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Abstract

Responses of Gabor wavelets in the mid-frequency space build a local spectral representation scheme with
optimal properties regarding the time-frequency uncertainty principle. However, when using Gabor wavelets
we observe a skewness in the mid-frequency space caused by the spreading effect of Gabor wavelets. Though
in most current applications the skewness does not obstruct the sampling of the spectral domain, it affects the
identification and separation of source signals from the filter response in the mid-frequency space. In this paper,
we present a modification of the original Gabor filter, the skew Gabor filter, which corrects skewness so that
the filter response can be described with a sum-of-Gaussians model in the mid-frequency space. The correction
further enables us to use higher-order moment information to separate different source signal components. This
provides us with an elegant framework to deblur the filter response which is not characterized by the limited
spectral resolution of other local spectral representations.

1 Introduction

Gabor filters [13] are very attractive due to their optimal localization properties both in spatial and in spectral
domain. According to the well known uncertainty principle, the product of the spatial and the spectral support
of a filter has a lower bound. Because Gaussians and modulated Gaussians (Gabor functions) can achieve such
a lower bound they are very useful in many spectral analysis tasks such as image representation (e.g. [20]) and
the spatio-temporal analysis of motions in image sequences (e.g. [1, 15]). Besides, Gabor filters were shown to
approximate biological models of vision (e.g. [7, 19, 16]). In the spatio-temporal models for motion estimation
[1, 2], the energy spectrum of a constant translational motion can be characterized as an oriented plane passing
through the origin in the spectral domain. Sampling the spectrum with a set of Gabor filters at different frequencies
and orientations [15] may help us to estimate the orientation of the spectral plane. Grzywacz and Yuille [14] further
argued that the spectral support of a Gabor filter is a measure of uncertainty and the angle between two tangential
lines of the support, which pass through the spectral origin, represents the uncertainty of orientation estimation
(see figure 1). This angle is desired to be the same for filters at different frequencies. Thus, the spectral support
should be proportional to the distance between the origin and the support center.
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Figure 1: The motivation of applying 2D Gabor wavelets (redrawn from [14]).
We represent the spectral support of a 2D Gabor filter with a circle. Apply-
ing a set of filters with constant scale may cause larger angular uncertainty at
lower frequencies (as shown by the angle between two dashed lines). Thus, the
spectral support of filters should be directly proportional to the mid-frequency.
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In Gabor filters, impulse responses have the same support in low and hig frequencies. However, we would prefer
the support to be inversely proportional to the mid-frequency. The coupling of the bandwidth with the mid-
frequency yields Gabor wavelets, a combination of Gabor filter and wavelets [21, 6], extensively used in signal
analysis and image representation (e.g. [20, 27]).

In applying Gabor wavelets we observe a positive skewness in the mid-frequency space [14]. This skewness did
not draw considerable attention in the computer vision community because most applications of Gabor wavelets
are classification tasks. Being aware of the non-symmetrically spreading effect of Gabor wavelets in the mid-
frequency space, we argue that an isotropic dissemination of the mid-frequency representation of the filter response
(we call this local spectral representation the mid-spectrum) may facilitate the deblurring of filter responses so that
we no more suffer from the limited resolution of frequency-based approaches. This is especially useful in source
signal separation and multiple spectral orientation analysis. Based on this motivation we design a new filter to
correct this skewness effect (section 2). In section 3 we further describe the 1D corrected mid-spectrum with a
sum-of-Gaussians model and use higher-order moments to identify different source components. The deblurring
of the mid-spectrum is also demonstrated. In section 4 we extend the analysis to 2D spectral orientation analysis.
This paper is concluded with some discussions in section 5.

2 The Skewness of Gabor Wavelets

We first explain the positive skewness of Gabor wavelets. For simplicity we begin with a 1D Gabor filter whose
impulse response reads

���������
	���
���������� �� ��� � ���! "�#�$$�% $#'& � (�)!* �,+ (1)

Here 	 � denotes the mid-frequency and � � is the scale parameter. The spectrum of � � �����
	 � 
�� � � is a Gaussian
centered at 	-� . � ��	/�
	 � 
�� � �0� �  % $#�132!4�2 *
5 $$ (2)

with bandwidth inversely proportional to � � . In applications, we usually calculate the spatial convolution between� � �����
	 � 
�� � � and the input signal 6 ���7�8 �9�����
	���
����:�;��� 6 ������<=�������7�=�?>A@B�C  @ 6 ��D:�E�������GFHDI�KJ:D + (3)

