
Junction Characterization Using Polar PyramidWeichuan Yu, Kostas Daniilidis, Gerald SommerChristian{Albrechts{Universit�atLehrstuhl f�ur Kognitive SystemePreu�erstra�e 1{9, 24105 KielEmail: wy@informatik.uni-kiel.deAbstract. In this paper we present a new approach in characterizinggray-value junctions. Due to the multiple intrinsic orientations presentin junctions the response of a �lter is needed at every orientation. Asa rotation of the �lter would considerably increase the computationalburden alternative techniques like �lter steerability have been proposed.Steerability relies in interpolating the response at an arbitrary orien-tation from the responses of some basis �lters. Unfortunately, currentsteerability approaches su�er from the consequences of the uncertaintyprinciple: In order to achieve high selectivity in orientation they needa huge number of basis �lters increasing, thus, the computational com-plexity.The new approach presented here achieves a higher orientational selec-tivity with a lower complexity. We consider the local polar map of theneighborhood of a junction where the new coordinates are the radius andthe angle. Finding the gray-value transitions of a junction can be inter-preted as 1D edge detection. Hence, the orientational selectivity problemcan be attacked by applying a pyramidal scheme. It is well known thatit is always possible to reconstruct a signal using the sampling kernelas an interpolation function. Therefore, our approach can also steer theresponse of a Gaussian derivative to every orientation. The total algo-rithmic complexity encompasses the small support 2D-�ltering for polarmapping and radial smoothing plus an 1D-di�erentiation.1 IntroductionJunctions of gray-value lines or edges are rare events in images carrying impor-tant information for many image processing tasks like point matching in objectrecognition, point tracking in motion analysis, and attentive coding.In order to utilize junctions for such tasks we must be able to locate theircorresponding keypoints (de�ned as meeting points of lines or edges), to charac-terize them by means of signatures and to classify them in junction categories.Regarding keypoint detection and localization the reader is referred to F�orstner'sstudy [5] and to the comparison of di�erent operators by Rohr [10,11]. In this pa-per we address the problem of junction characterization. The resulting signaturecan be used for further junction classi�cation.Junctions are local structures with multiple intrinsic scales and orientations[1]. A signature characterizing such a junction can be only obtained by applying



a �lter at di�erent scales and orientations around the keypoint. This resultsin an enormous computational complexity. In order to attenuate this burdenthe concept of steerability has been introduced [6, 9]. Denoting the deformationparameter of a �lter with � we de�ne a �lter F (x) with x 2 IRn as a steerable�lter if its deformed versions F�(x) can be expressed as [7]:F�(x) = NXk=1 bk(�)Ak(x) (1)where Ak(x) and bk(�) are called basis �lters and interpolation functions, re-spectively. Applying such a steerable �lter on an image I(x) yields:hF�(x)jI(x)i = NXk=1 bk(�)hAk(x)jI(x)i (2)where h�j�i is the usual scalar product. In this way we can reduce the computa-tional cost of applying a whole set of di�erent F�(x) to N scalar products.For junction characterization many kinds of steerable �lters are applied likederivatives of the 2D Gaussian �lter [6], elongated Gaussian-derivative kernels[9], the double Hermite function [7] and the steerable wedge �lter [12]. All thesesteerable �lters adopt trigonometric functions or complex exponentials of � asinterpolation functions bk(�) (equation 1) such that the basis functions are ro-tated copies of the original �lter or can be solved using Fourier theory.Steerability provides us with a solid mathematical theory. However, the com-plexity of its implementation remains high. Due to the uncertainty principlethe product of orientational resolution of a steerable �lter and its orientationalbandwidth has a lower bound. Therefore, in order to achieve a high orientationalselectivity we have to apply a huge number of basis �lters [7, 9] with large spatialsupport.In our previous work [4] we have presented a new approach to characterizejunctions. It is based on applying rotated copies of a wedge averaging �lter andestimating the derivative with respect to the polar angle. This averaging �lteris polar separable. Its radial and angular components are rectangle functionsexpressed by following and shown in �gure 1:p(�) = �1 Rmin � � � Rmax0 otherwise (3)with Rmin and Rmax as its boundaries in radial direction andg�i(�) = �1 D(�; �i) � W20 otherwise (4)where �; �i 2 [0; 2�], �i is the center of the �lter and W is the angular width ofthe mask. Since � and �i are circular angles, we de�ne a D( ) to represent theminimal absolute value of their di�erence.In this paper we will observe this simple averaging �lter from a more inter-esting point of view and extend it into a pyramidal scheme. The averaging �lter



is nothing else than the kernel required to conduct a local transformation inpolar coordinates (Fig. 1). However, this polar transformation involves a �lter-ing: We smooth and subsample the angular direction and keep just the averageof the radial direction. This will allow us to treat oriented structures as struc-tures of a 1D-signal. To treat the orientational selectivity problem we choose apyramidal representation. The computational burden is much lower than usualFourier-domain schemes because the �lters have smaller supports and part ofthem act only one-dimensionally. We also show experimentally the superiorityof our scheme in many real images.
