
A New 3D Orientation Steerable FilterWeihuan Yu1, Kostas Daniilidis2, Gerald Sommer11Institut f�ur Informatik 2GRASP LaboratoryChristian-Albrehts-Universit�at University of PennsylvaniaPreu�erstra�e 1{9 3401 Walnut StreetD-24105 Kiel, Germany Philadelphia, PA 19104-6228, USAfwy,gsg�ks.informatik.uni-kiel.de kostas�grip.is.upenn.eduAbstrat. In this paper we present a new �lter based on Gaussian fun-tions for the extration of loal 3D orientation information. Comparedwith urrent 3D steerability approahes our method ahieves higher orien-tation resolution with lower omplexity. This property enables us to solvehallenging problems like omplex surfae analysis and multiple motionestimation. This new method deomposes a sphere with a set of over-lapping basis �lters whih are isotropi in the feature spae. We studythe problem of non-uniform distribution of the spherial oordinates anddisuss the appliation of a weighting ompensation funtion in the om-putation of the 3D orientation signature. Comparisons show that ourmethod is more eÆient and robust than the 3D Hough transform.1 IntrodutionIn general �ltering there is a onit between performane and omplexity. Forexample, in the orientation analysis we prefer �lters having �ne orientation reso-lution. But for this �ne orientation resolution we have to onsider the enormousomputational omplexity while onstruting or rotating suh �lters. In orderto attenuate this onit the onept of steerability was introdued [5℄. A �lterF (x) with x 2 IRn is referred to as a steerable �lter if its deformed versionsF (x) an be expressed as [9℄F (x) = NXk=1 bk( )Ak(x); (1)where  denotes the deformation parameter. Here we refer to Ak(x) and bk( ) asbasis �lters and interpolation funtions, respetively. By using steerable �lters,the responses of a given family of �lters F (x) with  2 IR are expressed as alinear ombination of only N basis �lter responses.While many 2D steerable �lters have been applied in image proessing andlow level omputer vision (e.g. [10, 14℄), there were only a few approahes study-ing 3D steerability [5, 2℄. Freeman and Adelson [5℄ were the �rst who introduedthe onept of steerability into 3D �ltering. They interpolated derivatives of 3DGaussian funtions with a set of basis �lters. These basis �lters are rotated opies



of the original �lter. The orresponding interpolation funtions are trigonometrifuntions of orientation parameters. Andersson designed another 3D steerable �l-ter in the frequeny domain, whose basis �lters are rotated opies of the steered�lter as well [2℄. The drawbak of both approahes is that they do not provide �neorientation resolution due to large spatial support along the angular diretion.We may overome this drawbak using �lters with elongated shape [10℄. Onepossible solution is to generalize the steerable wedge �lter [14℄ from 2D spaeto 3D spae, whih is not yet implemented aording to urrent literature. Buturrent steerability is based on the global deomposition priniple [16℄, whihsu�ers from the onsequenes of the unertainty priniple. For example, we usu-ally use bk( ) = ej!k in urrent steerability approahes (equation (1)). This isequivalent to sampling the angular frequeny with Dira funtions. Aording tothe well known unertainty priniple, we annot loalize one signal both in thespatial domain and in the spetral domain exatly at the same time. If we use oneDira sampling funtion to loalize one spetral omponent of the signal exatlyin the frequeny domain, we will no more be able to loalize this omponent inthe spatial domain. As a ompensation, we need a lot of spetral Dira impulsesto inrease the spatial loalization ability. Correspondingly, we need a huge num-ber of basis �lters to ahieve high orientation resolution, while these basis �ltersusually have wide supports whih aentuate the omputational burden.The trade-o� between spatial- and spetral-loalization an be optimized onlyby using funtions with Gaussian shape, sine they ahieve the lower boundin the unertainty priniple [4℄. Based on this motivation, we present in thispaper a new 3D steerable �lter using angular Gaussian funtions to ahieve highorientation resolution.Before the steerability was introdued, Big�un et al. onneted the orientationanalysis with symmetry detetion using the prinipal axis analysis (PAA) inthe mehanial engineering [6℄. But their method is only suitable to detet onedominant orientation, sine PAA only provides a set of basis vetors whih arealways orthogonal. In other words, the orientation resolution of PAA is notsuÆient to solve non-orthogonal multiple orientation problem. Atually, this isthe reason why we introdue steerable �lters.This paper is organized as follows: In setion 2 we present the new �lter andits responses of 3D planes in detail. Then we ompare our �lter with urrent 3Dsteerable �lters and the 3D Hough transform in setion 3. In setion 4 we displaysyntheti and real appliation examples. In the end we onlude this paper withsome disussions.2 Loal 3D Orientation Analysis2.1 Filter ShapeIn order to analyze 3D orientation naturally, we �rst ompute a spherial map-ping: I(x; y; z) ! I(r; �; �), where r = px2 + y2 + z2, � = artan( yx); � =artan( zpx2+y2 ) (see �gure 1). Sine we are interested in orientation informa-tion, we build an orientation signature S(�; �) from I(r; �; �). In order to have