At a fixed position � � , the filter response is simplified as an inner product8 � ��� � �
	 � 
�� � �=� > @B�C  @ 6 ��D:�E� � ��� � FLD:�KJID + (4)

Using the facts that �'�����M�NFO�7�P�?�!Q� ���GFO�M�9� and
. Q � ��	��P� . �9��	�� (here R denotes conjugation) the above inner

product can also be represented in the spectral domain according to the Parseval theorem ([4], pp.113-115) as8 � ��� � �
	 � 
�� � �0� > @) C  @TS ��	��
. � ��	�� � (�) � * JI	 + (5)

Here S ��	�� is the spectrum of 6 ����� . Thus, for �U�V� � (for simplicity we set � � �VW ) we obtain a local spectral
representation which is a function of the mid-frequency 	 � and the scale � � . We call this representation the
mid-spectrum of the signal.
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The mid-spectrum
8 � ��	 � 
�� � � spreads every spectral Dirac component of the source signal into a function of 	 � .

Assume that the spectrum of a source signal is a Dirac function: S ��	�� �
� ��	 F 	�� � originating from a complex

harmonic. Equation (5) then turns out to be8 ����	���
�� �:�=� . ����	 � �
	���
�� �:�=� �  % $# 132 * 4�2�� 5 $$ +
(6)

When the parameter � � is a constant,
8 � ��	 � 
�� � � is a Gaussian spreading of

� ��	TF 	�� � and there is no skewness.
But if the wavelet property is preferred, i.e. if � � is inversely proportional to 	 �� � � �	 � (7)

with
�

as a constant. Then, we observe the positive skewness of 	 � [14] (see also figure 2)

8 � ��	 � 
 � �=� �  � $ 132 * 4�2 � 5 $$ 2 $* +
(8)

We may straightforwardly extend the above analysis for n-dimensional Gabor wavelets with isotropic envelope.
For 2D Gabor wavelets in the spatio-temporal domain we have the following relation� � � �	��� �


 	��� ��
 	��� � + (9)

The mid-spectrum of a 2D spectral impulse
� ��	0� �/FL	�� � 

	 � �/FL	 ��� � reads8 � ��	 � � 

	�� � 
 � �=���������:F � � ��	 � � FL	 � � � � 
 ��	�� � FL	���� � �� ��	 �� ��
 	 �� � � �

+
(10)
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Figure 2: The skewness of Gabor wavelets.
Left: The solid curve denotes

8 ����	���
 � �
and the dotted curve is a Gaussian function
centered at 	�� with the scale parameter

) �� .� � � +�� 

	��A� � � . Right: 2D skewness8 � ��	 � � 

	�� � 
 � � . � ��� +�� 

	 � ��� 	������ �� .
In many Gabor wavelet approaches, this skewness seems harmless because it does not obstruct the description of
different signals with a set of samples [18, 22]. The main attention was attracted to the efficient covering/sampling
of the spectrum as well as the coefficient estimation of the Gabor basis [3, 20]. But we should keep in mind that the
spreading effect of Gabor wavelet filtering (see equation (8)) really blurs the input signal non-symmetrically in the
mid-frequency space. For the sake of source signal identification and separation, we prefer to have a symmetric
spreading. In the following we present a new filter to correct this positive skewness.

2.1 Correcting the Skewness

In order to achieve symmetry in the mid-spectrum, we introduce a new skew Gabor filter whose spectral definition
reads

!=. ����	/�
	 ��
 � �����������"�:F � � �� � � 	HFL	 �	 � � � + (11)

3



There exists no analytical expression of the skew Gabor filter in the spatial domain because there is no closed-form
representation of the inverse Fourier transform of

!=. � ��	�� . But we may obtain an FIR version of both the real and
the imaginary part of the skew Gabor filter � � � ����� using filter-design in the Fourier domain and discrete Fourier
transform. In figure 3 we display one example of the skew Gabor filter. It is similar to a Gabor filter with subtle
shape differences inside the Gaussian envelope.
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Figure 3: Top: The real
parts of a 1D skew Gabor
filter (left) and of a Gabor
filter (middle) as well as
their even-symmetric dif-
ference (right). Bottom:
The imaginary parts of
both filters (left: skew Ga-
bor; middle: Gabor) and
their odd-symmetric dif-
ference (right). The pa-
rameters are

