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t. In this paper we present a new �lter based on Gaussian fun
-tions for the extra
tion of lo
al 3D orientation information. Comparedwith 
urrent 3D steerability approa
hes our method a
hieves higher orien-tation resolution with lower 
omplexity. This property enables us to solve
hallenging problems like 
omplex surfa
e analysis and multiple motionestimation. This new method de
omposes a sphere with a set of over-lapping basis �lters whi
h are isotropi
 in the feature spa
e. We studythe problem of non-uniform distribution of the spheri
al 
oordinates anddis
uss the appli
ation of a weighting 
ompensation fun
tion in the 
om-putation of the 3D orientation signature. Comparisons show that ourmethod is more eÆ
ient and robust than the 3D Hough transform.1 Introdu
tionIn general �ltering there is a 
on
i
t between performan
e and 
omplexity. Forexample, in the orientation analysis we prefer �lters having �ne orientation reso-lution. But for this �ne orientation resolution we have to 
onsider the enormous
omputational 
omplexity while 
onstru
ting or rotating su
h �lters. In orderto attenuate this 
on
i
t the 
on
ept of steerability was introdu
ed [5℄. A �lterF (x) with x 2 IRn is referred to as a steerable �lter if its deformed versionsF (x) 
an be expressed as [9℄F (x) = NXk=1 bk( )Ak(x); (1)where  denotes the deformation parameter. Here we refer to Ak(x) and bk( ) asbasis �lters and interpolation fun
tions, respe
tively. By using steerable �lters,the responses of a given family of �lters F (x) with  2 IR are expressed as alinear 
ombination of only N basis �lter responses.While many 2D steerable �lters have been applied in image pro
essing andlow level 
omputer vision (e.g. [10, 14℄), there were only a few approa
hes study-ing 3D steerability [5, 2℄. Freeman and Adelson [5℄ were the �rst who introdu
edthe 
on
ept of steerability into 3D �ltering. They interpolated derivatives of 3DGaussian fun
tions with a set of basis �lters. These basis �lters are rotated 
opies



of the original �lter. The 
orresponding interpolation fun
tions are trigonometri
fun
tions of orientation parameters. Andersson designed another 3D steerable �l-ter in the frequen
y domain, whose basis �lters are rotated 
opies of the steered�lter as well [2℄. The drawba
k of both approa
hes is that they do not provide �neorientation resolution due to large spatial support along the angular dire
tion.We may over
ome this drawba
k using �lters with elongated shape [10℄. Onepossible solution is to generalize the steerable wedge �lter [14℄ from 2D spa
eto 3D spa
e, whi
h is not yet implemented a

ording to 
urrent literature. But
urrent steerability is based on the global de
omposition prin
iple [16℄, whi
hsu�ers from the 
onsequen
es of the un
ertainty prin
iple. For example, we usu-ally use bk( ) = ej!k in 
urrent steerability approa
hes (equation (1)). This isequivalent to sampling the angular frequen
y with Dira
 fun
tions. A

ording tothe well known un
ertainty prin
iple, we 
annot lo
alize one signal both in thespatial domain and in the spe
tral domain exa
tly at the same time. If we use oneDira
 sampling fun
tion to lo
alize one spe
tral 
omponent of the signal exa
tlyin the frequen
y domain, we will no more be able to lo
alize this 
omponent inthe spatial domain. As a 
ompensation, we need a lot of spe
tral Dira
 impulsesto in
rease the spatial lo
alization ability. Correspondingly, we need a huge num-ber of basis �lters to a
hieve high orientation resolution, while these basis �ltersusually have wide supports whi
h a

