Detection and Characterization of Multiple Motion Points
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Abstract

The computation of optical flow is a well studied
topic in biological and computational vision. However,
the existence of multiple motions in dynamic imagery
due to occlusion or even transparency still raises chal-
lenging questions. In this paper, we propose an ap-
proach for the detection and characterization of oc-
cluston and transparency. We propose a theoretical
framework for both types of multiple motions which
explicitly shows the difference between occlusion and
transparency in the frequency domain. Then, we em-
ploy an EM-algorithm for the computation of one or
two image velocities and a stmple test for the detection
of occlusion. Qur approach differs from other EM-
approaches which blindly assume the superposition of
two models in the spatial domain without providing
with a separate formal model for occlusion. We test
and compare the characterization performance in syn-
thetic and real data.

1 Introduction

It was early recognized in the history of optical flow
estimation that motion boundaries necessitate a spe-
cial treatment. Due to the aperture problem, flow
computation apply assumptions on the behavior of
the optical flow in the neighborhood of the considered
point. Such assumptions are either explicit in area-
based techniques or implicit in filter-based schemes
where the addressed neighborhood is the filter sup-
port. In global approaches of optical flow the assump-
tions are encoded in the regularization term. Regu-
larization approaches were also the first in address-
ing the problem of motion boundaries by penalizing
flow smoothness at hypothetical positions of motion
boundaries [15]. We will not delve into this group of
flow segmentation algorithms which later followed the
paradigm of anisotropic diffusion [17]. A second group
of approaches is based on segmenting regions where

parametric models of flow can be fitted [18, 7, 12, 23].
Due to space limitations the reader is referred to [4]
for a survey of flow estimation methods.

We are interested here in local techniques for the de-
tection of points involving multiple motions and their
classification in occlusion and transparency points.
Most of the local approaches consider this problem
as the fitting of superimposed models or as the vio-
lation of a parametric model. Approaches computing
the local spatiotemporal grayvalue tensor [19, 16] test
the tensor’s eigenvalue to detect points of multiple mo-
tions whereas Black and Anandan [6] apply robust es-
timation in order to detect such points. The majority
of these approaches relies on the Brightness Change
Constraint Equation

Ieu+lyv+ 1, =0 (1)

where I, I,, and I; denote the spatiotemporal par-
tial derivatives of the image intensity and (u,v) is
the optical flow vector. Looking at the case of mul-
tiple motions as a simultaneous problem of estima-
tion and grouping researchers have recently elaborated
algorithms based on the Expectation-Maximization
Principle [1]. Whereas the Maximization step is the
usual maximum-likelihood parameter estimation given
the assignment of points to groups, the Expectation
step 1s regrouping the points by updating member-
ship weights. Several authors [13, 22] applied the EM-
algorithm on the BCCE model (1) or on already com-
puted flow vectors. This process is equivalent to fitting
two planes through the origin in the (I, I,,, I;)-space.
However, this fitting does not reveal what happens in
reality. In case of occlusion, it can be shown that the
(Iz, I, I)-space does not contain only two planes. In
case of transparency we can hardly assume that the in-
tensity profile is differentiable. A recent approach by
Fleet et al. [5] gives the best explicit model of occlu-
sion for the spatial domain by applying the steerability



theory in the detection of the occlusion boundary as a
step edge in both components of the optical flow field.

The underlying theoretical framework for the ap-
proach in this paper relies on spectral analysis and
was first presented in [3] based on observations in [9)].
Another framework for multiple motions formulated
in the frequency domain i1s the superposition princi-
ple of Shizawa and Mase [21] which, however, does
not discriminate between occlusion and transparency.
We start with an illustration of the difference between
occlusion and transparency in Fig. 1. First, by iso-
lating a spatial window we observe that occlusion is
more local than transparency. In case of transparency
the entire window contains two motions. Second, the
transparency is the addition of two models whereas
the occlusion involves a step-function.

Figure 1: Although occlusion or transparency can be
decomposed into multiple layers they are based on dif-
ferent decomposition principle. Top: One frame of
the occlusion sequence 1s decomposed into two layers
by a Heaviside unit step function. There is motion
discontinuity only at the boundary. Bottom: One
frame of the transparency sequence is a simple super-
position of two layers. Multiple motions exist in the
entire window.