� � � +�� and	 � � �� .
Replacing

. � ��	/�
	 � 
�� � � in equation (5) with
!=. � ��	/�
	 � 
�� � � yields a mid-spectrum with an ideal Gaussian shape

� 8 � ��	 � 
 � �=� ��� �"�:F � � ��	 � FL	�� � �� 	��� �
+

(12)

Similarly, we may correct the skewness of 2D Gabor wavelets by using a 2D skew Gabor filter

! . � ��	��,

	 � �
	�� ��

	 � ��
 � �=� ��� �"�:F � � �� ��� ��	 � FL	 � � � � 
 ��	�� FL	�� � � �	 �� 
 	��� � �
+

(13)

The mid-spectrum corresponding to
� ��	-� �/FL	�� � 

	 � �/FL	 ��� � is then an ideal 2D Gaussian (cf. equation (10))

� 8 � ��	 � � 

	�� � 
 � �0�������"�:F � � �� ��� ��	 � � FL	 � � � � 
 ��	�� � FL	���� � �	 �� � 
 	 ���� � �
+

(14)

In figure 4 we display a 1D cosine sequence and the correction of the skewness in the mid-spectrum. Here we use
only one constant

�
to keep the Gaussian envelope isotropic. It is also possible to apply two different constants

(i.e.
� ���� � � ) in order to form a mid-spectrum with an elongated Gaussian shape . But this is beyond the scope

of this paper.

3 1D Source Signal Separation

In the following we demonstrate the merit of correcting the positive skewness. We start with 1D source signal
separation. We assume that the spectrum of an input signal is composed of two Dirac components

! ��	��0��� � � ��	OF	� � � 
 � � � ��	 F	� � � 
 (15)
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Figure 4: Left: Cosine sequence� ����
����=� ������� � � 	 ��� 
 W +�� ���
� . Mid-
dle: Mid-spectrum using Gabor
wavelets with

� � � +�� . Right:
Mid-spectrum using 2D skew Ga-
bor filters with the same

�
. The

skewness in the middle image is
corrected.

where their amplitudes ( � � and � � ) and offsets ( � � and � � ) are unknown. Our goal is to estimate these amplitudes
and offsets from the mid-spectrum so that the source components can be identified and separated. Here we do not
discuss the traditional Fourier analysis, but focus on the comparison with Gabor wavelets.

If we apply plain Gabor wavelets for filtering, the mid-spectrum is an overlap of two skewness curves (cf. equa-
tion (8)). Though iterative algorithms (e.g. [8, 23]) or learning methods (e.g. [9]) may be used to extract the
desired parameters, such non-analytic approaches are computationally inefficient and are sensitive to initial val-
ues and related parameters in the cost function. Besides, they are susceptible to local minima in the regression
procedure. Thus, we prefer to use an analytic framework for parameter regression.

The correction of skewness makes this idea possible. Under the same assumption as that in equation (15), the
mid-spectrum of skew Gabor filters is then a sum of two differently weighted and shifted Gaussian functions (for
simplicity we omit the coefficient term

�
 � ��� of Gaussian)

� ��	 � �0� � � ��	 � � 
 � � ��	 � � (16)

with 
�� �� � � ��	 � � � � � �  132
* 4���� 5 $$ 1 ���� 5 $

� � ��	 � � � � � �  132 * 4�� $ 5 $$ 1 � $� 5 $
+

(17)

The scale parameters in above Gaussians are proportional to the mean values. In figure 5 we demonstrate the
mid-spectrum of plain Gabor wavelet filtering as well as the mid-spectrum of skew Gabor filtering.
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Figure 5: Left: The mid-spectrum of
plain Gabor wavelet filtering. Right: The
superposition of two Gaussians after 1D
skew Gabor filtering. We have totally four
unknowns: the amplitudes � � and � � as
well as the mean values � � and � � . The
scale parameters of these two Gaussians
are determined by � �� and � $� , respectively.