�ne orientation resolution, we introdue oni kernels as basis �lters in our steer-able �lter. A oni kernel entered at (�i; �j) readsB(�i;�j)(r; �; �) := 1N (�i;�j)Rmin;Rmax(r)G(�i;�j)0 (�; �); (2)where N (�i;�j)Rmin;Rmax(r) is a weighting funtion along the radial diretion and it isindependent of the angular part of the �lter. We will ome bak to the designof N later. The angular part of this basis �lter is a 2D Gaussian funtion in theorientation spae oordinated with (�; �)G(�i;�j)0 (�; �) := 12��2 e� (D(�;�i))2+(���j )22�2 ; (3)with � denotes the sale of the 2D Gaussian funtion. Sine the angles alongthe � diretion are periodi, we de�ne a D(�) to represent the minimal irulardi�erene between � and �i (�; �i 2 [0; 2�℄)D(�; �i) := min(j� � �ij; j� � �i � 2�j; j� � �i + 2�j): (4)Theoretially, a Gaussian funtion is not ompatly supported. In pratie weonly onsider the part of G(�i;�j)0 (�; �) inside the irular mask with a diameterW , as shown in �gure 1.
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Fig. 1. A oni kernel entered at (�i; �j) with radial boundaries Rmin and Rmax.Left: The de�nition of the spherial oordinates. Middle: The �lter kernel in the 3DCartesian oordinates. Right: The �lter kernel with �, � and r as oordinates. It turnsinto a ylinder. In the (�; �) plane the irular mask with a diameter W is weighted bya 2D Gaussian funtion, as shown above the ylinder.After applying this oni kernel on I(r; �; �), we obtain a basis �lter responseas a loal sample loated at (�i; �j)A(�i;�j) := XXf(�;�)jp(���i)2+(���j)2�W2 gG(�i;�j)0 (�; �) RmaxXr=Rmin I(r; �; �)N (�i;�j)Rmin;Rmax(r) : (5)



Now let us onsider the distribution of basis kernels in the (�; �) plane. It isknown that a spherial surfae forms a retangular region in the (�; �) plane. Forthis retangular region it is impossible to have a tessellation with irular ells.Instead, we may overlap neighboring basis kernels to over the whole retangularregion, as shown in �gure 2. In this arrangement we observe that this retangu-lar region is periodi along the � diretion and is mirror-symmetri about theboundary along the � diretion. These periodi and mirror-symmetri propertieshelp to solve the boundary problem.
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Fig. 2. The distribution of onikernels in the (�; �) plane. Thehorizontal or vertial distanebetween two neighboring masksis equal to the radius of onemask.In order to obtain the orientation signature S(�; �) from a set of samplesA(�i;�j), we use 2D Gaussian funtions with loal support G(�i;�j)0 (�; �) again asinterpolation funtions. Thus, the orientation signature readsS(�; �) :=X�i X�j A(�i;�j)G(�i;�j)0 (�; �): (6)So far, we de�ne an analyti model of 3D orientation analysis based on Gaussianfuntions.2.2 Filter Responses of 3D PlanesFor motion estimation we are interested in �lter responses of 3D planes (seesetion 4 for detail). In the 3D Cartesian oordinates a plane passing throughthe origin with a unit normal vetor n = (n1; n2; n3)T readsxn1 + yn2 + zn3 = 0: (7)After onverting the equation into spherial oordinates we obtain an equationwith variables � and �os(�) os(�n) os(� � �n) + sin(�) sin(�n) = 0; (8)where �n and �n denote the desired orientation parameters of the normal vetorn. This equation desribes a periodi urve in the (�; �) spae (�gure 4). Inpratie, we obtain a set of points in the (�; �) spae. Extrating the parameters(�n; �n) from these points is a standard regression problem. We may apply theleast square estimation (LSE) algorithm for a single plane or the the expetation-maximization (EM) algorithm [15℄ for multiple planes.