In this paper, we give an exact model of occlu-
sion and transparency in the frequency model. The
only existing counterpart in the literature of spatial
approaches is [5]. We gain an insight into the distor-
tion due to occlusion (Sec. 2). We employ an EM-
algorithm for the recovery of the two dominant mo-
tions (Sec. 3). Then, we apply a distortion existence
test in the frequency domain which we verify with an
additional test in the spatial domain (Sec. 4). We show
the performance of the algorithm in synthetic and real
sequences and compare it with the performance of a
purely spatial EM-algorithm (Sec. 5).

2 Spectrum of Multiple Motions

The spectrum of multiple motions was first ana-
lyzed by Fleet and Langley [9]. Assuming that the
occlusion boundary is a function y(Z) they model the

occlusion in the spatial domain as follows:

I(f, t) = X(f—ﬁlt)fl (f—ﬁlt)—k[l—x(f—ﬁlt)]fz(f—ﬁzt)
)
where [1(#) is a 2D occluding signal moving with
velocity 0] = (v1g, vly)T and I3(¥) is a 2D occluded
signal moving with velocity va = (v, vzy)T
Beauchemin and Barron [3] were the first who ex-
tracted an exact model in the frequency domain. They
model the occlusion in the spatial domain with a Heav-
iside unit step function U(&) for x(&):

o [1  #Fg>0
U(#) = { 0 otherwise

where & denotes 2D spatial Cartesian coordinates and
7 1s a unit vector parallel to the gradient of the oc-
cluding boundary.

We denote the spatial frequency vector as & =
(wg,wy)? and the temporal frequency as wy. Then,
the Fourier transform of the image sequence reads

(3)

~

(R, we)=U(R)S(RT 7 +we) * [ (R)S(RT 71 + we)
+ 15 (R)S(RT T + wy)
—U(R)S(RT T, + wy) % Ly(R)S(RT Ty 4+ wy) (4)

where % means convolution and ~denotes the Fourier
transform of the corresponding signal. The spectrum
of a 2D step function is given by

. J(RT4L)

Ty (5)

n

where 77, denotes a unit vector perpendicular to the

normal 7} of the occluding boundary. Taking the prop-

erties of the impulse function into account we obtain
(see Appendix for detail):

+ B(X) (6)
with
A(R) = =2+ 11() (7)
ikTH
B(R) = s + 1) )

The first two terms of expression (6) are two oriented
planes passing through the origin of the frequency
space. Their normal vectors namely (uy,v1,1) and
(w2, va, 1) are the velocities of the two signals. The sec-
ond 1is the exact spectrum of the occluded signal but
the first contains an additional distortion term A(X)



on the plane of the occluding spectrum. However, we
are interested here in the orientation of the plane and
the term A(K) does not disturb the orientation. Actu-
ally, A(R) strengthens this spectral plane. Therefore,
we do not consider it as distortion. The main discrim-
inating term is the third one B(R), which lies outside
of the two motion planes. We observe that this distor-
tion term due to the occlusion is independent of the
velocities. It depends on the normal of the occluding
boundary and the spectrum of the occluded signal.

If the energy of the distortion term B(R) is very
high we are not able to recognize the two planes. The
critical factor in the amplitude of B(R) is the hyper-
bolic term % If £ tends to zero, the amplitude
of B(R) will be larger than that of the second term
(1— QWZ)INQ(E)é(ETUQ +w;) and we will not be able to
estimate the parameters of the occluded signal. Fortu-
nately, iET ~ reduces very quickly with the increase of
|Z]. In most regions of the spectral domain the ampli-
tude of the distortion is much less than that of signals,
as shown in Fig. 2. Therefore, we may consider only
the spectrum above a lower bound for the frequency
and identify the two dominant planes.

Transparency 1s a special case of occlusion since we
can simply substitute x(# — #1¢) with a real constant

€ (0, 1). The corresponding spectrum is then char-
acterized by two oriented planes without any distor-
tion (see Fig. 2):

I(Rw) = @A@ﬁ@f@+w0
+(1 = ®)L(R)S(RT 7y +wi)  (9)

We have provided with an exact model for occlu-
sion in the frequency domain and described the terms
that discriminate occlusion from transparency. The
occlusion distortion term is independent of the ve-
locities and depends only on the spatial orientation
of the motion boundary and the spectrum of the oc-
cluded signal. Due to the hyperbolic nature of this
term the main energy proportion is on the two motion
planes even in the case of occlusion. This model can
be viewed as a generalization of the spatiotemporal
energy model of single motion [2, 11]. The remain-
ing task is to estimate the parameters of the motion
planes and decide whether it is the case of an occlusion
or not.

