Junction Characterization Using Polar Pyramid
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Abstract. In this paper we present a new approach in characterizing
gray-value junctions. Due to the multiple intrinsic orientations present
in junctions the response of a filter is needed at every orientation. As
a rotation of the filter would considerably increase the computational
burden alternative techniques like filter steerability have been proposed.
Steerability relies in interpolating the response at an arbitrary orien-
tation from the responses of some basis filters. Unfortunately, current
steerability approaches suffer from the consequences of the uncertainty
principle: In order to achieve high selectivity in orientation they need
a huge number of basis filters increasing, thus, the computational com-
plexity.

The new approach presented here achieves a higher orientational selec-
tivity with a lower complexity. We consider the local polar map of the
neighborhood of a junction where the new coordinates are the radius and
the angle. Finding the gray-value transitions of a junction can be inter-
preted as 1D edge detection. Hence, the orientational selectivity problem
can be attacked by applying a pyramidal scheme. It is well known that
it is always possible to reconstruct a signal using the sampling kernel
as an interpolation function. Therefore, our approach can also steer the
response of a Gaussian derivative to every orientation. The total algo-
rithmic complexity encompasses the small support 2D-filtering for polar
mapping and radial smoothing plus an 1D-differentiation.

1 Introduction

Junctions of gray-value lines or edges are rare events in images carrying impor-
tant information for many image processing tasks like point matching in object
recognition, point tracking in motion analysis, and attentive coding.

In order to utilize junctions for such tasks we must be able to locate their
corresponding keypoints (defined as meeting points of lines or edges), to charac-
terize them by means of signatures and to classify them in junction categories.
Regarding keypoint detection and localization the reader is referred to Forstner’s
study [5] and to the comparison of different operators by Rohr [10,11]. In this pa-
per we address the problem of junction characterization. The resulting signature
can be used for further junction classification.

Junctions are local structures with multiple intrinsic scales and orientations
[1]. A signature characterizing such a junction can be only obtained by applying



a filter at different scales and orientations around the keypoint. This results
in an enormous computational complexity. In order to attenuate this burden
the concept of steerability has been introduced [6,9]. Denoting the deformation
parameter of a filter with o we define a filter F(2) with @ € IR” as a steerable
filter if its deformed versions F, (@) can be expressed as [7]:

Fo(w) =) be(a)Ax(e) (1)

where Ap(®) and by («) are called basis filters and interpolation functions, re-
spectively. Applying such a steerable filter on an image I(#) yields:

(Fa(@)|I(x)) =D br(a)(Ax(e)|I(x)) (2)

where (-]} is the usual scalar product. In this way we can reduce the computa-
tional cost of applying a whole set of different Fy (@) to N scalar products.

For junction characterization many kinds of steerable filters are applied like
derivatives of the 2D Gaussian filter [6], elongated Gaussian-derivative kernels
[9], the double Hermite function [7] and the steerable wedge filter [12]. All these
steerable filters adopt trigonometric functions or complex exponentials of « as
interpolation functions by («) (equation 1) such that the basis functions are ro-
tated copies of the original filter or can be solved using Fourier theory.

Steerability provides us with a solid mathematical theory. However, the com-
plexity of its implementation remains high. Due to the uncertainty principle
the product of orientational resolution of a steerable filter and its orientational
bandwidth has a lower bound. Therefore, in order to achieve a high orientational
selectivity we have to apply a huge number of basis filters [7,9] with large spatial
support.

In our previous work [4] we have presented a new approach to characterize
Jjunctions. It is based on applying rotated copies of a wedge averaging filter and
estimating the derivative with respect to the polar angle. This averaging filter
is polar separable. Its radial and angular components are rectangle functions
expressed by following and shown in figure 1:

1 Rmzn < < Rmax
v ={ srs g

0 otherwise

with R,.in and R,,q. as its boundaries in radial direction and

ge,(ﬁ) — {1 D(G,HZ») < % (4)

0 otherwise

where 6,0; € [0,2n], 6; is the center of the filter and W is the angular width of
the mask. Since # and 6; are circular angles, we define a D( ) to represent the
minimal absolute value of their difference.

In this paper we will observe this simple averaging filter from a more inter-
esting point of view and extend 1t into a pyramidal scheme. The averaging filter



is nothing else than the kernel required to conduct a local transformation in
polar coordinates (Fig. 1). However, this polar transformation involves a filter-
ing: We smooth and subsample the angular direction and keep just the average
of the radial direction. This will allow us to treat oriented structures as struc-
tures of a 1D-signal. To treat the orientational selectivity problem we choose a
pyramidal representation. The computational burden is much lower than usual
Fourier-domain schemes because the filters have smaller supports and part of
them act only one-dimensionally. We also show experimentally the superiority
of our scheme in many real images.

