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Abstract. Occlusion boundaries are considered either as outliers or as
noise in most optical flow algorithms. In order to treat the boundary
problem, many probabilistic algorithms like mazimum likelihood [6] or
expectation-mazimization (EM) [16, 8] are proposed to gradually decrease
the weights of pizels in boundary regions during estimation iterations.
However, these approaches still include the outliers in the estimation. If
the number of pizels in boundary regions is comparable to the number
of pizels with single motion, we will not be able to robustly estimate
the motion parameters since probabilistic methods are purely based on
statistics.

In this paper, we propose to mark the outliers directly using a method
based on eigenvalue analysis [8]. Then we eliminate these outliers in
the multiple motion estimation. Comparisons show that this method can
improve the precision of estimation results. We use also the “warp-and-
subtract” technique to localize and to track occlusion boundaries. The
closest work has been done by Fleet et al. [2] as well as by Yu et al. [1].
These are the only approaches with an explicit model of occlusion which,
however, is not sufficient to deal with outliers.

1 Introduction

In the computation of optical flow the detection and tracking of occlusion bound-
aries are challenging problems. At occlusion boundaries, the single motion as-
sumption and the smoothness assumption are violated. Since most optical flow
algorithms are based on these two assumptions (e.g. the well known brightness
change constraint equation), they can neither provide correct estimation results
in boundary regions nor track the movement of boundaries.

The boundary problem was first addressed by Nagel and Enkelmann [10]. In
order to estimate motion parameters robustly, they introduced a spatial regu-
larization term to penalize motion discontinuities. Weickert and Schnorr further
extended this regularization term into spatio-temporal space [15]. Black and
Anandan [3] treated occlusion regions similarly. They referred to the pixels near
occlusion boundaries as outliers of the motion constraint and set lower weights



to these pixels in the estimation. The concept of outlier comes from statistics. It
means a small amount of data points with large deviation from the bulk of all
data points. This concept represents exactly the relationship between the pixels
near occlusion boundaries and the pixels with a single motion, since the spatio-
temporal partial derivatives of the pixels with a single motion form a plane
in the derivative space coordinated with (I, I, I;) and the derivatives of the
pixels near occlusion boundaries deviate from this plane due to motion discon-
tinuities. Based on this concept, many probabilistic methods were proposed to
model occlusion boundaries [9] and to estimate multiple motions near occlusion
boundaries [6,7, 16].

Schunck considered occlusion boundaries as noise in the constraint line clus-
tering [12]. By noticing that motions have more components than noise, he ap-
plied a statistic method to cluster the dominant intersection of constraint lines
for motion estimation. This statistic method was used in Hough transform based
approaches as well ([5,11]).

In above approaches the occlusion boundaries are modelled implicitly. There
are also explicit models of occlusion boundaries in the frequency domain [1]
and in the spatial domain [2,4]. For example, in [4] an occlusion boundary in
a circular mask is modelled with six parameters, i.e. four motion parameters of
both occluding and occluded signals, the orientation of this boundary, and the
distance between the boundary and the center of the circular mask. With this
explicit model they wish to predict the locations of occlusion boundaries in the
next frame exactly and therefore exclude the corresponding boundary regions
in the next estimation. Moreover, by tracking the movement of boundaries they
can further solve the foreground/background ambiguity [4].

However, these approaches still include the outliers in the estimation. This
makes the estimation fragile, especially if the number of outliers is comparable
to the number of pixels with a single motion, since probabilistic methods are
purely based on statistics.

Our motivation is to improve the quality of input data before extracting
motion parameters. According to our observation this is possible by combining
current techniques.

This paper is constructed as follows: In section 2 we introduce the outlier
detection method. In section 3 we compare motion estimation results before
and after eliminating outliers and apply the “warp-and-subtract” technique to
localize and to track occlusion boundaries. We show experimental results in
section 4. Then we conclude the paper with some discussions.

2 Detection of Outliers

We assume that the motions in image sequences are piecewise-smooth with possi-
ble occlusion. In the spatio-temporal derivative space coordinated with (I, I, I)
we observe the following distributions [8]

— For a single constant translational motion, we have a plane whose normal
vector is parallel to (u,v,1), where (u,v) denotes the optical flow vector.



