A New 3D Orientation Steerable Filter
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Abstract. In this paper we present a new filter based on Gaussian func-
tions for the extraction of local 3D orientation information. Compared
with current 3D steerability approaches our method achieves higher orien-
tation resolution with lower complexity. This property enables us to solve
challenging problems like complexr surface analysis and multiple motion
estimation. This new method decomposes a sphere with a set of over-
lapping basis filters which are isotropic in the feature space. We study
the problem of non-uniform distribution of the spherical coordinates and
discuss the application of a weighting compensation function in the com-
putation of the 3D orientation signature. Comparisons show that our
method is more efficient and robust than the 3D Hough transform.

1 Introduction

In general filtering there is a conflict between performance and complexity. For
example, in the orientation analysis we prefer filters having fine orientation reso-
lution. But for this fine orientation resolution we have to consider the enormous
computational complexity while constructing or rotating such filters. In order
to attenuate this conflict the concept of steerability was introduced [5]. A filter
F(x) with & € IR"™ is referred to as a steerable filter if its deformed versions
Fy(x) can be expressed as [9]

N

Fy(m) = bp() Ap(), (1)

k=1

where 1) denotes the deformation parameter. Here we refer to Ag(x) and by, (¢)) as
basis filters and interpolation functions, respectively. By using steerable filters,
the responses of a given family of filters Fy(x) with ¢ € IR are expressed as a
linear combination of only N basis filter responses.

While many 2D steerable filters have been applied in image processing and
low level computer vision (e.g. [10,14]), there were only a few approaches study-
ing 3D steerability [5, 2]. Freeman and Adelson [5] were the first who introduced
the concept of steerability into 3D filtering. They interpolated derivatives of 3D
Gaussian functions with a set of basis filters. These basis filters are rotated copies



of the original filter. The corresponding interpolation functions are trigonometric
functions of orientation parameters. Andersson designed another 3D steerable fil-
ter in the frequency domain, whose basis filters are rotated copies of the steered
filter as well [2]. The drawback of both approaches is that they do not provide fine
orientation resolution due to large spatial support along the angular direction.

We may overcome this drawback using filters with elongated shape [10]. One
possible solution is to generalize the steerable wedge filter [14] from 2D space
to 3D space, which is not yet implemented according to current literature. But
current steerability is based on the global decomposition principle [16], which
suffers from the consequences of the uncertainty principle. For example, we usu-
ally use by (1)) = e/“*¥ in current steerability approaches (equation (1)). This is
equivalent to sampling the angular frequency with Dirac functions. According to
the well known uncertainty principle, we cannot localize one signal both in the
spatial domain and in the spectral domain exactly at the same time. If we use one
Dirac sampling function to localize one spectral component of the signal exactly
in the frequency domain, we will no more be able to localize this component in
the spatial domain. As a compensation, we need a lot of spectral Dirac impulses
to increase the spatial localization ability. Correspondingly, we need a huge num-
ber of basis filters to achieve high orientation resolution, while these basis filters
usually have wide supports which accentuate the computational burden.

The trade-off between spatial- and spectral-localization can be optimized only
by using functions with Gaussian shape, since they achieve the lower bound
in the uncertainty principle [4]. Based on this motivation, we present in this
paper a new 3D steerable filter using angular Gaussian functions to achieve high
orientation resolution.

Before the steerability was introduced, Bigiin et al. connected the orientation
analysis with symmetry detection using the principal axis analysis (PAA) in

dominant orientation, since PAA only provides a set of basis vectors which are
always orthogonal. In other words, the orientation resolution of PAA is not
sufficient to solve non-orthogonal multiple orientation problem. Actually, this is
the reason why we introduce steerable filters.

This paper is organized as follows: In section 2 we present the new filter and
its responses of 3D planes in detail. Then we compare our filter with current 3D
steerable filters and the 3D Hough transform in section 3. In section 4 we display
synthetic and real application examples. In the end we conclude this paper with
some discussions.

