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Junctions are local gray-value structures with mul-tiple intrinsic scales and orientations. A signaturecharacterizing such a junction can be only obtainedby applying a �lter in di�erent scales and orientations.This leads to an enormous computational load. Forexample, in order to extract orientational informationof a junction in conventional �lter methods we haveto rotate the same �lter repeatedly. For an angle �eldof 360� and a sampling interval of 10� already 36 ro-tated copies of the original �lter should be applied. Inorder to reduce this e�ort, the concept of steerabilityis introduced [5, 9].A steerable �lter is synthesized/approximated as alinear combination of a �nite set of so-called basis �l-ters. It can interpolate any arbitrary rotational angle.Usually the number of basis �lters is much less thanthat of rotations. Therefore the computational cost ishighly reduced.Many kinds of steerable �lters are used to char-acterize junctions. Freeman and Adelson [5] steeredderivatives of the 2D Gaussian �lter to analyze orien-tation. These kernels are exactly steerable, but theyhave poor orientational selectivity. Moreover, theyare either symmetric or antisymmetric [13]. This re-sults in a period of 180� in orientation and leads toan ambiguity in responses between terminating andnon-terminating junctions. Perona [10] applied theelongated Gaussian-derivative kernels to achieve highorientational selectivity. Though such kernels are notexactly steerable, the best approximations are guaran-teed by using singular value decomposition (SVD). Inaddition, Perona generalized the steerability from ori-entation to a set of parameters like position and scale.Michaelis and Sommer [7] proposed a method for junc-tion characterization based on SVD. The steered �lterwas a double Hermite function composed of the sec-ond (real part) and �rst (imaginary part) derivativeof a 2D elongated Gaussian function. By applying theassociated one-sided function their method does notsu�er from the 180� period ambiguity.



Recently, Simoncelli and Farid [13] proposed asteerable wedge �lter for local orientation analysis.This exactly steerable �lter is designed in the polarcoordinate system. It looks like a wedge in radial di-rection and its angular part is synthesized by Fourierseries. The usage of angular Fourier series brings twoimprovements compared with the Gaussian-derivativekernels used by Freeman and Adelson [5]: First, thereis no more symmetric ambiguity because the wedgekernel is asymmetric in angle. Secondly, high orienta-tional selectivity can be achieved by using many angleharmonics. Steerable wedge �lters extend the notionof exact steerability to non-derivative based �lters andpresent a more general set of steerable �lters exceed-ing the conventional convergence of Gaussian shapedkernels.Steerability provides us with a solid mathematicaltheory to analyze orientation, scale and other imageparameters [9, 1, 2]. In addition, it has been integratedwith other theories such as Lie group theory [8] andinvariance theory [3] for special purposes. However,the complexity of its implementation remains high.Due to the uncertainty principle the product of ori-entational resolution of a steerable �lter and its ori-entational bandwidth has a lower bound. Therefore,in order to achieve a high orientational selectivity wehave to apply a too large number of basis �lters [9, 7]with large spatial support.In order to characterize the keypoint with low com-putational cost we apply rotated copies of a �lter withsmall spatial support directly. In the frame of steer-ability this would be a serious limitation for the choiceof �lters. But the frame of steerability is too generalwith respect to junction characterization. Further-more, we try to accomplish all �ltering by avoiding2D convolution which is computationally expensive.This paper is organized as follows: In section 2we describe the Rotated Wedge Averaging Method(RWAM) in detail. In section 3 we compare the com-plexity of the steerable wedge �lter [13] with our ap-proach and we show the performance of both �ltersin real experiments. Finally, we discuss some furthermodi�cations needed to improve the new method.2 Rotated Wedge Averaging MethodOur method applies a local polar mapping at a key-point: f(x; y) ! f(�; �). A wedge with a constantangle width is de�ned to have its origin at the key-point and expand in radial direction till a �xed radius.Then, we estimate the averaging value in the wedgesupport as shown in �gure 1. We rotate this wedgearound the keypoint gradually and after each rotationthe mean gray value of the wedge is computed. For a