The eigenvalues of this plane satisfy
0'120'2>03:0. (1)

— For a single constant motion having aperture problem, the plane above de-
generates into a line whose corresponding eigenvalues satisfy

0']>0'2203:0. (2)

— For occlusion we observe multiple planes plus distortions [1] with three pos-
itive eigenvalues
o1 > 09 > 03 > 0. (3)

Thus, we can judge if there are multiple motions from different combinations of
eigenvalues, even without knowing motion parameters. In case of occlusion, if
we can purify multiple planes from distortions (i.e. outliers), we may improve
the precision of estimation results. The remaining question is how to detect
these outliers. We observe that if we have occlusion in a window, the occlusion
boundaries should locate in this window as well, though we do not know their
exact positions. Based on this observation we use a multi-window strategy to
eliminate outliers before estimation. We detect occlusion regions using eigenvalue
analysis with small windows and mark these regions as outliers. In a large window
containing these small windows, the pixels outside outlier regions are guaranteed
to be “normal” pixels. Using only these “normal” pixels for estimation we avoid
the disturbance of outliers and improve therefore the precision of estimation
results in the large window.

It should be noticed that we abandon also some “normal” pixels by marking
outliers with small windows. Therefore, we prefer to reduce the size of the small
window so that this loss is as small as possible. On the other side, in order to
provide robust eigenvalue analysis, we must have adequate number of pixels in
the small window. In order to solve this conflict, we limit the spatial size of the
small window, but extend its temporal size to include pixels from other frames
(e.g. from frame (tg — 1) and (g + 1), where ¢y denotes the current frame).

In the practice the eigenvalues may deviate from their standard values due to
noise or derivative approximation error. Therefore, instead of checking if o3 = 0,
we set a threshold A3z; for outlier detection. If o3 > A3;01, we conclude that
there are multiple motions. In addition, we may check the aperture problem by
defining another threshold Ay;. In this paper we set A3; = Ay; = 0.2. The results
of detections are shown in figure 1-3.

3 Estimation of Multiple Motions and Tracking Motion
Boundaries

Before applying the EM algorithm [16] for motion estimation, we must verify
that there are still sufficient pixels remaining. We define a reliable measure which



is a ratio between the number of pixels remaining and the total number of pixels
in the window
Ni

r=ar (i=12) (4)

where N7 /N> denotes the number of remaining pixels of the occluding/occluded
signal. If either of these two ratios is below a threshold, we have to enlarge the
window to include more pixels for estimation.

The precision improvement of estimation results after eliminating outliers
is shown in figure 1 and table 1. The occluding signal moves with a speed of
(1,1) pixel/frame and the occluded signal with a speed of (1,-1) pixel/frame.
For the clarity of displaying we project the 3D data onto the orientation space
with variables # and ¢, where 6 and ¢ are horizontal and vertical angles in the
spherical coordinates. We can see that after eliminating outliers the curves in the
(8, ¢) space are more clearly. Consequently, we obtain better estimation results
(see table 1). In order to analyze the effect of window size in the estimation,
we reduce the window size from 33 x 33 to 17 x 17. In the 17 x 17 window,
the number of outliers is easier to be comparable to the number of “normal”
pixels. As a result, the disturbance of outliers increases strongly. In contrast, if
we eliminate outliers before estimation we can still obtain reasonable results.
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Fig. 1. Up Left: One frame from a random dot occlusion sequence. The white box
shows us the window across the occlusion boundary and the white arrows show us
moving directions. The thick arrow in the second image denotes the occluding signal
and the thin arrow in the third image denotes the occluded signal. Up Right: Marked
outliers after eigenvalue analysis using a 5 x 5 x 3 window. For clarity we show the white
box here again. Down Left: Spherical representation of 3D data in the (I, I, I;) space
before eliminating outliers. Down Right: Spherical representation after eliminating
outliers. Two curves are more clearly to see. See table 1 for estimation results.

After obtaining multiple motion parameters in the boundary regions we fur-
ther localize occlusion boundaries in one frame and track the movement of
boundaries using the “warp-and-subtract” technique. This technique is based
on the observation of spatial coherence of the image sequence. The reader is
referred to [7, 16, 1] for details about this technique due to the space limitation.
The results are shown in figures 2 and 3.



window size |joccluding speed| occluded speed Table 1. Estimation results before

before[[(0.9895, 1.0009) [(0.9803, —0.9840)| and after eliminating outliers. For

33 x 33 : )
after |[(0.9988, 0.0997)(0.9886, —0.9940)| comparison we apply the EM al

17 x 17

) . .
gorithm with same parameters and
before| (08801, 0.9710) (0.8589, —0.8685) same initial values before and after
after |[(0.9876,1.0132)

(0.9932, —0.9980) eliminating outliers.