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Fig. 1. Mask centered at an-gle �i. Left: Original mask withkeypoint at the center of the cir-cle. Right: Mask with � and �as Cartesian coordinates, Rmaxand Rmin are radial boundariesof the mask, W is the angularwidth of the mask.2 The Polar PyramidIn the following, we will apply an averaging �lter in the radial direction since wedo no treat spatial scale in this paper. In the angular direction we replace theaveraging �lter with a Gaussian function:G�i(�) = 1p2��e� (D(�;�i))22�2 (5)where � is the scale of the Gaussian function, �i and D( ) are the same as inequation 4.We will later see that the choice of a Gaussian in establishing the local polarmap has many nice e�ects. Since we want to use the Gaussian function as aFIR-�lter we must cut o� its support. It is easy to show that in order to keepthe energy of the cut-o� area below 1% of the total energy the width of the maskmust be at least 5�. According to the sampling theory we can sample the angularspace with an interval of �. Thus, even taking the overlapping of neighboringmasks into account we need to cover the whole neighborhood only a few timesto obtain the required information.As we already mentioned in the introduction the main motivation of theproposed approach is the appropriate treatment of the orientational selectivity.The local polar map enables us to look at this problem as a 1D gray valuetransition description. The Fourier-based steerability approaches approximate a�lter with a Fourier series expansion with respect to the angle. The more Fourier-coe�cients and basis functions they use the more selective they are in discerning



�ne gray value transitions in the polar map. However, in order to treat angulartransitions of varying scale we introduce a pyramid in the polar domain.It is well known that one of the most appealing kernels for hierarchical ap-proaches is the Gaussian function [2]. The Gaussian function achieves the lowestbound of the product between spatial support and bandwidth. Burt and Adelson[3] prove that the generating kernel of subsampling can be used as an interpo-lation function. Moreover, they argue that the interpolation functions can bediscrete approximations of Gaussian functions with di�erent scales (�gure 2).Thus, the continuous orientational information can be reconstructed from alllevels of the polar pyramid by interpolating the pyramid elements Pj(�) withGaussian functions of di�erent scales Gj(�):f̂j(�) =Xn �(� � n4�)Pj(�) �Gj(�) j 2 [1; 2; � � �] (6)with Gj(�) = 1p2��j e� �22�2j j 2 [1; 2; � � �] (7)where f̂j(�) represents the reconstructed signal from the j-th level.Because in natural images edges are more important than lines we need toestimate the derivative of f̂j(�) to obtain the required information:Dj(�) =j dd� f̂j(�) j j 2 [1; 2; � � �] (8)The local maxima in f̂j(�) and Dj(�) denote orientations of lines and edgesat di�erent levels, respectively.If we want to build a pure 1D octave Gaussian Pyramid of angles, accordingto [3] we should have M2K + 1 samples, where K is the number of levels andM+1 is the number of samples at the highest level. Taking the periodic propertyinto account we should have M2K samples as the smoothing outputs. However,usually 360 angular values are used. Observing that 360 = 23�32�5 we changethe subsampling interval slightly. For instance, for three levels we subsampleevery two points and for two levels every three.According to [3] the generating kernel should be normalized, symmetric andunimodal and it should make equal contribution to construct the next higherlevel. The generating kernels satisfying these constraints for subsampling withfactor 2, 3 and 5 can be expressed as following, respectively:S2 = 116 �1 4 6 4 1 � (9)S3 = 1264 �3 22 66 82 66 22 3� (10)S5 = �1 74 299 725 950 1022 950 725 299 74 1�5120 (11)