entuate the 
omputational burden.The trade-o� between spatial- and spe
tral-lo
alization 
an be optimized onlyby using fun
tions with Gaussian shape, sin
e they a
hieve the lower boundin the un
ertainty prin
iple [4℄. Based on this motivation, we present in thispaper a new 3D steerable �lter using angular Gaussian fun
tions to a
hieve highorientation resolution.Before the steerability was introdu
ed, Big�un et al. 
onne
ted the orientationanalysis with symmetry dete
tion using the prin
ipal axis analysis (PAA) inthe me
hani
al engineering [6℄. But their method is only suitable to dete
t onedominant orientation, sin
e PAA only provides a set of basis ve
tors whi
h arealways orthogonal. In other words, the orientation resolution of PAA is notsuÆ
ient to solve non-orthogonal multiple orientation problem. A
tually, this isthe reason why we introdu
e steerable �lters.This paper is organized as follows: In se
tion 2 we present the new �lter andits responses of 3D planes in detail. Then we 
ompare our �lter with 
urrent 3Dsteerable �lters and the 3D Hough transform in se
tion 3. In se
tion 4 we displaysyntheti
 and real appli
ation examples. In the end we 
on
lude this paper withsome dis
ussions.2 Lo
al 3D Orientation Analysis2.1 Filter ShapeIn order to analyze 3D orientation naturally, we �rst 
ompute a spheri
al map-ping: I(x; y; z) ! I(r; �; �), where r = px2 + y2 + z2, � = ar
tan( yx); � =ar
tan( zpx2+y2 ) (see �gure 1). Sin
e we are interested in orientation informa-tion, we build an orientation signature S(�; �) from I(r; �; �). In order to have



�ne orientation resolution, we introdu
e 
oni
 kernels as basis �lters in our steer-able �lter. A 
oni
 kernel 
entered at (�i; �j) readsB(�i;�j)(r; �; �) := 1N (�i;�j)Rmin;Rmax(r)G(�i;�j)0 (�; �); (2)where N (�i;�j)Rmin;Rmax(r) is a weighting fun
tion along the radial dire
tion and it isindependent of the angular part of the �lter. We will 
ome ba
k to the designof N later. The angular part of this basis �lter is a 2D Gaussian fun
tion in theorientation spa
e 
oordinated with (�; �)G(�i;�j)0 (�; �) := 12��2 e� (D(�;�i))2+(���j )22�2 ; (3)with � denotes the s
ale of the 2D Gaussian fun
tion. Sin
e the angles alongthe � dire
tion are periodi
, we de�ne a D(�) to represent the minimal 
ir
ulardi�eren
e between � and �i (�; �i 2 [0; 2�℄)D(�; �i) := min(j� � �ij; j� � �i � 2�j; j� � �i + 2�j): (4)Theoreti
ally, a Gaussian fun
tion is not 
ompa
tly supported. In pra
ti
e weonly 
onsider the part of G(�i;�j)0 (�; �) inside the 
ir
ular mask with a diameterW , as shown in �gure 1.
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Fig. 1. A 
oni
 kernel 
entered at (�i; �j) with radial boundaries Rmin and Rmax.Left: The de�nition of the spheri
al 
oordinates. Middle: The �lter kernel in the 3DCartesian 
oordinates. Right: The �lter kernel with �, � and r as 
oordinates. It turnsinto a 
ylinder. In the (�; �) plane the 
ir
ular mask with a diameter W is weighted bya 2D Gaussian fun
tion, as shown above the 
ylinder.After applying this 
oni
 kernel on I(r; �; �), we obtain a basis �lter responseas a lo
al sample lo
ated at (�i; �j)A(�i;�j) := XXf(�;�)jp(���i)2+(���j)2�W2 gG(�i;�j)0 (�; �) RmaxXr=Rmin I(r; �; �)N (�i;�j)Rmin;Rmax(r) : (5)



Now let us 
onsider the distribution of basis kernels in the (�; �) plane. It isknown that a spheri
al surfa
e forms a re
tangular region in the (�; �) plane. Forthis re
tangular region it is impossible to have a tessellation with 
ir
ular 
ells.Instead, we may overlap neighboring basis kernels to 
over the whole re
tangularregion, as shown in �gure 2. In this arrangement we observe that this re
tangu-lar region is periodi
 along the � dire
tion and is mirror-symmetri
 about theboundary along the � dire
tion. These periodi
 and mirror-symmetri
 propertieshelp to solve the boundary problem.
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Fig. 2. The distribution of 
oni
kernels in the (�; �) plane. Thehorizontal or verti
al distan
ebetween two neighboring masksis equal to the radius of onemask.In order to obtain the orientation signature S(�; �) from a set of samplesA(�i;�j), we use 2D Gaussian fun
tions with lo
al support G(�i;�j)0 (�; �) again asinterpolation fun
tions. Thus, the orientation signature readsS(�; �) :=X�i X�j A(�i;�j)G(�i;�j)0 (�; �): (6)So far, we de�ne an analyti
 model of 3D orientation analysis based on Gaussianfun
tions.2.2 Filter Responses of 3D PlanesFor motion estimation we are interested in �lter responses of 3D planes (seese
tion 4 for detail). In the 3D Cartesian 
oordinates a plane passing throughthe origin with a unit normal ve
tor n = (n1; n2; n3)T readsxn1 + yn2 + zn3 = 0: (7)After 
onverting the equation into spheri
al 
oordinates we obtain an equationwith variables � and �
os(�) 
os(�n) 
os(� � �n) + sin(�) sin(�n) = 0; (8)where �n and �n denote the desired orientation parameters of the normal ve
torn. This equation des
ribes a periodi
 