3 Estimation of Multiple Velocities

We are going to apply the EM-algorithm in the
frequency domain. In order to avoid the block ef-
fect of the discrete Fourier transform we perform a
Fourier-Transform windowed first by a Gaussian func-
tion which results in nothing else than a Gabor func-
tion with decoupled support and central frequency.

Figure 2: The spectra of occlusion and transparency
have similar properties. (A): A frame of the random
dot occlusion sequence. The occluding signal is mov-
ing with the speed (1, 1) and the speed of the occluded
signal is (2,—1). (B): The energy 3D-volume of the
spectrum of occlusion. The origin lies in the middle
of the drawing. Compared to the dominant planes
the distortion is almost negligible. (C): A frame of
the random dot transparency sequence. The motion
parameters are the same as those in (A). (D): The
energy spectrum of transparency. The high frequency
artifact at one side of the spectrum is due to the pe-
riodic property of the DFT.

In order to alleviate the effects of the hyperbolic
distortion term at low frequencies we multiply the en-
ergy spectrum with a 3D low-stop function:

1 1

a+G(0, % Fw) a+G(0,%,0,00)

LS(E,(.«&) =

where G(0, {5, K,w;) denotes a 3D Gaussian function
in the spectral domain with mean value of zero and
variance of {sz. The parameter a is set to 0.1. We
may reduce « to further amplify high frequency com-
ponents.

We obtain, thus, a set of data points in the spectral
domain associated with the amplitude of the Fourier-
Transform. Their amplitudes can be viewed as a mass
density in fitting the plane to these points. We de-
note with A; the amplitude of the i-th point in the
data set. We assume the existence of two unknown
motions (uy,vy) and (ug,vs). In case of one motion,
we will observe that the EM algorithm converges to
one solution.

We choose arbitrary initial values (uyq,v10) and
(u20,v20). In the Expectation-step we assign the
weights W;; and W;s to the ¢-th point as following



according to the corresponding squares of the residu-

als [14]:

1
Wi = ——mwr (10)
14 et
1
Wia = T | Ra-FRg (11)
14t
where
Riy = A} (wipuy + wiyvy +wir)? (12)
Rin = A (wiptts + wiyva + wir)? (13)

where o 1s a parameter to adjust the tolerant level of
the residual. The weights are simple applications of
the Bayes rule which give the ownership probability
of every point.

In the Maximization step we solve the following two
linear systems in order to update (uy,v1) and (us2, ve)
where the indices 71 and ¢2 run over all points:

U

( WinAjwie Witdiwyy Windiwy )| v | =0
1

(14)
Uz

( WinAjwiz WinAiwyy WinAjwy )| v2 | =0
1

(15)

The EM-algorithm consists of subsequent iterations of
the E- and M-step until there is no significant differ-
ence in the parameter estimates.

4 Localizing Occluding Boundary

After estimating the parameters of the two motions
we would like to know which kind of multiple motion
it 1s. If 1t 1s occlusion, we want to further localize the
occluding boundary.

For all points (w;e, wiy,wi:) outside the two motion
planes which satisfy

|wiztt; + wiyv; + wit| > € j=1,2 (16)

we count the number Ny of points with their ampli-
tudes above a threshold. Since the distortion depends
on the spectrum of the occluded signal I»(&) the num-
ber Ny varies dramatically with INQ(F{) as well. For
example, if I is a cosine image sequence then INQ(F{)
has only two spectral components and we have also a
very small Ng. In order to solve this problem we count
the number N, on the planes as well and choose the

relative ratio R, = % as our criterion. R, will be

p
much larger in case of occlusion than in case of trans-
parency since all energy of the transparency lie on the
dominant planes.

It is difficult to choose a suitable threshold without
preknowledge. But we can round this problem by set-
ting a series of thresholds and observing the variation
of corresponding R,. With the increase of threshold
R, will decrease in case of occlusion whereas it remains
almost the same in case of transparency.

