Rotated Wedge Averaging Method for Junction Characterization
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Abstract

The computational cost of conventional filter meth-
ods for junction characterization is very high. This
burden can be attenuated by using steerable filters.
However, in order to achieve a high orientational
selectivity to characterize complex junctions a large
number of basis filters is necessary. From this results
a yet too high computational effort for steerable filters.
In this paper we present a new method for character-
1zing junctions which keeps the high orientational res-
olution and 1s computationally efficient. It is based
on applying rotated copies of a wedge averaging filter
and estimating the derivative with respect to the polar
angle. The new method is compared with the steerable
wedge filter method [13] in experiments with real im-
ages. We show the superiority of our method as well as
its adaptability to scale changes and robustness against
noise.

1 Introduction

Junctions of gray-value lines or edges are rare
events in images carrying important information for
many image processing tasks like point matching in
object recognition, point tracking in motion analysis
and attentive coding.

In order to use junctions for such tasks we must be
able to locate their corresponding keypoints, to char-
acterize them by means of signatures and to classify
them in junction categories. Regarding keypoint de-
tection and localization the reader is referred to Fo-
erstner’s study [4] and to the comparison of different
operators by Rohr [11, 12]. In this paper we address
the problem of junction characterization. The result-
ing signature can be used for further junction classifi-
cation.
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Junctions are local gray-value structures with mul-
tiple intrinsic scales and orientations. A signature
characterizing such a junction can be only obtained
by applying a filter in different scales and orientations.
This leads to an enormous computational load. For
example, in order to extract orientational information
of a junction in conventional filter methods we have
to rotate the same filter repeatedly. For an angle field
of 360° and a sampling interval of 10° already 36 ro-
tated copies of the original filter should be applied. In
order to reduce this effort, the concept of steerability
is introduced [5, 9].

A steerable filter is synthesized/approximated as a
linear combination of a finite set of so-called basis fil-
ters. It can interpolate any arbitrary rotational angle.
Usually the number of basis filters is much less than
that of rotations. Therefore the computational cost is
highly reduced.

Many kinds of steerable filters are used to char-
acterize junctions. Freeman and Adelson [5] steered
derivatives of the 2D Gaussian filter to analyze orien-
tation. These kernels are exactly steerable, but they
have poor orientational selectivity. Moreover, they
are either symmetric or antisymmetric [13]. This re-
sults in a period of 180° in orientation and leads to
an ambiguity in responses between terminating and
non-terminating junctions. Perona [10] applied the
elongated Gaussian-derivative kernels to achieve high
orientational selectivity. Though such kernels are not
exactly steerable, the best approximations are guaran-
teed by using singular value decomposition (SVD). In
addition, Perona generalized the steerability from ori-
entation to a set of parameters like position and scale.
Michaelis and Sommer [7] proposed a method for junc-
tion characterization based on SVD. The steered filter
was a double Hermite function composed of the sec-
ond (real part) and first (imaginary part) derivative
of a 2D elongated Gaussian function. By applying the
associated one-sided function their method does not
suffer from the 180° period ambiguity.



Recently, Simoncelli and Farid [13] proposed a
steerable wedge filter for local orientation analysis.
This exactly steerable filter is designed in the polar
coordinate system. It looks like a wedge in radial di-
rection and its angular part is synthesized by Fourier
series. The usage of angular Fourier series brings two
improvements compared with the Gaussian-derivative
kernels used by Freeman and Adelson [5]: First, there
1s no more symmetric ambiguity because the wedge
kernel is asymmetric in angle. Secondly, high orienta-
tional selectivity can be achieved by using many angle
harmonics. Steerable wedge filters extend the notion
of exact steerability to non-derivative based filters and
present a more general set of steerable filters exceed-
ing the conventional convergence of Gaussian shaped
kernels.

Steerability provides us with a solid mathematical
theory to analyze orientation, scale and other image
parameters [9, 1, 2]. In addition, it has been integrated
with other theories such as Lie group theory [8] and
invariance theory [3] for special purposes. However,
the complexity of its implementation remains high.
Due to the uncertainty principle the product of ori-
entational resolution of a steerable filter and its ori-
entational bandwidth has a lower bound. Therefore,
in order to achieve a high orientational selectivity we
have to apply a too large number of basis filters [9, 7]
with large spatial support.