The sum-of-Gaussians model is well studied from statistic aspect and is widely used in neural network approaches
(e.g. [9, 23]). One more benefit of this model is that we are able to use higher-order moment information to extract
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parameters. According to Appendix A we obtain the following system of equations in � � , � � , � � , and � �
����� �����
� � � � 
 � � � � � � � �
 � � ��� � �
� � � � � 
 � � � �� � � � � � ��� � �� � ��� � 
 � � ���� � ��� $�� � � � �9� ��� � �
� � � 	 � 
 � � � 	 � � ��� $ � � � � �9� ��� � 	

+
(18)

Here � � denotes the integration of � ��	 � � and � � , � � , and � � denote the first three order moments of � ��	 � ���	� � .
Without loss of generality we assume W�
 � �
� � � . Solving these equations (Appendix B) yields
����� �����

� � � � " � ��� $ � ��� � � � � 
 � $  	 ��� &� $  	 ���  � 
 � $  	 ���� � � � " � ��� $ � ��� �  � � 
 � $  	 ��� &� $  	 ��� � � 
 � $  	 ���� � �  � � 
 � $  	 ���� �� � �  �  
 � $  	 ���� �


 (19)

where � � , � � , � � , and � 	 are defined in (18) and the variables � , � , and � are defined in (B.6) (Appendix B). The
term � � F�� � � is guaranteed to be no less than zero (see Appendix B). If � � F�� � � � W , there is only one single
Gaussian (i.e. � � � � � ) and we can estimate its mean value and amplitude directly using equations (A.1) and
(A.2).
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Figure 6: Top: The source
signal and its energy spectrum.
Bottom: The positive mid-
spectra (solid lines) using plain
Gabor wavelets (left) and using
skew Gabor filters (right). These
curves are actually overlapping
of the spreading responses of
two Dirac functions (shown as
crosses).

In figure 6 we display an example of source signal separation. The input signal is composed of two cosine functions

�������0� � ����� � � � �7� 
 ����� � � �� �7� (20)

with the spectrum
! ��	�� � � ��	�� � 	 � 
 �

� � ��	�� � �� � . Now we sample the positive spectral space with Gabor
wavelets and skew Gabor filters. We start the mid-frequency at 	��G� �� � � and increase it with a step of �� � � to
get a dense sampling. Here we set the highest mid-frequency as 	 � ��� �� so that we do not need to consider the
boundaries in the mid-spectrum. Using higher-order moments we estimate the amplitudes and the locations of two
positive Dirac components 
��� ���

� � � W + ���"!$# % �� � � W + � � � � % �
��-� � W + � � ��W % � 	

� � � � + � W !$� % � ��
+

(21)
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In the negative frequencies, we may perform a similar procedure to extract the desired parameters. Then, we are
able to identify the source signal components in spite of the blurring in the mid-spectrum. In other words, this
method can “deblur” the mid-spectrum. Taking into account that a lot of efforts had to be made in filter design
so that the blurring after filtering does not significantly affect the identification of signals or orientations (e.g.
[25, 28]), this framework provides an elegant solution which increases the resolution in mid-frequency space.

4 Orientation Analysis in 2D Spectral Space

In this section, we analyze the appearance of multiple orientations in 2D spectral space using skew Gabor filters.
An important application of this analysis is multiple motion analysis in xt-space. According to [11, 12, 2], both
1D occlusion and transparency may be modeled as multiple lines in the spectral domain, with some distortion in
case of occlusion and without distortion in case of transparency. Thus, the problem of motion estimation turns out
to be an issue of orientation analysis in the spatio-temporal space. As the angle between two spectral lines can be
arbitrary, eigen-analysis (e.g. [24, 17]) cannot properly determine the orientation of multiple lines. Sampling the
spectrum with Gabor filters [15] provided a good motivation, but suffered under the limited resolution. Here we
prove that this limitation may be overcome using skew Gabor filters.

As the energy spectrum of either occlusion or transparency is mainly a superposition of two spectral lines, the
corresponding mid-spectrum after skew Gabor filtering is then the sum of differently weighted 2D Gaussians
centered on two spectral lines. Along each spectral line, these Gaussians have the same angular uncertainty due
to wavelet property (cf. figure 1). Though the angular distribution � 8 � � � � of a 2D Gaussian is no more an exact
1D Gaussian, we still can approximate � 8 � � � � using a Gaussian with appropriate parameters, especially if

�
is adequately large (e.g.

��� � ). Due to the space limitation we won’t delve into the mathematic derivation,
but use an example in figure 7 as an intuitive proof. The reader is referred to [29] for more details. After this
approximation, all 2D Gaussians centered on the same spectral line have the same angular mean value and the
same angular scale parameter � � . Consequently, after polar integration 1 we obtain one 1D Gaussian from all 2D
Gaussians centered on the same spectral line and the angular distribution of the mid-spectrum is the superposition
of two 1D Gaussians. Thus, we are able to extract the exact orientation of the spectral lines from the blurring
mid-spectrum using the framework introduced in section 3. The only difference here is that the parameter � � is no
more proportional to

� � , but a constant determined by
�

.