To enhance the robustness of a decision for occlu-
sion we perform also a test on the spatial coherence
based on observations in [8, 22, 12]. In the spatial
domain we consider three successive frames from the
image sequence and denote them with I; 1, I;, and
Iiy1. Then, we calculate the difference between two
frames 7;; 1 and I; using estimated speeds:

AL =Lz, y) — Lii(x + uidt, y + v16t)
Al = Li(x,y) — L1 (x 4+ u2dt, y + v26t)

If the multiple motion i1s occlusion, we will observe
one region with zero intensity in each one of Al; and
AJs and these two regions are complementary in co-
ordinates. Their intersection localizes the occluding
boundary B;. Repeating the same process on frames
I; and ;41 we obtain the shifted boundary B;;1. Us-
ing B; and B;y1 we can determine the moving speed of
the occluding boundary and thus segregate occluding
and occluded signal (Fig. 3). If the multiple motion
is transparency, we can not observe any region with-
out error in AT} and Al (Fig. 4). This fact can be
used to distinguish occlusion and transparency. The
reader may ask why this cumbersome multiple crite-
ria. The answer lies in the limited resolution of the
spectral domain. Although the definition of occlusion
in the spectral domain is exact we can not rely on the
decision for occlusion without a subsequent check in
the spatial domain which fortunately is not computa-
tionally expensive.

5 Experiments

In this section we present experimental results for
our algorithm on occlusion detection. Without excep-
tion the spatiotemporal support in all the experiments
is a cube of 32 x 32 x 32 pixels. For comparison we
also apply the spatial EM algorithm based on equa-
tion (1). In order to obtain I, I, and I; we convolve
the cube with the first spatiotemporal derivatives of
a 3D Gaussian function. Then we build the squared
residuals R;'1 and R;'z as following:

Ry = (Iipuy + Liyvy + L) (17)

Ry = (Ligus + Liyvs + Iiy)* (18)
Replacing R;2 and R;2 in equation (12) and (13) with
R, R,, we build the weights W,; and W;, in the spa-

tial domain. Correspondingly, the linear system turns



Figure 3: Application of spatial and spectral EM-
algorithm on random dot occlusion sequence. Top:
Three consecutive frames of the sequence. The oc-
cluding and the occluded signals moving with (1,1)
and (1,—1) (pixel/frame), respectively. Middle: The
spectrum of the cube shown with three sections. The
origin lies in the middle of the image. From left to
right: wy—w;, wy—ws, and wy—w; section. The sections
give indications for the existence of two planes in the
spectral domain. We apply the EM-algorithm with
o = 0.1 and initial speeds (1.2,—0.1) and (0.8,0.3).
The results using the spatial EM are (0.980, —0.996)
and (0.999,0.962) and the speeds estimated using the
spectral EM are (0.999,1.001) and (0.996,—1.001).
Bottom: Al; and Als, the two complementary re-
gions with zero value are bounded by the occluding
boundary.

Figure 4: In the case of transparency with the same
motion parameters there is no region with zero value

in Al; and Al. Left: Al;. Right: Als.

out to be:
U
( VV;JZ’ VVz'Ilfiy VVz'Ilfit ) U1 =0 (19)
1
Uz
( VVz'szix VVz'sziy VVz'szit ) V2 =0 (20)
1

Fig. 3 shows an example of applying both the spec-
tral and the spatial EM-algorithms to segment differ-

ent motions in a random dot occlusion sequence. The
occluding signal is moving with (1,1) (pixels/frame)
and the occluded signal has a speed of (1,—1). Both
spatial EM and spectral EM converge after 6 itera-
tions. The occluding boundary is displayed as inter-
section of the zeros regions in A7y and AJ;. The spec-
tral EM-algorithm can handle transparency as well
whereas the spatial EM can not. We prove this conclu-
sion using a transparency random dot sequence with
the same motion parameters. The spatial EM will
not recognize the transparency as multiple motions:
Both speeds converge to (0.999,1.000). On the con-
trary, the spectral EM converges to (0.998,0.999) and
(0.997,—0.998) after 5 iterations. In Fig. 4 are the
corresponding A7y and Al for transparency. There
is no region without error. To test the existence of
occlusion in the spectral domain we set ¢ = % and a
series of thresholds to 0.1% and 1% of the maximal
amplitude in the spectral domain. The corresponding
R, are 1.89 and 0.28 in case of occlusion and 0.29 and
0.25 in case of transparency, just like we expected.

In order to test the performance of both algorithms
on estimating the number of models automatically,
we propose an example of one moving signal. In
Fig. 5 we show a random dot sequence with a sin-
gle motion with velocity (1,—1). In order to avoid
the over-fitting, both EM-algorithms should converge
to one speed. Actually this is the case. The spatial
EM-algorithm converges to (1.000,—1.000) after 2 it-
erations and the spectral EM-algorithm converges to
(0.996, —1.002) after 5 iterations.