In order to characterize the keypoint with low com-
putational cost we apply rotated copies of a filter with
small spatial support directly. In the frame of steer-
ability this would be a serious limitation for the choice
of filters. But the frame of steerability is too general
with respect to junction characterization. Further-
more, we try to accomplish all filtering by avoiding
2D convolution which is computationally expensive.

This paper is organized as follows: In section 2
we describe the Rotated Wedge Averaging Method
(RWAM) in detail. In section 3 we compare the com-
plexity of the steerable wedge filter [13] with our ap-
proach and we show the performance of both filters
in real experiments. Finally, we discuss some further
modifications needed to improve the new method.

2 Rotated Wedge Averaging Method

Our method applies a local polar mapping at a key-
point: f(z,y) — f(p,¢). A wedge with a constant
angle width is defined to have its origin at the key-
point and expand in radial direction till a fixed radius.
Then, we estimate the averaging value in the wedge
support as shown in figure 1. We rotate this wedge
around the keypoint gradually and after each rotation
the mean gray value of the wedge is computed. For a

wedge centered at & only pixels with their coordinates
satisfying p < R and |¢ — 0| < I can be involved into
the computation. The positions of local maxima show
the orientation of lines and the positions of steepest
descent /ascent indicate the orientation of edges. Be-
cause edges are more important than lines we further
apply an 1D derivative filter with respect to the angle
to get the required information. In this paper we use
the first derivative of an 1D Gaussian function(G).
Thus, for a circular neighborhood of a keypoint f(x, y)
the impulse response yields:

h(o) < C%Gauss(ﬁ) xg(0) | (1)
with
w1 & RE
90 = o ¢));¢:;%f<p,¢> 2)

where A'( ) means the number of pixels in the mask
and @ € [0, 2x]. The maximaof ¢(#) and h(#) indicate
the existence of lines and edges, respectively.

The algorithm is described in detail as follows:

Step 1. Fix parameters: radius of wedge R (pixel),
wedge width W (degree), rotation step 6 (de-
gree) and size of G4y filter S (tap).

Step 2. Set the angle # = 0°.

Step 3. Determine the wedge according to R,W and
. Its form is shown in figure 1.

Step 4. Calculate the mean gray value of the corre-
sponding wedge as the averaging value at 6.

Step 5. 0 =6+ 60

Step 6. If 8 < 360° go to Step 3, otherwise get the
entire averaging output g(f).

Step 7. Apply G1 on the 1D averaging output and
take absolute values of results as the differentia-
tion output h(f).

One drawback of the grid representation of images
is that we have different numbers of pixels in wedges
at different angles, even though we have defined a con-
stant angle width criterion. This can be demonstrated
in the following example: In a circle with R = 15 pix-
els, a digital line passing through the center at 0° con-
tains 2R 4+ 1 = 31 pixels while a line passing through
the center but at 45° has only int(f/—%) = 21 pixels. To
reduce this harmful effect we choose mean gray values
in wedges as outputs.
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Figure 1: The wedge in RWAM, R is radius of the
wedge, W 1s wedge width. Keypoint is at the center
of the circle. The arrow shows the direction to rotate
the wedge.

In figure 2 we apply RWAM on line junctions. The
junction is characterized by the maxima of the ¢(6)
function illustrated more intuitively in the right col-
umn of the figure. In figure 3 we show the performance
on edge junctions. In addition, RWAM performs very
well in the presence of noise (see figure 4).
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Figure 2: Left: Synthetic line junction images with
the size of 65 x 65 pixels and line width of 1 pixel.
Middle: Averaging outputs ¢g(6) v.s. 6 from 0° to
360°. W = 8°, R = 15. The positions of the lo-
cal maxima exhibit the orientations of lines. Right:
Corresponding polar plots of the results in the mid-
dle column. The numbers around circles are angles in
degree.
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Figure 3: (a): Synthetic edge junctions. (b): Averag-
ing outputs (@) (6 from 0° to 360°). W = 8°, R = 15.
(¢): Differentiation outputs h(0) applying 11-tap G4
filter. Note that they are absolute values of the differ-
entiations. (d): Corresponding polar plots of column
(c). The small deviations in orientations result from
the fact that an edge can only be presented by two
pixels in the grid, while we can not set the center of a
wedge between two pixels.
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Figure 4: Top: A synthetic edge junction disturbed
by incremental random noise. Bottom: Correspond-
ing Differentiation outputs h(0). Even in the very
noisy case (SN R = 0dB) we can still match the junc-
tion. W =10°, R=9, 5 =11.