4.1 Examples

To evaluate the performance of our framework properly, we use synthesized examples. The first example demon-
strates the deblurring ability of our framework. We use a 2D signal whose spectrum is composed of two spectral
lines passing through the origin (figure 8). The angles between these two lines and the 	 � axis are � � degrees
and ��W degrees, respectively. The mid-spectrum after skew Gabor filtering is strongly blurred due to the spreading
effect of filtering and the overlapping of two neighboring Gaussians. The source signal components are hardly to
observe in this mid-spectrum. Using higher-order moments, we are still able to determine the orientation of the
original spectral lines: � � � � � + � !�� and � � � ��W + W !��

. The relative large error in � � is caused by the discrete
approximation of the polar integration (e.g. at W degree we have more grid points than at � � degrees). We may
reduce this error by increasing the grid density or by interpolation. But we will not enter this topic here.

1This integration is well known as Radon Transform [26].
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Figure 7: Left: Polar integration of an isotropic 2D Gaussian centered at ��	 � � 

	����E� can be approximated by an
ideal Gaussian function with mean value

� � and scale parameter � � . The solid circle represents the support of the
Gaussian. The pencil of lines passing through the origin denotes the integration paths. The middle point of the
intersection between a integration path and the solid circle lies on the dotted circle with a diameter

� � . Middle:
The solid curve is the plot of � 8 � � � � . For comparison we plot an ideal Gaussian with crosses as well. The scale of
this Gaussian is � � � �����  � � � � � � with

� � � +�� . Right: The maximal difference between the normal Gaussian
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Figure 8: Left: The spectrum of a 2D
signal is composed of two spectral lines
passing through the origin with an angle
of � � degrees between them. Middle:
Mid-spectrum using 2D skew Gabor fil-
ters with

� � #
. The mid-frequency

satisfies
� � � # � 
 	��� � 
 	��� � � � � �	� .

Right: The angular distribution of the
mid-spectrum.

The second example is to estimate multiple motions in a transparency sequence (figure 9). In this sequence we
have one random dot sequence moving at � + W!W [pixel/frame] and one sum-of-cosines sequence moving at W + �IW
[pixel/frame], respectively. For clarity of displaying we arrange the maximal amplitude of the cosine sequence
to be twice the maximal amplitude of the random dot sequence so that the corresponding spectral lines have the
same amplitudes. The spectrum displays the superposition of two motions clearly. The mid-spectrum spreads
this distribution. This is clearly to see in the plot after the polar integration. As the spectral lines are symmetric
with respect to the origin, we only need one half for estimation. Here we use the higher-order moments in the
angular space between

� W degrees and � � W degrees to determine the orientation of spectral lines: � � � � � � + � � �
and � � � � � � + # � � . The normal vector of these two lines indicate the velocities: � �/� ����
 � �-��F � W � ��� � + W � and
� � � ����
 � � � F � W � � � W + � � .

5 Discussions

The skewness correction of Gabor wavelets results in a Gaussian spreading of the input signal in the mid-frequency
space. After the correction we are able to model the distribution in the parameter space with a sum of Gaussian
functions. Comparing with the non-symmetric skewness curve, the benefit of using Gaussian functions for distri-
bution description is obvious: Gaussians have good localization ability and are capable of providing simple yet
rich descriptions of signals. From the point of view of probabilistic signal processing and pattern recognition, this
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Figure 9: Top: The transparency sequence (right)
� ����
����=� � ���

� C ��� � ����� ��	 � ���/F W + � �
� 
�� � � 
	� ��
 ���/F ��� . In the
sum-of-cosine sequence (left) 	 � varies from

� � � # to � � �	� with a step of
� � � � �

. The amplitudes � � and phase
components � � are randomly chosen. The random dot sequence (middle) � ��
 ��� F���� moves with � [pixel/frame].
Bottom Left: The spectrum of the transparency sequence. Bottom Middle : Mid-spectrum using 2D skew
Gabor filters with

� � #
. The middle frequency satisfies

� � � # � 
 	��� � 
 	��� � � � � �	� . Bottom Right: The
angular distribution of the mid-spectrum.

correction simplifies the tasks of signal analysis significantly. For example, the analytical framework for source
signal separation benefits from the statistical simplicity of Gaussians in calculating higher-order moments.