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j Fig. 2. Left: Polar pyramidstructure, P0(�) is the out-put of smoothing Gaussian�lter. Pj(�)(j = 1; 2; � � �)are higher levels after sub-sampling with generatingkernels S2 or S3. Right:Corresponding interpolationfunctions at di�erent levels.They are Gaussian functionswith di�erent scales.3 Junction Characterization Examples and Discussions3.1 Junctions without Scale VariationsFor junctions without orientational scale variations the smoothing outputs P0(�i)and the absolute values of its derivative D0(�i) (�i = 0�; � � � ; 359�) are adequatefor characterizing junctions.In �gure 3 and 4 are examples of synthetic line junctions and edge junctions.The corresponding P0(�i) and D0(�i) characterize them correctly. The improve-ment of replacing the angular averaging �lter by a Gaussian smoothing �lter isshown in �gure 3. The small deviations of orientations in �gure 4 are due to thefact that an edge can be only presented by two pixels in the grid, while we cannot set the center of a mask between two pixels.The robustness of our method against keypoint o�set is shown in �gure 5.A real example is in �gure 6. We present results using the steerable wedge �lter[12], the averaging method and the polar pyramid scheme. It is clear to see thatthe polar pyramid reaches the best orientational resolution. In comparison to theaveraging method we improve robustness with a moderate increase of complexitywhich still remains considerably lower than the steerability method.3.2 Solving Orientational Scale ProblemIn �gure 7 we show how to solve the orientational scale problem by applyingthe polar pyramid. Each wide line of the junction is best characterized in P2(�)of the third level with an orientational resolution of 2�3 = 16�, while at loweror higher levels the junction is not so discernible. In the future work we furtherneed a criterion to judge the quality of reconstructed information analytically.The result of a child's left eye corner is presented in �gure 8. The corner canbe regarded as a combination of irregular wide lines and blurred edges disturbedby noise. Our method provides suitable information at di�erent orientationalscales for further interpretation.
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Fig. 3. Left: Synthetic line junction im-ages with the size of 65 � 65 pixels andline width of 1 pixel. Middle: Averag-ing outputs using the rectangle averaging�lter de�ned in equation 4 with W =6�, Rmin = 3, Rmax = 15. The num-bers around circles indicate angles in de-gree. Right: Corresponding SmoothingoutputsP0(�) using the Gaussian smooth-ing �lter with same parameters. Both �l-ters show good performances. But thenormalization of the Gaussian �lter isbetter (row 4 and 5).
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180 0Fig. 5. Top: Di�erent deviation of key-points from centers of masks. Bottom:Corresponding D0(�).4 ConclusionThe steering of a �lter to di�erent orientations enables the characterization ofjunctions. To avoid rotating a �lter at all orientations the theory of steerabilityallows the interpolation of a �lter response at every orientation from a limitedset of basis �lters. In Fourier-based steerability approaches it turns out that thenumber of basis �lters is proportional to the angular bandwidth, which has aninverse relationship with the orientational selectivity. In practice, to characterize�ne structures we need a huge number of basis �lters with very large angularsupport. A second fundamental fact is that intrinsically the Fourier-based meth-ods involve a local polar transformation which maps a �lter rotation to a �ltertranslation [8].
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Fig. 6. Left: Parkbench with edge junctions. A: horizontal edge; B: vertical edge; C:corner; D: 'T' junction. Right Row 1: Steerable wedge �lter results using 30 basis�lters with 19-tap size. Right Row 2: Derivative Outputs using angular averaging�lter. The averaging �lter is sensitive to high frequency component. Right Row 3:Derivative Outputs using Gaussian smoothing �lter. The result is better than usingaveraging �lter. Rmin = 3;Rmax = 9.
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Fig. 7. Top: A junction composedof lines with a width of 7 pixels.Bottom: orientational signals recon-structed from the �rst, third and �fthlevel of the polar pyramid. Each wideline is best characterized with only onemaximum at the third level (P2(�)),while at even larger scale (P4(�)) thestructure is hardly discernible.
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Fig. 8. Top left: Face of a child. Topright: Its left eye corner in detail. Itcan be regarded as combination of ir-regular wide lines and blurred edgesdisturbed by noise. Middle: orienta-tional signals reconstructed from the�rst, third and �fth level of the polarpyramid. The eyelids are clear to see atthe third level as two maxima at 135�and 225�. The local maximum near180� is due the white of the eye. Bot-tom: Corresponding Dj(�); j = 0; 2; 4.