Fig.1. Mask centered at an-
gle §;. Lett: Original mask with
keypoint at the center of the cir-
cle. Right: Mask with 8 and p
as Cartesian coordinates, Ry qx
and R,.:n are radial boundaries

8 of the mask, W is the angular
width of the mask.

2 The Polar Pyramid

In the following, we will apply an averaging filter in the radial direction since we
do no treat spatial scale in this paper. In the angular direction we replace the
averaging filter with a Gaussian function:
2
G, (0) = e )
210
where o is the scale of the Gaussian function, ¢; and D( ) are the same as in
equation 4.

We will later see that the choice of a Gaussian in establishing the local polar
map has many nice effects. Since we want to use the Gaussian function as a
FIR-filter we must cut off its support. It is easy to show that in order to keep
the energy of the cut-off area below 1% of the total energy the width of the mask
must be at least 5. According to the sampling theory we can sample the angular
space with an interval of o. Thus, even taking the overlapping of neighboring
masks into account we need to cover the whole neighborhood only a few times
to obtain the required information.

As we already mentioned in the introduction the main motivation of the
proposed approach is the appropriate treatment of the orientational selectivity.
The local polar map enables us to look at this problem as a 1D gray value
transition description. The Fourier-based steerability approaches approximate a
filter with a Fourier series expansion with respect to the angle. The more Fourier-
coeflicients and basis functions they use the more selective they are in discerning



fine gray value transitions in the polar map. However, in order to treat angular
transitions of varying scale we introduce a pyramid in the polar domain.

It 1s well known that one of the most appealing kernels for hierarchical ap-
proaches is the Gaussian function [2]. The Gaussian function achieves the lowest
bound of the product between spatial support and bandwidth. Burt and Adelson
[3] prove that the generating kernel of subsampling can be used as an interpo-
lation function. Moreover, they argue that the interpolation functions can be
discrete approximations of Gaussian functions with different scales (figure 2).
Thus, the continuous orientational information can be reconstructed from all
levels of the polar pyramid by interpolating the pyramid elements P;(#) with
Gaussian functions of different scales G;(6):

[(0) =) 0(6 —nl0)P;(6) x Gj(6)  jeL,2,-] (6)
with ] 2

= —c¢
V2no;

where fj(ﬁ) represents the reconstructed signal from the j-th level.
Because in natural images edges are more important than lines we need to
estimate the derivative of f;(#) to obtain the required information:

Di0) =l O | Gel2 ] (¥

The local maxima in fj(ﬁ) and D;(6) denote orientations of lines and edges
at different levels, respectively.

If we want to build a pure 1D octave Gaussian Pyramid of angles, according
to [3] we should have M2% + 1 samples, where K is the number of levels and
M +1 is the number of samples at the highest level. Taking the periodic property
into account we should have M2% samples as the smoothing outputs. However,
usually 360 angular values are used. Observing that 360 = 23 x 32 x 5 we change
the subsampling interval slightly. For instance, for three levels we subsample
every two points and for two levels every three.

According to [3] the generating kernel should be normalized, symmetric and
unimodal and it should make equal contribution to construct the next higher
level. The generating kernels satisfying these constraints for subsampling with
factor 2, 3 and b can be expressed as following, respectively:

1
= — (14641
Sp= 1o (14641) 9)
53:26—4(322668266223) (10)
(174299 725 950 1022 950 725 299 74 1)
Ss = (11)
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Fig. 2. Left: Polar pyramid

F%(G) structure, Po(f) is the out-
o /\Gg(e) put of smoothing Gaussian

) filter. P;(8)(j = 1,2,--4)
2 are higher levels after sub-
/\Gz(e) sampling with generating
P.(8) 4 kernels S or S;. Right:
Corresponding interpolation

/\ G4(8) functions at different levels.
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0 Q<+l with different scales.

3 Junction Characterization Examples and Discussions

3.1 Junctions without Scale Variations

For junctions without orientational scale variations the smoothing outputs Py(6;)
and the absolute values of its derivative Dg(6;) (6; = 0°,---,359°) are adequate
for characterizing junctions.

In figure 3 and 4 are examples of synthetic line junctions and edge junctions.
The corresponding Py(6;) and Dg(6;) characterize them correctly. The improve-
ment of replacing the angular averaging filter by a Gaussian smoothing filter is
shown in figure 3. The small deviations of orientations in figure 4 are due to the
fact that an edge can be only presented by two pixels in the grid, while we can
not set the center of a mask between two pixels.