3 Comparisons3.1 Comparisons with Current 3D Steerable FiltersCurrent 3D steerability approahes are based on the global deomposition prin-iple using Dira funtions. In ontrast, our method is based on the loal deom-position priniple using Gaussian funtions with narrow support. This di�ereneleads our approah to have higher orientation resolution. In �gure 3 we show the�rst derivative of 3D Gaussian funtion G3 [5℄, Andersson's �lter [2℄, and our�lter, respetively. Sine the orientation resolution of a �lter is inversely propor-tional to the angular support of this �lter, we display the angular supports in�gure 3 as well for resolution omparison. We observe that G3 has a so largeangular support that only the gap between its two lobes may be useful. Anders-son's �lter has smaller support than G3. But the resolution is not yet suÆient.Compared with these two steerable �lters our �lter has muh higher orientationresolution. This laim is on�rmed in �gure 5 as well.Our �lter needs a little bit more omputation than the �lter G3 but muh lessomputation than Andersson's �lter (see [16℄ for detail due to spae limitation).At �rst sight, our �lter is less eÆient than G3. But it should be notied that aomplexity omparison is only fair, when the orresponding �lters have the sameorientation resolution. Sine G3 annot ahieve the same orientation resolutionthat our �lter provides, its low omplexity does not make sense here.Freeman & Adelson Andersson oni kernel
o

 −180  180 0
 θ

 φ
 90

  0

 −90
 −180  180 0

 θ

 φ
 90

  0

 −90
 −180  180 0

 θ

 φ
 90

  0

 −90Fig. 3. Top Left: The �lter G3 (redrawn from [8℄). Top Middle: Andersson's �lter inthe frequeny domain (redrawn from [2℄). Note that the angular support of a �lter in thespatial domain is the same as that in the frequeny domain, sine Fourier transform isan isometri mapping. Top Right: Our �lter. Bottom: The orresponding �lter sup-ports in the (�; �) spae. The irregularity in the support of G3 with � 2 [�180Æ; 180Æ℄,j�j > 40Æ is aused by the disrete representation of the �lter kernel.



3.2 Comparisons with the 3D Hough TransformThe Hough Transform is a sampling and searhing method for parameter ex-tration. Conretely, for eah point (Iix; Iiy ; Iit) we draw all possible planes inthe (n1; n2; n3) spae whih pass through the origin and satisfy the equationj Iixn1j + Iiyn2j + Iitn3j j� "; (9)where " denotes a positive tolerant parameter and (n1j ; n2j ; n3j) denotes the j-thplane. After going through all points (i = 1; � � � ; N) we searh in the (n1; n2; n3)spae the position with maximal intersetion to obtain the desired parameters.The 3D Hough transform based on equation (9) is equivalent to a 3D �lterentered at the origin of the 3D spae with the onave disk shape. Correspond-ingly, the Hough image of a point (Iix; Iiy ; Iit) is equivalent to impulse responseof the onave disk �lter in 3D spae, as shown in �gure 4. We observe that theHough image of a point is similar to our steerable �lter response of a 3D plane ex-ept that Hough image has no negative � values sine we use only normal vetorswith n3 > 0. Taking into aount that our �lter response of a plane is omposedof a set of �lter responses of di�erent points, the Hough image has muh largersupport than our �lter response of a point (�gure 3). In other words, our �ltersamples the orientation spae more eÆiently than the 3D Hough transform.Besides, in the Hough transform the searh of the seond maximal positionis generally problemati, sine we do not know how to get rid of the neighbors ofthe �rst global maximum. This problem is easier to solve in our �lter responseusing zero-rossing analysis on the � axis, sine the urves in the (�; �) spae areperiodi and we know that the zero-rossing points on the � axis and the extremepoints with maximal � values ontain the desired parameters. The reader isreferred to [16℄ for details of this trik due to plae limitation.
−10

0
10

−10

0

10
−10

0

10

 X Y

 Z

−100 0 100

−50

0

50

θ

φ

 −180  180 0
 θ

 φ
 90

  0
 −180  180 0

 θ

 φ
 90

  0Fig. 4. Top: Two planes and their orresponding urves in the (�; �) spae applyingour �lter. Bottom Left: Hough image of a point. It is similar to our �lter responseof a plane. Bottom Right: The Hough image of two planes disturbed with noise. Weobserve two mono-modal distributions. In general we do not know how to searh theseond maximal position automatially.



