
Eliminating Outliers in Motion OlusionAnalysisWeihuan Yu1, Kostas Daniilidis2, Gerald Sommer11Institut f�ur Informatik 2GRASP LaboratoryChristian-Albrehts-Universit�at University of PennsylvaniaPreu�erstra�e 1{9 3401 Walnut StreetD-24105 Kiel, Germany Philadelphia, PA 19104-6228, USAfwy,gsg�ks.informatik.uni-kiel.de kostas�grip.is.upenn.eduAbstrat. Olusion boundaries are onsidered either as outliers or asnoise in most optial ow algorithms. In order to treat the boundaryproblem, many probabilisti algorithms like maximum likelihood [6℄ orexpetation-maximization (EM) [16, 3℄ are proposed to gradually dereasethe weights of pixels in boundary regions during estimation iterations.However, these approahes still inlude the outliers in the estimation. Ifthe number of pixels in boundary regions is omparable to the numberof pixels with single motion, we will not be able to robustly estimatethe motion parameters sine probabilisti methods are purely based onstatistis.In this paper, we propose to mark the outliers diretly using a methodbased on eigenvalue analysis [8℄. Then we eliminate these outliers inthe multiple motion estimation. Comparisons show that this method animprove the preision of estimation results. We use also the \warp-and-subtrat" tehnique to loalize and to trak olusion boundaries. Thelosest work has been done by Fleet et al. [2℄ as well as by Yu et al. [1℄.These are the only approahes with an expliit model of olusion whih,however, is not suÆient to deal with outliers.1 IntrodutionIn the omputation of optial ow the detetion and traking of olusion bound-aries are hallenging problems. At olusion boundaries, the single motion as-sumption and the smoothness assumption are violated. Sine most optial owalgorithms are based on these two assumptions (e.g. the well known brightnesshange onstraint equation), they an neither provide orret estimation resultsin boundary regions nor trak the movement of boundaries.The boundary problem was �rst addressed by Nagel and Enkelmann [10℄. Inorder to estimate motion parameters robustly, they introdued a spatial regu-larization term to penalize motion disontinuities. Weikert and Shn�orr furtherextended this regularization term into spatio-temporal spae [15℄. Blak andAnandan [3℄ treated olusion regions similarly. They referred to the pixels nearolusion boundaries as outliers of the motion onstraint and set lower weights



to these pixels in the estimation. The onept of outlier omes from statistis. Itmeans a small amount of data points with large deviation from the bulk of alldata points. This onept represents exatly the relationship between the pixelsnear olusion boundaries and the pixels with a single motion, sine the spatio-temporal partial derivatives of the pixels with a single motion form a planein the derivative spae oordinated with (Ix; Iy ; It) and the derivatives of thepixels near olusion boundaries deviate from this plane due to motion dison-tinuities. Based on this onept, many probabilisti methods were proposed tomodel olusion boundaries [9℄ and to estimate multiple motions near olusionboundaries [6, 7, 16℄.Shunk onsidered olusion boundaries as noise in the onstraint line lus-tering [12℄. By notiing that motions have more omponents than noise, he ap-plied a statisti method to luster the dominant intersetion of onstraint linesfor motion estimation. This statisti method was used in Hough transform basedapproahes as well ([5, 11℄).In above approahes the olusion boundaries are modelled impliitly. Thereare also expliit models of olusion boundaries in the frequeny domain [1℄and in the spatial domain [2, 4℄. For example, in [4℄ an olusion boundary ina irular mask is modelled with six parameters, i.e. four motion parameters ofboth oluding and oluded signals, the orientation of this boundary, and thedistane between the boundary and the enter of the irular mask. With thisexpliit model they wish to predit the loations of olusion boundaries in thenext frame exatly and therefore exlude the orresponding boundary regionsin the next estimation. Moreover, by traking the movement of boundaries theyan further solve the foreground/bakground ambiguity [4℄.However, these approahes still inlude the outliers in the estimation. Thismakes the estimation fragile, espeially if the number of outliers is omparableto the number of pixels with a single motion, sine probabilisti methods arepurely based on statistis.Our motivation is to improve the quality of input data before extratingmotion parameters. Aording to our observation this is possible by ombiningurrent tehniques.This paper is onstruted as follows: In setion 2 we introdue the outlierdetetion method. In setion 3 we ompare motion estimation results beforeand after eliminating outliers and apply the \warp-and-subtrat" tehnique toloalize and to trak olusion boundaries. We show experimental results insetion 4. Then we onlude the paper with some disussions.2 Detetion of OutliersWe assume that the motions in image sequenes are pieewise-smooth with possi-ble olusion. In the spatio-temporal derivative spae oordinated with (Ix; Iy; It)we observe the following distributions [8℄{ For a single onstant translational motion, we have a plane whose normalvetor is parallel to (u; v; 1), where (u; v) denotes the optial ow vetor.