The robustness of our method against keypoint offset is shown in figure 5.
A real example is in figure 6. We present results using the steerable wedge filter
[12], the averaging method and the polar pyramid scheme. Tt is clear to see that
the polar pyramid reaches the best orientational resolution. In comparison to the
averaging method we improve robustness with a moderate increase of complexity
which still remains considerably lower than the steerability method.

3.2 Solving Orientational Scale Problem

In figure 7 we show how to solve the orientational scale problem by applying
the polar pyramid. Each wide line of the junction is best characterized in P2(6)
of the third level with an orientational resolution of 203 = 16°, while at lower
or higher levels the junction is not so discernible. In the future work we further
need a criterion to judge the quality of reconstructed information analytically.

The result of a child’s left eye corner is presented in figure 8. The corner can
be regarded as a combination of irregular wide lines and blurred edges disturbed
by noise. Qur method provides suitable information at different orientational
scales for further interpretation.
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Fig. 4. Top: Synthetic edge junctions.
Bottom: Polar plots of Dg(8). The

local maxima show the orientation of

edges. Rpin = 3, Rmaxz = 15.

4 Conclusion

The steering of a filter to different orientations enables the characterization of
junctions. To avoid rotating a filter at all orientations the theory of steerability
allows the interpolation of a filter response at every orientation from a limited
set of basis filters. In Fourier-based steerability approaches it turns out that the
number of basis filters is proportional to the angular bandwidth, which has an
inverse relationship with the orientational selectivity. In practice, to characterize
fine structures we need a huge number of basis filters with very large angular
support. A second fundamental fact is that intrinsically the Fourier-based meth-
ods involve a local polar transformation which maps a filter rotation to a filter

translation [8].

Fig. 3. Left: Synthetic line junction im-
ages with the size of 65 x 65 pixels and
line width of 1 pixel. Middle: Averag-
ing outputs using the rectangle averaging
filter defined in equation 4 with W =
6°, Rmin = 3, Rmaxr = 15. The num-
bers around circles indicate angles in de-
gree. Right: Corresponding Smoothing
outputs Py(6) using the Gaussian smooth-
ing filter with same parameters. Both fil-
ters show good performances. But the
normalization of the Gaussian filter is
better (row 4 and 5).
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Fig. 5. Top: Different deviation of key-
points from centers of masks. Bottom:
Corresponding Dq(6).



We proposed in this paper the explicit implementation of the polar trans-
formation which allows a further 1D-treatment of the orientation problem just
in the angular direction. Instead of using a Fourier series expansion we make
use of the pyramidal processing theory and introduce the Gaussian as the in-
terpolating function. Simultaneously, the Gaussian function and its derivative
are the generating kernels of the pyramid. The hierarchical treatment enables us
to characterize both fine and course transitions in gray-value junctions. Exper-
imental results show the superiority of the hierarchical approach over a classic
steerability scheme and a similar polar averaging filter in one scale.
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Fig. 6. Left: Parkbench with edge junctions. A: horizontal edge; B: vertical edge; C:
corner; D: "T” junction. Right Row 1: Steerable wedge filter results using 30 basis
filters with 19-tap size. Right Row 2: Derivative Outputs using angular averaging
filter. The averaging filter is sensitive to high frequency component. Right Row 3:
Derivative Outputs using Gaussian smoothing filter. The result is better than using
averaging filter. Roin = 3, Rpmaz = 9.

Y Fig.7. Top: A junction composed
;g.J of lines with a width of 7 pixels.

Bottom: orientational signals recon-

¢ D structed from the first, third and fifth
= = - level of the polar pyramid. Each wide
line is best characterized with only one
N o . ’ maximum at the third level (P(8)),
e e - while at even larger scale (P4(8)) the
P® P,© G)

structure is hardly discernible.

Fig. 8. Top left: Face of a child. Top
right: Its left eye corner in detail. It
can be regarded as combination of ir-

® 2 ® regular wide lines and blurred edges
disturbed by noise. Middle: orienta-
150 o 199 o 159 °  tional signals reconstructed from the
first, third and fifth level of the polar
270 270 270 pyramid. The eyelids are clear to see at

X P.®) P,®

the third level as two maxima at 135°
%0 %0 and 225°. The local maximum near

180° is due the white of the eye. Bot-
10 o 10 o 1 o tom: Corresponding D;(§),j =0, 2,4.
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