4 Appliations4.1 Compensation IssueBefore we present examples, we disuss the design of N in equation (2). It isknown that the horizontal angle � and the vertial angle � are de�ned di�er-ently in the spherial oordinates. For example, all points with the same � on aspherial surfae lie on a great irle of this spherial surfae, whereas all pointswith the same � lie on a small irle. If we divide the whole (�; �) spae into agrid with equal interval, it turns out that the higher the latitude value is, thedenser grid points we have on the spherial surfae. This kind of non-uniformdistribution was addressed in [7℄ in detail.We may ompensate this non-uniform distribution by designing N as a nor-malizing fator so that the �lter response is relatively insensitive to the non-uniform distribution. But this normalizing fator N \strengthens" then the out-puts of �lters with a few points and \suppresses" the outputs of �lters with manypoints. As a result, we are no more able to know the real distribution densityof points in the (�; �) spae, while this density information is desirable in someappliations. For example, we use the EM algorithm for multiple motion estima-tion. The philosophy behind the EM algorithm is that there are more \normal"points than noise and \inorret" samples and the distribution density worksas a weighting funtion in the parameter regression proedure. If we lose suhdensity information, the estimation result will be muh worse. For this reason,we would like to study experimentally the suseptibility of the �lter responsewithout normalizing ompensation to the non-uniform distribution.4.2 3D Juntion CharaterizationWe begin with an example of 3D juntion haraterization. In �gure 5 we have aubi with one of its verties as keypoint. For omparison we apply the steerable�lterG3, Andersson's �lter, our �lter with ompensation (settingN as the sum ofdisrete weights in the �lter mask), and our �lter without ompensation (settingN as a onstant). In the response of G3, the loation of the maximal value doesnot have geometrial meaning sine the angular support of G3 is too large tointerpret this 3D juntion. Andersson's �lter has higher orientation resolutionthan G3. Though the edges of the ubi are blurred, the loation of maximalvalue in the response orresponds to the enter of the ubi. Compared withthese two steerable �lters, our approah provides evidently higher orientationresolution. Besides, a omparison shows that the response of our �lter withoutompensation S(�; �) is more sensitive to the non-uniform distribution than thatwith ompensation Sa(�; �). But this suseptibility does not obstrut us fromobtaining main struture information in the orientation signature. Thus, we stillan use S(�; �) for 3D juntion haraterization.
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 −90Fig. 5. Top Left: 3D plot of a ubi with its three normal vetors at one vertex.Top Middle: The response of G3. Top Right: The response of Andersson's �lter.Bottom Left: Orientation signature with averaging Sa(�; �). Three surfaes turn outto be three edges in the (�; �) spae. Bottom Middle: Orientation signature withoutaveraging S(�; �). Compared with Sa(�; �) it is more sensitive to the non-uniformdistribution of points in the (�; �) spae. However, the edges are still learly represented.Bottom Right:We an extrat edge information from S(�; �) applying morphologialoperations. For omparison we also display three surfaes onneted with the keypointusing dotted urves. They are onsistent with the extrated edges.4.3 Multiple Motion EstimationIt is proven that a single translational motion orresponds to a single plane [1, 8℄and multiple motions orrespond to multiple planes [13, 3℄ passing through theorigin in the derivative spae oordinated with (Ix; Iy; It) or in the frequenyspae. In both ases, the normal vetors of planes ontain the desired motionparameters. Thus, motion estimation turns out to be orientation analysis ofplanes [1, 6℄. For olusion we have not only multiple planes in the (Ix; Iy; It)spae, but also distortions whih disturb the orientation estimation [3℄. In generalthe number of distortion points is muh less than that of plane omponents. Wean therefore redue the disturbane of distortions by using the distributiondensity as weighting funtion in the estimation, i.e. by using S(�; �).Figure 6 shows a real example. The ower garden sequene ontains a leftmoving trunk oluding a left moving bakground. This an be observed as twourves in the orientation signature S(�; �). After applying the EM algorithmbased on equation (8) we obtain parameters of two motions. Before our approah,Huang and Chen used the gap of G3 (see �gure 3) to �x the orientation of oneplane [8℄. This was the single one approah using 3D steerable �lter for motionestimation. But this method works only for single motion estimation due to theoarse resolution. Observing the spatial oherene on either side of the olusionboundary, we further use the \warp-and-subtrat" tehnique [11, 3℄ to segmenttwo motions. The result is shown in �gure 6 as well.
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Fig. 6. Top Left: One frame from the ower garden sequene. The white box shows usthe window for motion estimation. Top Right: Two urves in the S(�; �). Bottom:The segmentation results using the \warp-and-subtrat" tehnique [11, 3℄. Here we donot onsider the boundary problem in warping. Sine there is no di�erene inside theregions with the aperture problem before and after the warping, we observe only theboundaries of the trunk.5 DisussionOur original motivation is to improve the orientation resolution of urrent 3Dsteerable �lters. It is interesting to observe that our approah is related to the 3Dorientation histogram (OH). Both methods ahieve high orientation resolutionand both methods deompose the sphere loally. But there are still di�erenesbetween them.{ The 3D OH is a disrete approximation of the extended Gaussian image [7℄.Our approah provides an analyti model for 3D orientation analysis.{ The 3D OH works on a unit spherial surfae. Our approah projets thesphere onto the (�; �) spae. Though after this non-isometri mapping welose the rotational symmetry, we gain easier struture representation andpost-proessing as ompensation. For example, on the surfae of this papersheet, using 3D OH we annot display all parts of a great irle of a sphere,while using our approah we an, though with some deformations.{ The 3D OH is applied for surfae analysis of onvex objets and it is shift-and sale-invariant. Our 3D �lter an be applied not only for surfae analysis,but also for volume data analysis. It treats both onvex and onave objets.But we must �x the keypoint and the radial boundaries at �rst.{ The basis ells in the 3D OH are not isotropi. Besides, they have either thesame round shape or high resolution, but not both simultaneously [7℄. Ourapproah provides isotropi ells in the feature spae satisfying both riteriasimultaneously. But we have to overlap our basis ells to have this property.For further researh we may explore if there exists a dual basis of our non-orthogonal basis �lters. The lifting sheme [12℄ may be helpful in this study.