2 Local 3D Orientation Analysis

2.1 Filter Shape

In order to analyze 3D orientation naturally, we first compute a spherical map-
ping: I(x,y,z) = I(r,0,¢), where r = (/22 +y? + 2%, § = arctan(%),¢ =
arctan(—=—) (see figure 1). Since we are interested in orientation informa-
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tion, we build an orientation signature S(6, ¢) from I(r,6, ). In order to have



fine orientation resolution, we introduce conic kernels as basis filters in our steer-
able filter. A conic kernel centered at (;,$;) reads

1 b
Bo,,6,)(r:0.9) = —5———G "6, 9), (2)
./\/’animanx (r)

where A} r]’“’(ﬁ’l,?nm(r) is a weighting function along the radial direction and it is
independent of the angular part of the filter. We will come back to the design
of N later. The angular part of this basis filter is a 2D Gaussian function in the
orientation space coordinated with (6, ¢)

1 (D(6.6;)%+(6—0;)>

e 3)

Gy (0, ¢) =
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with ¢ denotes the scale of the 2D Gaussian function. Since the angles along
the # direction are periodic, we define a D(-) to represent the minimal circular
difference between 6 and 6; (6,6; € [0, 27])

D(9,6;) := min(|0 — 6;|,|0 — 0; — 2x|,|0 — 6; + 27]). (4)

Theoretically, a Gaussian function is not compactly supported. In practice we

only consider the part of G(()gi’¢j) (8, ¢) inside the circular mask with a diameter
W, as shown in figure 1.

Fig.1. A conic kernel centered at (6;,¢;) with radial boundaries Rmin and Rmax-.
Left: The definition of the spherical coordinates. Middle: The filter kernel in the 3D
Cartesian coordinates. Right: The filter kernel with 6, ¢ and r as coordinates. It turns
into a cylinder. In the (6, ¢) plane the circular mask with a diameter W is weighted by
a 2D Gaussian function, as shown above the cylinder.

After applying this conic kernel on I(r, 8, ¢), we obtain a basis filter response
as a local sample located at (6;, ¢;)

Rmax I ,0,
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Now let us consider the distribution of basis kernels in the (6, ¢) plane. It is
known that a spherical surface forms a rectangular region in the (6, ¢) plane. For
this rectangular region it is impossible to have a tessellation with circular cells.
Instead, we may overlap neighboring basis kernels to cover the whole rectangular
region, as shown in figure 2. In this arrangement we observe that this rectangu-
lar region is periodic along the 6 direction and is mirror-symmetric about the
boundary along the ¢ direction. These periodic and mirror-symmetric properties
help to solve the boundary problem.

¢
Fig. 2. The distribution of conic
qj)ﬂ kernels in the (6, ¢) plane. The
® horizontal or vertical distance
between two neighboring masks
is equal to the radius of one
0 0. 0 6 mask.

In order to obtain the orientation signature S(f,¢) from a set of samples

As;.6,), we use 2D Gaussian functions with local support G(()gi’(ﬁj)(&, @) again as
interpolation functions. Thus, the orientation signature reads

S(6,8) =3 Ap,.0)GY (6, 9). (6)
®j

0;

So far, we define an analytic model of 3D orientation analysis based on Gaussian
functions.

2.2 Filter Responses of 3D Planes

For motion estimation we are interested in filter responses of 3D planes (see
section 4 for detail). In the 3D Cartesian coordinates a plane passing through
the origin with a unit normal vector n = (ny,ns,n3)7 reads

zny + yns + znz = 0. (7)

After converting the equation into spherical coordinates we obtain an equation
with variables # and ¢

cos(¢p) cos(¢n) cos(d — 6,,) + sin(@) sin(dn) = 0, (8)

where 6,, and ¢,, denote the desired orientation parameters of the normal vector
n. This equation describes a periodic curve in the (6,¢) space (figure 4). In
practice, we obtain a set of points in the (6, ¢) space. Extracting the parameters
(0n, ) from these points is a standard regression problem. We may apply the
least square estimation (LSE) algorithm for a single plane or the the expectation-
maximization (EM) algorithm [15] for multiple planes.



3 Comparisons

3.1 Comparisons with Current 3D Steerable Filters

Current 3D steerability approaches are based on the global decomposition prin-
ciple using Dirac functions. In contrast, our method is based on the local decom-
position principle using Gaussian functions with narrow support. This difference
leads our approach to have higher orientation resolution. In figure 3 we show the
first derivative of 3D Gaussian function G3 [5], Andersson’s filter [2], and our
filter, respectively. Since the orientation resolution of a filter is inversely propor-
tional to the angular support of this filter, we display the angular supports in
figure 3 as well for resolution comparison. We observe that G5 has a so large
angular support that only the gap between its two lobes may be useful. Anders-
son’s filter has smaller support than G3. But the resolution is not yet sufficient.
Compared with these two steerable filters our filter has much higher orientation
resolution. This claim is confirmed in figure 5 as well.