The eigenvalues of this plane satisfy�1 � �2 > �3 = 0: (1){ For a single onstant motion having aperture problem, the plane above de-generates into a line whose orresponding eigenvalues satisfy�1 > �2 = �3 = 0: (2){ For olusion we observe multiple planes plus distortions [1℄ with three pos-itive eigenvalues �1 � �2 � �3 > 0: (3)Thus, we an judge if there are multiple motions from di�erent ombinations ofeigenvalues, even without knowing motion parameters. In ase of olusion, ifwe an purify multiple planes from distortions (i.e. outliers), we may improvethe preision of estimation results. The remaining question is how to detetthese outliers. We observe that if we have olusion in a window, the olusionboundaries should loate in this window as well, though we do not know theirexat positions. Based on this observation we use a multi-window strategy toeliminate outliers before estimation. We detet olusion regions using eigenvalueanalysis with small windows and mark these regions as outliers. In a large windowontaining these small windows, the pixels outside outlier regions are guaranteedto be \normal" pixels. Using only these \normal" pixels for estimation we avoidthe disturbane of outliers and improve therefore the preision of estimationresults in the large window.It should be notied that we abandon also some \normal" pixels by markingoutliers with small windows. Therefore, we prefer to redue the size of the smallwindow so that this loss is as small as possible. On the other side, in order toprovide robust eigenvalue analysis, we must have adequate number of pixels inthe small window. In order to solve this onit, we limit the spatial size of thesmall window, but extend its temporal size to inlude pixels from other frames(e.g. from frame (t0 � 1) and (t0 + 1), where t0 denotes the urrent frame).In the pratie the eigenvalues may deviate from their standard values due tonoise or derivative approximation error. Therefore, instead of heking if �3 = 0,we set a threshold �31 for outlier detetion. If �3 > �31�1, we onlude thatthere are multiple motions. In addition, we may hek the aperture problem byde�ning another threshold �21. In this paper we set �31 = �21 = 0:2. The resultsof detetions are shown in �gure 1-3.3 Estimation of Multiple Motions and Traking MotionBoundariesBefore applying the EM algorithm [16℄ for motion estimation, we must verifythat there are still suÆient pixels remaining. We de�ne a reliable measure whih



is a ratio between the number of pixels remaining and the total number of pixelsin the window r = NiNall ; (i = 1; 2) (4)where N1/N2 denotes the number of remaining pixels of the oluding/oludedsignal. If either of these two ratios is below a threshold, we have to enlarge thewindow to inlude more pixels for estimation.The preision improvement of estimation results after eliminating outliersis shown in �gure 1 and table 1. The oluding signal moves with a speed of(1,1) pixel/frame and the oluded signal with a speed of (1,-1) pixel/frame.For the larity of displaying we projet the 3D data onto the orientation spaewith variables � and �, where � and � are horizontal and vertial angles in thespherial oordinates. We an see that after eliminating outliers the urves in the(�; �) spae are more learly. Consequently, we obtain better estimation results(see table 1). In order to analyze the e�et of window size in the estimation,we redue the window size from 33 � 33 to 17 � 17. In the 17 � 17 window,the number of outliers is easier to be omparable to the number of \normal"pixels. As a result, the disturbane of outliers inreases strongly. In ontrast, ifwe eliminate outliers before estimation we an still obtain reasonable results.= +
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 −90Fig. 1. Up Left: One frame from a random dot olusion sequene. The white boxshows us the window aross the olusion boundary and the white arrows show usmoving diretions. The thik arrow in the seond image denotes the oluding signaland the thin arrow in the third image denotes the oluded signal. Up Right: Markedoutliers after eigenvalue analysis using a 5�5�3 window. For larity we show the whitebox here again.Down Left: Spherial representation of 3D data in the (Ix; Iy; It) spaebefore eliminating outliers. Down Right: Spherial representation after eliminatingoutliers. Two urves are more learly to see. See table 1 for estimation results.After obtaining multiple motion parameters in the boundary regions we fur-ther loalize olusion boundaries in one frame and trak the movement ofboundaries using the \warp-and-subtrat" tehnique. This tehnique is basedon the observation of spatial oherene of the image sequene. The reader isreferred to [7, 16, 1℄ for details about this tehnique due to the spae limitation.The results are shown in �gures 2 and 3.