3 Comparisons and Real Experiments

Many kinds of steerable filters are used to analyze
junctions. Since the steerable wedge filter [13] repre-
sents basic attributes of steerable filters and has a sim-
ilar wedge shape like the wedge in RWAM, we choose
this filter for comparison.

Steerable filter methods are based on convolution.
The computational cost is proportional to the num-



ber of basis filters. In order to implement the steer-
able wedge filter [13] with N basis filters of tap

size P we require N(P? + 3?2 ) multiplications and

N(P? —1)+ 3?20 (N — 1) additions, where d¢ is the
sampling interval in the angle domain. Our RWAM is
a sampling method and we must choose a small sam-
pling interval (an angle step of 1° is fine enough to
characterize all possible junctions) in order to extract
local structure information. The complexity reduction
1s two-fold. First, we apply filters with much smaller
support than the basis filters in [13]. Secondly, due
to averaging we have up to the Gaussian derivative
with respect to the angle only additions and about
360 multiplications.

It should be noticed that the local polar mapping
can be done ”off-line” since it is a transform between

coordinates and is therefore valid for all different im-
ages. The resulting look-up-table (LUT) is of negligi-
ble complexity in comparison to the averaging step.
Precisely, to employ RWAM we need addition, mul-
tiplication and division. Addition is used in calculat-
ing averaging values and in applying 1. Its amount
A is a function of W, §8, R and S. Taking the over-

lapping of adjacent wedges into account we have:

W 5 360°
We need M multiplications for 1D differentiation:
360°
M=—— 4
507 (4)

To estimate mean gray values in wedges we calculate
also divisions with the complexity D:
360°
D= 50 (5)
Because multiplication and division have the same cal-
culating complexity M and D can be merged.

In order to compare computational complexities,
the radial expansion of masks in [13] and our method
should be the same so that the following relation is
satisfied: P = 2R + 1. Both sampling intervals are
designed to be identical as well: §¢» = §6 = 1°. There-
fore we need totally N(P? 4+ 360) multiplications and
N(P?—1)+360(N —1) additions in the steerable wedge
filter[13] and M + D = 360(S+ 1) multiplications and
Wr(R+1)24360(S —1) additions in RWAM. Though
the computational cost of these two methods are func-
tions of different parameters, we can compare them by
studying the effort to achieve the same resolution.

Figure 5 is such an example. To achieve the
equivalent orientational selectivity, 45 basis filters, to-
tally 59445 multiplications and 59040 additions (N =

45, P = 31) are required in the steerable wedge fil-
ter method [13], while using RWAM we compute only
4320 multiplications and 6817 additions (W = 4°, R =
15,5 = 11). From this comparison we can draw a
conclusion that RWAM is more efficient to achieve
high resolution. Moreover, the computational load is
even lower at higher resolution, i.e., at smaller W in
RWAM. This property is very attractive if we note
that in the steerable wedge filter [13] higher angle res-
olution always results in a higher number N of basis
filters.
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Figure 5: (a): Binary Siemens star with 16 edges
spanning roughly evenly in the orientation space. (b):
Polar plot of the result using the steerable wedge filter
[13] composed of 23 basis filters with 31-tap size. We
can not see orientations of edges correctly. (c¢): The
same as in (b) but using 45 basis filters. The orienta-
tions of edges can be seen now. The strange perfor-
mance of the steerable wedge filter [13] is due to the
angular aliasing effect in the mask. (d): Averaging
output g(#) using RWAM with W = 4°, R =15. (e):
Differentiation output h(@) of RWAM with S = 11.
(f): Polar plot of (e). The orientations of the edges
are clearly presented.