Our filter needs a little bit more computation than the filter G3 but much less
computation than Andersson’s filter (see [16] for detail due to space limitation).
At first sight, our filter is less efficient than G3. But it should be noticed that a
complexity comparison is only fair, when the corresponding filters have the same
orientation resolution. Since (G5 cannot achieve the same orientation resolution
that our filter provides, its low complexity does not make sense here.

Freeman & Adelson Andersson conic kernel
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Fig. 3. Top Left: The filter G3 (redrawn from [8]). Top Middle: Andersson’s filter in
the frequency domain (redrawn from [2]). Note that the angular support of a filter in the
spatial domain is the same as that in the frequency domain, since Fourier transform is
an isometric mapping. Top Right: Our filter. Bottom: The corresponding filter sup-
ports in the (6, ¢) space. The irregularity in the support of G3 with § € [—180°,180°],
|¢| > 40° is caused by the discrete representation of the filter kernel.



3.2 Comparisons with the 3D Hough Transform

The Hough Transform is a sampling and searching method for parameter ex-
traction. Concretely, for each point (I, Iy, I;x) we draw all possible planes in
the (n1,n2,n3) space which pass through the origin and satisfy the equation

| Liznaj + Liyno; + Iung; |< e, 9)

where e denotes a positive tolerant parameter and (n1;,n2;, ng;) denotes the j-th
plane. After going through all points (i = 1,--- , N) we search in the (nq,n2,n3)
space the position with maximal intersection to obtain the desired parameters.

The 3D Hough transform based on equation (9) is equivalent to a 3D filter
centered at the origin of the 3D space with the concave disk shape. Correspond-
ingly, the Hough image of a point (I;x, Iy, Iiz) is equivalent to impulse response
of the concave disk filter in 3D space, as shown in figure 4. We observe that the
Hough image of a point is similar to our steerable filter response of a 3D plane ex-
cept that Hough image has no negative ¢ values since we use only normal vectors
with n3 > 0. Taking into account that our filter response of a plane is composed
of a set of filter responses of different points, the Hough image has much larger
support than our filter response of a point (figure 3). In other words, our filter
samples the orientation space more efficiently than the 3D Hough transform.

Besides, in the Hough transform the search of the second maximal position
is generally problematic, since we do not know how to get rid of the neighbors of
the first global maximum. This problem is easier to solve in our filter response
using zero-crossing analysis on the  axis, since the curves in the (6, ¢) space are
periodic and we know that the zero-crossing points on the # axis and the extreme
points with maximal ¢ values contain the desired parameters. The reader is
referred to [16] for details of this trick due to place limitation.
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Fig. 4. Top: Two planes and their corresponding curves in the (6, ¢) space applying
our filter. Bottom Left: Hough image of a point. It is similar to our filter response
of a plane. Bottom Right: The Hough image of two planes disturbed with noise. We
observe two mono-modal distributions. In general we do not know how to search the
second maximal position automatically.



4 Applications

4.1 Compensation Issue

Before we present examples, we discuss the design of A/ in equation (2). It is
known that the horizontal angle # and the vertical angle ¢ are defined differ-
ently in the spherical coordinates. For example, all points with the same 6 on a
spherical surface lie on a great circle of this spherical surface, whereas all points
with the same ¢ lie on a small circle. If we divide the whole (6, ¢) space into a
grid with equal interval, it turns out that the higher the latitude value is, the
denser grid points we have on the spherical surface. This kind of non-uniform
distribution was addressed in [7] in detail.

We may compensate this non-uniform distribution by designing A/ as a nor-
malizing factor so that the filter response is relatively insensitive to the non-
uniform distribution. But this normalizing factor A “strengthens” then the out-
puts of filters with a few points and “suppresses” the outputs of filters with many
points. As a result, we are no more able to know the real distribution density
of points in the (6, ¢) space, while this density information is desirable in some
applications. For example, we use the EM algorithm for multiple motion estima-
tion. The philosophy behind the EM algorithm is that there are more “normal”
points than noise and “incorrect” samples and the distribution density works
as a weighting function in the parameter regression procedure. If we lose such
density information, the estimation result will be much worse. For this reason,
we would like to study experimentally the susceptibility of the filter response
without normalizing compensation to the non-uniform distribution.