urve in the (�; �) spa
e (�gure 4). Inpra
ti
e, we obtain a set of points in the (�; �) spa
e. Extra
ting the parameters(�n; �n) from these points is a standard regression problem. We may apply theleast square estimation (LSE) algorithm for a single plane or the the expe
tation-maximization (EM) algorithm [15℄ for multiple planes.



3 Comparisons3.1 Comparisons with Current 3D Steerable FiltersCurrent 3D steerability approa
hes are based on the global de
omposition prin-
iple using Dira
 fun
tions. In 
ontrast, our method is based on the lo
al de
om-position prin
iple using Gaussian fun
tions with narrow support. This di�eren
eleads our approa
h to have higher orientation resolution. In �gure 3 we show the�rst derivative of 3D Gaussian fun
tion G3 [5℄, Andersson's �lter [2℄, and our�lter, respe
tively. Sin
e the orientation resolution of a �lter is inversely propor-tional to the angular support of this �lter, we display the angular supports in�gure 3 as well for resolution 
omparison. We observe that G3 has a so largeangular support that only the gap between its two lobes may be useful. Anders-son's �lter has smaller support than G3. But the resolution is not yet suÆ
ient.Compared with these two steerable �lters our �lter has mu
h higher orientationresolution. This 
laim is 
on�rmed in �gure 5 as well.Our �lter needs a little bit more 
omputation than the �lter G3 but mu
h less
omputation than Andersson's �lter (see [16℄ for detail due to spa
e limitation).At �rst sight, our �lter is less eÆ
ient than G3. But it should be noti
ed that a
omplexity 
omparison is only fair, when the 
orresponding �lters have the sameorientation resolution. Sin
e G3 
annot a
hieve the same orientation resolutionthat our �lter provides, its low 
omplexity does not make sense here.Freeman & Adelson Andersson 
oni
 kernel
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 −90Fig. 3. Top Left: The �lter G3 (redrawn from [8℄). Top Middle: Andersson's �lter inthe frequen
y domain (redrawn from [2℄). Note that the angular support of a �lter in thespatial domain is the same as that in the frequen
y domain, sin
e Fourier transform isan isometri
 mapping. Top Right: Our �lter. Bottom: The 
orresponding �lter sup-ports in the (�; �) spa
e. The irregularity in the support of G3 with � 2 [�180Æ; 180Æ℄,j�j > 40Æ is 
aused by the dis
rete representation of the �lter kernel.



3.2 Comparisons with the 3D Hough TransformThe Hough Transform is a sampling and sear
hing method for parameter ex-tra
tion. Con
retely, for ea
h point (Iix; Iiy ; Iit) we draw all possible planes inthe (n1; n2; n3) spa
e whi
h pass through the origin and satisfy the equationj Iixn1j + Iiyn2j + Iitn3j j� "; (9)where " denotes a positive tolerant parameter and (n1j ; n2j ; n3j) denotes the j-thplane. After going through all points (i = 1; � � � ; N) we sear
h in the (n1; n2; n3)spa
e the position with maximal interse
tion to obtain the desired parameters.The 3D Hough transform based on equation (9) is equivalent to a 3D �lter
entered at the origin of the 3D spa
e with the 
on
ave disk shape. Correspond-ingly, the Hough image of a point (Iix; Iiy ; Iit) is equivalent to impulse responseof the 
on
ave disk �lter in 3D spa
e, as shown in �gure 4. We observe that theHough image of a point is similar to our steerable �lter response of a 3D plane ex-
ept that Hough image has no negative � values sin
e we use only normal ve
torswith n3 > 0. Taking into a