This may further provide a possible ue to solve the still open problem of tes-sellation/deomposition of the spherial surfae with isotropi ells.Referenes1. E. H. Adelson and J. R. Bergen. Spatiotemporal energy models for the pereptionof motion. Journal of the Optial Soiety of Ameria, 1(2):284{299, 1985.2. M. T. Andersson. Controllable Multidimensional Filters and Models in Low LevelComputer Vision. PhD thesis, Department of Eletrial Engineering, LinkoepingUniversity, Linkoeping, Sweden, 1992.3. W. Yu, K. Daniilidis, S. Beauhemin, and G. Sommer. Detetion and harater-ization of multiple motion points. In IEEE Conf. Computer Vision and PatternReognition, volume I, pages 171{177, Fort Collins, CO, June 23-25, 1999.4. J. G. Daugman. Unertainty relation for resolution in spae, spatial frequenyand orientation optimized by two-dimensional visual ortial �lters. Journal of theOptial Soiety of Ameria, 2(7):1160{1169, 1985.5. W.T. Freeman and E.H. Adelson. The design and use of steerable �lters. IEEETrans. Pattern Analysis and Mahine Intelligene, 13:891{906, 1991.6. J. Big�un , G. H. Granlund and J. Wiklund. Multidimensional orientation estima-tion with appliation to texture analysis and optial ow. IEEE Trans. PatternAnalysis and Mahine Intelligene, 13(8):775{790, 1991.7. B. K. P. Horn. Robot Vision. MIT Press, 1986.8. Chung-Lin Huang and Yng-Tsang Chen. Motion estimation method using a 3dsteerable �lter. Image and Vision Computing, 13:21{32, 1995.9. M. Mihaelis and G. Sommer. A Lie group approah to steerable �lters. PatternReognition Letters, 16:1165{1174, 1995.10. P. Perona. Deformable kernels for early vision. IEEE Trans. Pattern Analysis andMahine Intelligene, 17(5):488{499, 1995.11. M. Irani, B. Rousso, and S. Peleg. Computing oluding and transparent motions.International Journal of Computer Vision, 12:5{16, 1994.12. P. Shr�oder and W. Sweldens. Spherial wavelets: EÆiently representing funtionson the sphere. Computer Graphis Proeedings (SIGGRAPH 95), pages 161{172,1995.13. M. Shizawa and K. Mase. A uni�ed omputational theory for motion transparenyand motion boundaries based on eigenenergy analysis. In IEEE Conf. ComputerVision and Pattern Reognition, pages 289{295, Maui, Hawaii, June 3-6, 1991.14. E. P. Simonelli and H. Farid. Steerable wedge �lters for loal orientation analysis.IEEE Trans. Image Proessing, 5(9):1377{1382, 1996.15. Y. Weiss and E. H. Adelson. A uni�ed mixture framework for motion segmentation:Inorporating spatial oherene and estimating the number of models. In IEEEConf. Computer Vision and Pattern Reognition, pages 321{326, San Fransiso,CA, June 18-20, 1996.16. W. Yu. Loal Orientation Analysis in Images and Image Sequenes Using SteerableFilters. PhD thesis, Institute of Computer Siene, University Kiel, Germany, 2000.