window size oluding speed oluded speed33� 33 before (0:9895; 1:0009) (0:9803;�0:9840)after (0:9988; 0:9997) (0:9886;�0:9940)17� 17 before (0:8801; 0:9710) (0:8589;�0:8685)after (0:9876; 1:0132) (0:9932;�0:9980) Table 1. Estimation results beforeand after eliminating outliers. Foromparison we apply the EM al-gorithm with same parameters andsame initial values before and aftereliminating outliers.4 ExperimentsIn this setion we show some real examples. Figure 2 shows the estimation resultsof an olusion sequene. For performane omparison we apply the EM algo-rithm vertially along the vertial olusion boundary. We do not have the exatground truth, but we observe that there is almost no depth di�erene amongpixels on eah side of the vertial boundary. Therefore, we use the estimationresults with a larger window as ground truth. We observe the improvement aftereliminating outliers learly.Figure 3 shows us another real sequene with ground truth. This blok worldsequene is very diÆult for the onstant motion model used here beause thereal motions are aÆne and the olusion regions have also the aperture problem.But sine we know the ground truth, we an still ompare the performanes ofthe EM algorithms before and after eliminating outliers.5 ConlusionIn this paper we proposed to eliminate outliers in multiple motion estimation.Comparing with urrent probabilisti approahes, whih inlude the outliers inthe estimation, our method improves the quality of input data and thereforeprovides more exat results. Moreover, observing the spatial oherene on eahside of olusion boundaries we applied the \warp-and-subtrat" tehnique toloalize and to trak olusion boundaries. We do not use an expliit loal modelof the boundary region. But we an still obtain the desired information aboutthe olusion boundaries after loalizing them.The tehniques in our algorithm have already been used in previous relatedworks. The meaning of our work is that we propose a multi-window strategy forolusion analysis. This strategy is very simple and it works well.Reently, Shi and Malik proposed to segment images without motion es-timation. They introdued a onept of normalized ut and minimized it forsegmentation. This normalized ut is a onnetion measure between one pixeland its neighbors with respet to brightness, olor, texture [13℄ or even motionorrelation information [14℄. This approah is based on the same observation inthe \warp-and-subtrat" tehnique. This fat reminds us again that the spatialoherene information is very useful for image segmentation.
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� =Fig. 2. Row 1 left: One frame of an olusion sequene with 200� 350 pixels. In thissequene a right moving box oludes a left moving piture. The white box entered at(122; 137) ontains the vertial olusion boundary. Row 2 Left: The slie of the se-quene along row 122. The �rst frame is at the top of the slie. Rows 1 and 2 Middleand Right: Estimation results along olumn 137 using a 15� 15 window. We use theresults with a 31�31 window as ground truth and draw them with solid lines. We drawthe results before eliminating outliers with irles and draw the results after eliminatingoutliers with rosses. For omparison we display di�erent speed omponents separately.For larity of displaying we sample the results with an interval of 5 pixels along olumn137. In the window entered at (160; 137) the results are not reasonable, sine there areonly four pixels of the oluded signal remaining after eliminating outliers. This exam-ple demonstrates the neessity of introduing reliable measure (equation (4)). Row 3:The segmentation result after \warp-and-subtrat". For larity we enlarge the regionontaining olusion boundaries. After eah warping we observe one region with zerointensity. In the right image we see the loalized boundaries. The \warp-and-subtrat"tehnique works also for boundaries with omplex ontours like the orner of the box.We may further trak the movement of boundaries to solve the foreground/bakgroundambiguity [4℄, sine olusion boundaries move onsistently with the oluding signal.
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� =Fig. 3. Row 1 Left: One frame from the blok world sequene with 512� 512 pixels.The white box shows us the window aross the vertial boundary and the white lineshows the olumn along whih we apply the EM algorithms for omparison. Row 1Middle: Marked outliers. Row 1 Right: Regions with the aperture problem. Row2 and 3: Estimation results before and after eliminating outliers v.s. row index (fromrow 300 to row 400) using a 31 � 31 window. We draw the ground truth with solidlines, the results before eliminating with irles, and the results after eliminating withrosses. In fat, the onstant motion model an not treat suh a diÆult sequene dueto ompliated motions and the aperture problem. But we an still see that the errorsare generally redued after eliminating outliers, speially for the oluding signal at theright side of the boundary. Row 4:We further test the \warp-and-subtrat" tehniquewith the ground truth. For larity we enlarge the boundary region from row 300 to row400.
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