keypoints. Our method presents higherorientational selectivity with lower cost.[2] D. H. Ballard and L. E. Wixson. Object recognitionusing steerable �lters at multiple scales. In IEEEWorkshop on Qualitative Vision, pages 2{10, 1993.[3] W. Foerstner. A framework for low level featureextraction. In European Conf. on Computer Vision,volume II, pages 383{394, Stockholm, Sweden, May2-6, J.O. Eklundh (Ed.), Springer LNCS 801, 1994.[4] W.T. Freeman and E.H. Adelson. The design anduse of steerable �lters. IEEE Trans. Pattern Anal-ysis and Machine Intelligence, 13:891{906, 1991.
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