4.2 3D Junction Characterization

We begin with an example of 3D junction characterization. In figure 5 we have a
cubic with one of its vertices as keypoint. For comparison we apply the steerable
filter G3, Andersson’s filter, our filter with compensation (setting A as the sum of
discrete weights in the filter mask), and our filter without compensation (setting
N as a constant). In the response of G3, the location of the maximal value does
not have geometrical meaning since the angular support of G3 is too large to
interpret this 3D junction. Andersson’s filter has higher orientation resolution
than G3. Though the edges of the cubic are blurred, the location of maximal
value in the response corresponds to the center of the cubic. Compared with
these two steerable filters, our approach provides evidently higher orientation
resolution. Besides, a comparison shows that the response of our filter without
compensation S(f, ¢) is more sensitive to the non-uniform distribution than that
with compensation S, (6, ¢). But this susceptibility does not obstruct us from
obtaining main structure information in the orientation signature. Thus, we still
can use S(6, ¢) for 3D junction characterization.
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Fig. 5. Top Left: 3D plot of a cubic with its three normal vectors at one vertex.
Top Middle: The response of G3. Top Right: The response of Andersson’s filter.
Bottom Left: Orientation signature with averaging S, (6, ¢). Three surfaces turn out
to be three edges in the (6, ¢) space. Bottom Middle: Orientation signature without
averaging S(6,¢). Compared with S, (6, ¢) it is more sensitive to the non-uniform
distribution of points in the (6, ¢) space. However, the edges are still clearly represented.
Bottom Right: We can extract edge information from S(6, ¢) applying morphological
operations. For comparison we also display three surfaces connected with the keypoint
using dotted curves. They are consistent with the extracted edges.

4.3 Multiple Motion Estimation

It is proven that a single translational motion corresponds to a single plane [1, 8]
and multiple motions correspond to multiple planes [13, 3] passing through the
origin in the derivative space coordinated with (I, I, I;) or in the frequency
space. In both cases, the normal vectors of planes contain the desired motion
parameters. Thus, motion estimation turns out to be orientation analysis of
planes [1,6]. For occlusion we have not only multiple planes in the (I, I, Iy)
space, but also distortions which disturb the orientation estimation [3]. In general
the number of distortion points is much less than that of plane components. We
can therefore reduce the disturbance of distortions by using the distribution
density as weighting function in the estimation, i.e. by using S(6, ¢).

Figure 6 shows a real example. The flower garden sequence contains a left
moving trunk occluding a left moving background. This can be observed as two
curves in the orientation signature S(6,¢). After applying the EM algorithm
based on equation (8) we obtain parameters of two motions. Before our approach,
Huang and Chen used the gap of G5 (see figure 3) to fix the orientation of one
plane [8]. This was the single one approach using 3D steerable filter for motion
estimation. But this method works only for single motion estimation due to the
coarse resolution. Observing the spatial coherence on either side of the occlusion
boundary, we further use the “warp-and-subtract” technique [11,3] to segment
two motions. The result is shown in figure 6 as well.



Fig. 6. Top Left: One frame from the flower garden sequence. The white box shows us
the window for motion estimation. Top Right: Two curves in the S(f, ¢). Bottom:
The segmentation results using the “warp-and-subtract” technique [11, 3]. Here we do
not consider the boundary problem in warping. Since there is no difference inside the
regions with the aperture problem before and after the warping, we observe only the
boundaries of the trunk.

5 Discussion

Our original motivation is to improve the orientation resolution of current 3D
steerable filters. It is interesting to observe that our approach is related to the 3D
orientation histogram (OH). Both methods achieve high orientation resolution
and both methods decompose the sphere locally. But there are still differences
between them.

— The 3D OH is a discrete approximation of the extended Gaussian image [7].
Our approach provides an analytic model for 3D orientation analysis.

— The 3D OH works on a unit spherical surface. Our approach projects the
sphere onto the (0, ¢) space. Though after this non-isometric mapping we
lose the rotational symmetry, we gain easier structure representation and
post-processing as compensation. For example, on the surface of this paper
sheet, using 3D OH we cannot display all parts of a great circle of a sphere,
while using our approach we can, though with some deformations.

— The 3D OH is applied for surface analysis of convex objects and it is shift-
and scale-invariant. Our 3D filter can be applied not only for surface analysis,
but also for volume data analysis. It treats both convex and concave objects.
But we must fix the keypoint and the radial boundaries at first.

— The basis cells in the 3D OH are not isotropic. Besides, they have either the
same round shape or high resolution, but not both simultaneously [7]. Our
approach provides isotropic cells in the feature space satisfying both criteria
simultaneously. But we have to overlap our basis cells to have this property.

For further research we may explore if there exists a dual basis of our non-
orthogonal basis filters. The lifting scheme [12] may be helpful in this study.



This may further provide a possible cue to solve the still open problem of tes-
sellation/decomposition of the spherical surface with isotropic cells.
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