4 Experiments

In this section we show some real examples. Figure 2 shows the estimation results
of an occlusion sequence. For performance comparison we apply the EM algo-
rithm vertically along the vertical occlusion boundary. We do not have the exact
ground truth, but we observe that there is almost no depth difference among
pixels on each side of the vertical boundary. Therefore, we use the estimation
results with a larger window as ground truth. We observe the improvement after
eliminating outliers clearly.

Figure 3 shows us another real sequence with ground truth. This block world
sequence is very difficult for the constant motion model used here because the
real motions are affine and the occlusion regions have also the aperture problem.
But since we know the ground truth, we can still compare the performances of
the EM algorithms before and after eliminating outliers.

5 Conclusion

In this paper we proposed to eliminate outliers in multiple motion estimation.
Comparing with current probabilistic approaches, which include the outliers in
the estimation, our method improves the quality of input data and therefore
provides more exact results. Moreover, observing the spatial coherence on each
side of occlusion boundaries we applied the “warp-and-subtract” technique to
localize and to track occlusion boundaries. We do not use an explicit local model
of the boundary region. But we can still obtain the desired information about
the occlusion boundaries after localizing them.

The techniques in our algorithm have already been used in previous related
works. The meaning of our work is that we propose a multi-window strategy for
occlusion analysis. This strategy is very simple and it works well.

Recently, Shi and Malik proposed to segment images without motion es-
timation. They introduced a concept of normalized cut and minimized it for
segmentation. This normalized cut is a connection measure between one pixel
and its neighbors with respect to brightness, color, texture [13] or even motion
correlation information [14]. This approach is based on the same observation in
the “warp-and-subtract” technique. This fact reminds us again that the spatial
coherence information is very useful for image segmentation.
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Fig. 2. Row 1 left: One frame of an occlusion sequence with 200 x 350 pixels. In this
sequence a right moving box occludes a left moving picture. The white box centered at
(122,137) contains the vertical occlusion boundary. Row 2 Left: The slice of the se-
quence along row 122. The first frame is at the top of the slice. Rows 1 and 2 Middle
and Right: Estimation results along column 137 using a 15 x 15 window. We use the
results with a 31 x 31 window as ground truth and draw them with solid lines. We draw
the results before eliminating outliers with circles and draw the results after eliminating
outliers with crosses. For comparison we display different speed components separately.
For clarity of displaying we sample the results with an interval of 5 pixels along column
137. In the window centered at (160, 137) the results are not reasonable, since there are
only four pixels of the occluded signal remaining after eliminating outliers. This exam-
ple demonstrates the necessity of introducing reliable measure (equation (4)). Row 3:
The segmentation result after “warp-and-subtract”. For clarity we enlarge the region
containing occlusion boundaries. After each warping we observe one region with zero
intensity. In the right image we see the localized boundaries. The “warp-and-subtract”
technique works also for boundaries with complex contours like the corner of the box.
We may further track the movement of boundaries to solve the foreground/background
ambiguity [4], since occlusion boundaries move consistently with the occluding signal.
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Fig. 3. Row 1 Left: One frame from the block world sequence with 512 x 512 pixels.
The white box shows us the window across the vertical boundary and the white line
shows the column along which we apply the EM algorithms for comparison. Row 1
Middle: Marked outliers. Row 1 Right: Regions with the aperture problem. Row
2 and 3: Estimation results before and after eliminating outliers v.s. row index (from
row 300 to row 400) using a 31 x 31 window. We draw the ground truth with solid
lines, the results before eliminating with circles, and the results after eliminating with
crosses. In fact, the constant motion model can not treat such a difficult sequence due
to complicated motions and the aperture problem. But we can still see that the errors
are generally reduced after eliminating outliers, specially for the occluding signal at the
right side of the boundary. Row 4: We further test the “warp-and-subtract” technique
with the ground truth. For clarity we enlarge the boundary region from row 300 to row
400.
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