ount that our �lter response of a plane is 
omposedof a set of �lter responses of di�erent points, the Hough image has mu
h largersupport than our �lter response of a point (�gure 3). In other words, our �ltersamples the orientation spa
e more eÆ
iently than the 3D Hough transform.Besides, in the Hough transform the sear
h of the se
ond maximal positionis generally problemati
, sin
e we do not know how to get rid of the neighbors ofthe �rst global maximum. This problem is easier to solve in our �lter responseusing zero-
rossing analysis on the � axis, sin
e the 
urves in the (�; �) spa
e areperiodi
 and we know that the zero-
rossing points on the � axis and the extremepoints with maximal � values 
ontain the desired parameters. The reader isreferred to [16℄ for details of this tri
k due to pla
e limitation.
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orresponding 
urves in the (�; �) spa
e applyingour �lter. Bottom Left: Hough image of a point. It is similar to our �lter responseof a plane. Bottom Right: The Hough image of two planes disturbed with noise. Weobserve two mono-modal distributions. In general we do not know how to sear
h these
ond maximal position automati
ally.



4 Appli
ations4.1 Compensation IssueBefore we present examples, we dis
uss the design of N in equation (2). It isknown that the horizontal angle � and the verti
al angle � are de�ned di�er-ently in the spheri
al 
oordinates. For example, all points with the same � on aspheri
al surfa
e lie on a great 
ir
le of this spheri
al surfa
e, whereas all pointswith the same � lie on a small 
ir
le. If we divide the whole (�; �) spa
e into agrid with equal interval, it turns out that the higher the latitude value is, thedenser grid points we have on the spheri
al surfa
e. This kind of non-uniformdistribution was addressed in [7℄ in detail.We may 
ompensate this non-uniform distribution by designing N as a nor-malizing fa
tor so that the �lter response is relatively insensitive to the non-uniform distribution. But this normalizing fa
tor N \strengthens" then the out-puts of �lters with a few points and \suppresses" the outputs of �lters with manypoints. As a result, we are no more able to know the real distribution densityof points in the (�; �) spa
e, while this density information is desirable in someappli
ations. For example, we use the EM algorithm for multiple motion estima-tion. The philosophy behind the EM algorithm is that there are more \normal"points than noise and \in
orre
t" samples and the distribution density worksas a weighting fun
tion in the parameter regression pro
edure. If we lose su
hdensity information, the estimation result will be mu
h worse. For this reason,we would like to study experimentally the sus
eptibility of the �lter responsewithout normalizing 
ompensation to the non-uniform distribution.4.2 3D Jun
tion Chara
terizationWe begin with an example of 3D jun
tion 
hara
terization. In �gure 5 we have a
ubi
 with one of its verti
es as keypoint. For 
omparison we apply the steerable�lterG3, Andersson's �lter, our �lter with 
ompensation (settingN as the sum ofdis
rete weights in the �lter mask), and our �lter without 
ompensation (settingN as a 
onstant). In the response of G3, the lo
ation of the maximal value doesnot have geometri
al meaning sin
e the angular support of G3 is too large tointerpret this 3D jun
tion. Andersson's �lter has higher orientation resolutionthan G3. Though the edges of the 
ubi
 are blurred, the lo
ation of maximalvalue in the response 
orresponds to the 
enter of the 
ubi
. Compared withthese two steerable �lters, our approa
h provides evidently higher orientationresolution. Besides, a 
omparison shows that the response of our �lter without
ompensation S(�; �) is more sensitive to the non-uniform distribution than thatwith 
ompensation Sa(�; �). But this sus
eptibility does not obstru
t us fromobtaining main stru
ture information in the orientation signature. Thus, we still
an use S(�; �) for 3D jun
tion 
hara
terization.
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 −90Fig. 5. Top Left: 3D plot of a 
ubi
 with its three normal ve
tors at one vertex.Top Middle: The response of G3. Top Right: The response of Andersson's �lter.Bottom Left: Orientation signature with averaging Sa(�; �). Three surfa
es turn outto be three edges in the (�; �) spa
e. Bottom Middle: Orientation signature withoutaveraging S(�; �). Compared with Sa(�; �) it is more sensitive to the non-uniformdistribution of points in the (�; �) spa
e. However, the edges are still 
learly represented.Bottom Right:We 
an extra
t edge information from S(�; �) applying morphologi
aloperations. For 
omparison we also display three surfa
es 
onne
ted with the keypointusing dotted 
urves. They are 
onsistent with the extra
ted edges.4.3 Multiple Motion EstimationIt is proven that a single translational motion 
orresponds to a single plane [1, 8℄and multiple motions 
orrespond to multiple planes [13, 3℄ passing through theorigin in the derivative spa
e 
oordinated with (Ix; Iy; It) or in the frequen
yspa
e. In both 
ases, the normal ve
tors of planes 
ontain the desired motionparameters. Thus, motion estimation turns out to be orientation analysis ofplanes [1, 6℄. For o