Beside the computational efficiency RWAM is also
adaptable to scale variations. It is known that all fil-
ters are sensitive to scale changes [6]. For instance,
a wide line will be recognized as two edges by filters
with small scale. In filter methods we need to intro-
duce scale steerability to cope with this modification
[10]. This results in even more computations. How-
ever, RWAM can adapt the scale variations by adjust-
ing W straightforwardly (s. figure 6). A set of wedges
with different W can further be used to characterize
Jjunctions from small to large scales.



The scale of steerable wedge filters [13] is inversely
proportional to the orientational selectivity. It should
be adapted for scale changes in a similar way. But
in [13] quadratic filters are used such that they have
the same responses for lines and edges. This is not
suitable for describing scale changes.
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Figure 6: RWAM is adaptable to scale changes. Top:
A junction with line width of 15 pixels. Middle: Re-
sponses of steerable wedge filters [13] with different
number of basis filters. With the increase of basis
filters the angle resolution rises. But the lines are
recognized as edges due to their intrinsic structures.
Bottom: Averaging outputs of RWAM with different
W. The positions of the orientational maxima are
more and more accurate with the increase of W. At
W = 25° we can get the desired representation. Of
course if W is too big, the angle resolution will be
damaged, just like demonstrated at W = 35°.

We have seen the successful behavior of RWAM on
synthetic junction characterization. In the following
real experimental results are presented. In figure 7
we show the high orientational selectivity of RWAM.
While the steerable wedge filter [13] detects only the
dominant dark line between the lips of Lena, RWAM
recognizes different orientations of her two lips. This
information can be very useful in face recognition. In
figure 8 we show junctions with textural neighbor-
hood. The effect of texture is illustrated by the ripples
in g(0) in the middle row which can lead to many lo-
cal maxima in A(6) due to the derivative. In order to
attenuate such ripples we set larger W and S in our
method. Another real example of edge junctions is
presented in figure 9. In comparison to the steerable
wedge filter [13] with 30 basis filters our method char-
acterizes the directions of junctions more distinctively

but is relatively sensitive to high frequency compo-
nents due to the derivative.

@ Olso@ 0180@ Omo% 0

45 bas\s filters.

15 basls filters 23 bas\s filters 81 basls filters

160
140 180
120

0 200 270
(a) (b)

180)

Figure 7: Comparison of resolutions between steer-
able wedge filter [13] and RWAM. Top Left: The
famous image ” Lena” with her lips corner as a key-
point. Top Right: Lips corner in detail. Middle:
Polar plots using the steerable wedge filter [13] with
different number of basis filters. Only the dominant
dark line between the lips can be recognized. Bottom
(a) (b): Plot and polar plot of the averaging output
of RWAM. W = 5° R = 15. The dark line is clearly
to see as a notch in (b). Bottom (c) (d): Plot and
polar plot of the differentiation output of RWAM. The
orientations of two lips are distinct in (d). Gy with
larger size (S = 17) is used to smooth the noise in
the averaging outputs. The computational cost rises a
little as price.

4 Conclusion and Further Work

In this paper we have presented a new approach to
characterize junctions. The computational complexity
is reduced by applying wedge filters with smaller sup-
port and by replacing 2D convolution with additions
and 1D convolution. Traditional steerability i1s based
on the approximation by a Fourier series. Qur ap-
proach approximates the variation with respect to ori-
entation by applying the convolution with a smoothing
filter. We are on the way to provide the mathematical
background for such an approximation. Further, we
argue that the orthogonality relation among different
basis functions like in the Fourier theory may be not
an essential condition for signal reconstruction.

Further work includes the study of the influence of
the keypoint offset as well as the substitution of the



averaging filter with a Gaussian function as a smooth-
ing filter with a reasonable complexity increase.

Figure 8: Top: ”Block world” image. The junctions
are marked with letters. A:horizontal edge; B: ver-
tical line; C: ’L’ edge junction; D: 17 edge junction.
Middle: Averaging outputs g(6) of RWAM. Bottom:
Differentiation outputs h(f). For B we get its orienta-
tion information directly from the middle row. For A,
C and D we get their orientation information from the
bottom row. It is worth mentioning that in D although
the dark edge near 270° is very blurred, RWAM can
still address it. W = 10°, R =9,5 = 17.
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