In Fig. 6 we show a real example. The image se-
quence is composed of one occluding signal moving
from left to right and one occluded signal moving from
right to left. Both spatial and spectral EM-algorithms
present satisfactory results with a better performance
of the spectral algorithm. With ¢ = 7 we obtain R,
of 0.242 and 0.017 for thresholds of 0.1% and 1%. By
using the spatial coherence we can further localize the
occluding boundary which is displayed as intersection
of zero regions in Al; and AJl,. Unfortunately, we
have not been able to find a real sequence with trans-
parency in order to further strengthen the arguments
for the spectral treatment.

6 Discussion

We presented a formal model for the occlusion in
the spectral domain. In contrast to ad hoc EM-
algorithms in the spatial domain we can exactly de-
scribe the distortion to occlusion and employ an al-
gorithm on the discrimination between occlusion and
transparency. The superior performance of the spec-
tral EM-algorithm relies on the correct model of mul-



¥
4
I
&
b

I
-

Figure 5: The over-fitting problem is avoided success-
fully in applying EM algorithms. Top: Three consec-
utive frames of a random dot sequence moving with
a single speed (1,—1). Bottom: The spectrum sec-
tions. The origin lies in the middle of the image. From
left to right: wy—w;, wy—ws, and wy—w; section. Both
spatial and spectral EM converge to a single speed.

tiple motion. Current spatial EM algorithms assume
without a proof that both occlusion and transparency
can be modeled by two instances of the brightness
change constraint equation. Unfortunately, the spec-
tral domain suffers under limited resolution so that
the final verification test for occlusion is performed in
the spatial domain. The assumed spatial coherence is
the final cue that enables us to distinguish occlusion
and transparency.

We have to study the behavior of the EM-algorithm
both in the spectral and the spatial domain when two
velocities of the occluding and the occluded signal con-
verge to one speed. Alternative methods to the EM
principle like the recent formalization of the grouping
process [20] using normalized cuts have to be inves-
tigated with respect to their appropriateness to the
given problem.
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Appendix: The Spectrum of Occlusion
In this section we derive the spectrum of occlusion.

Substituting equation (5) into (4) and utilizing the

product property of impulse function we have:

f(/%',wt) —271'2[1( )6 ( T1 + wy)
—1—(1—271') 2 (R)O(RT ¥y + wy)
+z’ﬁ ﬁé( T7]J_,K? o +wt)*11(f%')5(ET171 + wi)
—Z.I% ﬁé( TN +wt)*12(/%')5(ET172 + wi)

(21)

For simplification we define the third part as
A(R,wt) and the fourth B(R,w;). Denoting with F
and F11 the forward and inverse Fourier transforma-
tion we have:

AR, wi) = Z50(R L, #T0 —|—wt)*11( R)O(RT 01 + wi)
:}"{[}"“(. (RThL, RT01 + wy))]
~[]—"“(Il( R)6 (K151 + we))]}

The first part of the convolution is a line in 3D fre-
quency space and the second part is a plane containing
the line in the first part. Due to the relative symme-
try of F and F1! [10] the first part turns out to be an
impulse plane in spatial domain after inverse Fourier
transformation and the second part is then an impulse
line on this plane. Their multiplication results in an
impulse line in 3D spatial domain. We take the for-
ward Fourier transformation again and obtain an im-
pulse plane with the orientation of 7% 4+ w; = 0.
Taking the coefficients into our account we have:

AR, wr) = [is—;rﬁ ¥ LRETT +wr)  (22)
Taking into account that A(&,w;) has the same
orientation as occluding signal we draw a conclusion
that this part of distortion just does nothing else as
strengthening the spectrum of occluding signal.
The term B(R,w;) can be computed similarly:

25 S(RT L, RT 0 + we) % Lo (R)S(RT Ty + wy)
77

= ]—"{[]—"“( =0 (R, R0+ we))]

[f“(fz( R)S(RT 0y + we))]}

The difference here is that the two parts of the con-
volution do not have the same orientation (¥} # #s).
Therefore, we obtain only one point in 3D spatial do-
main after multiplication. Correspondingly, the dis-
tortion is overall in the frequency space. Moreover,
the coefficient of B(K,w;) is not dependent on wy:

, 2 N
B(R,w;) = [% s I (R)]S(RT ), + we) (23)

Thus, we obtain the equation (6).