lusion we have not only multiple planes in the (Ix; Iy; It)spa
e, but also distortions whi
h disturb the orientation estimation [3℄. In generalthe number of distortion points is mu
h less than that of plane 
omponents. We
an therefore redu
e the disturban
e of distortions by using the distributiondensity as weighting fun
tion in the estimation, i.e. by using S(�; �).Figure 6 shows a real example. The 
ower garden sequen
e 
ontains a leftmoving trunk o

luding a left moving ba
kground. This 
an be observed as two
urves in the orientation signature S(�; �). After applying the EM algorithmbased on equation (8) we obtain parameters of two motions. Before our approa
h,Huang and Chen used the gap of G3 (see �gure 3) to �x the orientation of oneplane [8℄. This was the single one approa
h using 3D steerable �lter for motionestimation. But this method works only for single motion estimation due to the
oarse resolution. Observing the spatial 
oheren
e on either side of the o

lusionboundary, we further use the \warp-and-subtra
t" te
hnique [11, 3℄ to segmenttwo motions. The result is shown in �gure 6 as well.
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Fig. 6. Top Left: One frame from the 
ower garden sequen
e. The white box shows usthe window for motion estimation. Top Right: Two 
urves in the S(�; �). Bottom:The segmentation results using the \warp-and-subtra
t" te
hnique [11, 3℄. Here we donot 
onsider the boundary problem in warping. Sin
e there is no di�eren
e inside theregions with the aperture problem before and after the warping, we observe only theboundaries of the trunk.5 Dis
ussionOur original motivation is to improve the orientation resolution of 
urrent 3Dsteerable �lters. It is interesting to observe that our approa
h is related to the 3Dorientation histogram (OH). Both methods a
hieve high orientation resolutionand both methods de
ompose the sphere lo
ally. But there are still di�eren
esbetween them.{ The 3D OH is a dis
rete approximation of the extended Gaussian image [7℄.Our approa
h provides an analyti
 model for 3D orientation analysis.{ The 3D OH works on a unit spheri
al surfa
e. Our approa
h proje
ts thesphere onto the (�; �) spa
e. Though after this non-isometri
 mapping welose the rotational symmetry, we gain easier stru
ture representation andpost-pro
essing as 
ompensation. For example, on the surfa
e of this papersheet, using 3D OH we 
annot display all parts of a great 
ir
le of a sphere,while using our approa
h we 
an, though with some deformations.{ The 3D OH is applied for surfa
e analysis of 
onvex obje
ts and it is shift-and s
ale-invariant. Our 3D �lter 
an be applied not only for surfa
e analysis,but also for volume data analysis. It treats both 
onvex and 
on
ave obje
ts.But we must �x the keypoint and the radial boundaries at �rst.{ The basis 
ells in the 3D OH are not isotropi
. Besides, they have either thesame round shape or high resolution, but not both simultaneously [7℄. Ourapproa
h provides isotropi
 
ells in the feature spa
e satisfying both 
riteriasimultaneously. But we have to overlap our basis 
ells to have this property.For further resear
h we may explore if there exists a dual basis of our non-orthogonal basis �lters. The lifting s
heme [12℄ may be helpful in this study.



This may further provide a possible 
ue to solve the still open problem of tes-sellation/de
omposition of the spheri
al surfa
e with isotropi
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