Higher-order moment information is also used in independent component analysis (ICA) approaches [5, 10]. In
ICA approaches we need a numerical solution (e.g. singular value decomposition (SVD)) because the distribution
is unknown. In our framework, however, the sum-of-Gaussian model makes an analytic solution possible. It is
also worth mentioning that we need only one superposition of the source signals to separate them (In [10], for
example, two linearly independent superposition are needed to separate source signals).

Another point of our source signal separation framework is that most frequency-based methods suffer from low
resolution due to spreading and overlapping. By achieving the spreading to have a Gaussian shape, we can separate
two overlapping Gaussians in the mid-frequency space. This enables us to reach very fine resolution in the spectral
domain and therefore solve the aliasing problem.

In the future work the following points are worth studying:


 Extend the framework to 2D multiple motion analysis, where the source signal itself is a sum of 2D Gaus-
sians.


 Reduce the computational load by using elongated filter masks and by studying how sparsely we can sample
the spectrum without affecting the parameter regression.


 Develop efficient estimation algorithms for the spectrum with multiple harmonics (more than two Dirac
impulses).


 Study the sensitivity to noise.
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Appendix A

For convenience we change the variable in equations (16) and (17) to � and normalize � � ���7� , � � ���7� , and � ����� to
obtain the corresponding distribution density functions

� �9���7� , � � ����� , and
� ����� :

� � �?> �7���7�KJI� � � ���
� � � � � � 
 � � � � � 
 (A.1)


������ ������
� � ����� � � � " � &� � � " � &�� � � �

� $��� � � �  
1 # 4 � � 5 $$ 1 � �� 5 $

� � ����� � � $ " � &� � $ " � &�� � � �
� $��� � $ �  

1 # 4 � $ 5 $$ 1 � $� 5 $� ���7� � �
� * � ���7� � �

� � � � � � $ � $ � � � � � � � ���7� 
 � � � � � � ���7� �
+

The first three order moments of
� ���7� read

� � �	� � � ���7�KJ:� � �� � � � 
 � � � � � � � � � � 
 � � � �� � 
 (A.2)

� � � � � � � ���7�KJ:� � �� $ 
 ���� �-� 
 � � � � � � � � � � 
 � � � �� � 
 (A.3)

� � � � � � � ���7�KJ:� � �� $ 
 �� � � � 
 � � � � � � � � 	 � 
 � � � 	 � � + (A.4)

Reformulate equations (A.1), (A.2), (A.3), and (A.4) yields the equation system (18).

Appendix B

After defining � � � � � � � , � � � � � � � , we get an equation system of variables � � , � � , � � , and � � from (18)� � 
 � � � � � 
 (B.1)

� � � � 
 � � � � � � � 
 (B.2)

� � � � � 
 � � � �� � � � 
 (B.3)

� � � � � 
 � � � �� � � 	 + (B.4)

From (B.1) and (B.2) we obtain � � � � � F	� � �0� � � F�� � � � 
 (B.1-1)

� � � � � F	� � �=� � � � � F � � + (B.2-1)
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We multiply both sides of (B.3) and (B.4) with � � � F	� � � and simplify them as��� � F � � � � � � � � � � F � � � � 
 (B.3-1)

��� � F � � � � � � �� 
 ��� � F�� � � � � � � � � 
 � � � � � F�� 	 � W + (B.4-1)

Submitting (B.3-1) into (B.4-1) yields

� � � � 
 � �-� 
 � � W (B.5)

with 
� � � ��� � �� F�� � � �� ��� � � � 	 F�� � � �
� ��� � �� F�� � � 	

+
(B.6)

This is a standard one variable, two order equation whose discriminator reads

� � F � � � � ��� � � 	 F�� � � � � � F ����� �� F � � � � � ��� �� F�� � � 	 �� � � � � � � � � � � � � F	� � � � � � � W (B.7)

The equality is attainable only when � � � � � , i.e. when we have only one single Gaussian. Then we only need to
use (A.1) and (A.2) directly to extract parameters. In case of � � F�� � � � W , we have two real roots (without loss
of generality we assume � � 
 � � ) � � � �  � � 
 � $  	 ���� �� � �  �  
 � $  	 ���� �

+
(B.8)

Submitting �0� and � � into (B.1-1) and (B.2-1) and further taking into account that �=� � � � �-� , � � � � � � � we
solve � � and � � 
� � � � � � " � ��� $ � ��� � � � � 
 � $  	 ��� &� $  	 ���  � 
 � $  	 ���� � � � " � ��� $ � ��� �  � � 
 � $  	 ��� &� $  	 ��� � � 
 � $  	 ���

+
(B.9)
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