wedge centered at � only pixels with their coordinatessatisfying � � R and j�� �j � W2 can be involved intothe computation. The positions of local maxima showthe orientation of lines and the positions of steepestdescent/ascent indicate the orientation of edges. Be-cause edges are more important than lines we furtherapply an 1D derivative �lter with respect to the angleto get the required information. In this paper we usethe �rst derivative of an 1D Gaussian function(G1).Thus, for a circular neighborhood of a keypoint f(x; y)the impulse response yields:h(�) def= j dd�Gauss(�) � g(�) j (1)with g(�) def= 1N (f(�; �)) RX�=0 �+W2X�=��W2 f(�; �) (2)where N ( ) means the number of pixels in the maskand � 2 [0; 2�]. The maxima of g(�) and h(�) indicatethe existence of lines and edges, respectively.The algorithm is described in detail as follows:Step 1. Fix parameters: radius of wedge R (pixel),wedge width W (degree), rotation step �� (de-gree) and size of G1 �lter S (tap).Step 2. Set the angle � = 0�.Step 3. Determine the wedge according to R,W and�. Its form is shown in �gure 1.Step 4. Calculate the mean gray value of the corre-sponding wedge as the averaging value at �.Step 5. � = � + ��Step 6. If � < 360� go to Step 3, otherwise get theentire averaging output g(�).Step 7. Apply G1 on the 1D averaging output andtake absolute values of results as the di�erentia-tion output h(�).One drawback of the grid representation of imagesis that we have di�erent numbers of pixels in wedgesat di�erent angles, even though we have de�ned a con-stant angle width criterion. This can be demonstratedin the following example: In a circle with R = 15 pix-els, a digital line passing through the center at 0� con-tains 2R+ 1 = 31 pixels while a line passing throughthe center but at 45� has only int( 2Rp2 ) = 21 pixels. Toreduce this harmful e�ect we choose mean gray valuesin wedges as outputs.
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Keypoint

Rotation Direction
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ο

θFigure 1: The wedge in RWAM, R is radius of thewedge, W is wedge width. Keypoint is at the centerof the circle. The arrow shows the direction to rotatethe wedge.In �gure 2 we apply RWAM on line junctions. Thejunction is characterized by the maxima of the g(�)function illustrated more intuitively in the right col-umn of the �gure. In �gure 3 we show the performanceon edge junctions. In addition, RWAM performs verywell in the presence of noise (see �gure 4).
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180 0Figure 2: Left: Synthetic line junction images withthe size of 65 � 65 pixels and line width of 1 pixel.Middle: Averaging outputs g(�) v.s. � from 0� to360�. W = 8�, R = 15. The positions of the lo-cal maxima exhibit the orientations of lines. Right:Corresponding polar plots of the results in the mid-dle column. The numbers around circles are angles indegree.
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(a)Figure 3: (a): Synthetic edge junctions. (b): Averag-ing outputs g(�) (� from 0� to 360�). W = 8�, R = 15.(c): Di�erentiation outputs h(�) applying 11-tap G1�lter. Note that they are absolute values of the di�er-entiations. (d): Corresponding polar plots of column(c). The small deviations in orientations result fromthe fact that an edge can only be presented by twopixels in the grid, while we can not set the center of awedge between two pixels.
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180 0Figure 4: Top: A synthetic edge junction disturbedby incremental random noise. Bottom: Correspond-ing Di�erentiation outputs h(�). Even in the verynoisy case (SNR = 0dB) we can still match the junc-tion. W = 10�, R = 9, S = 11.3 Comparisons and Real ExperimentsMany kinds of steerable �lters are used to analyzejunctions. Since the steerable wedge �lter [13] repre-sents basic attributes of steerable �lters and has a sim-ilar wedge shape like the wedge in RWAM, we choosethis �lter for comparison.Steerable �lter methods are based on convolution.The computational cost is proportional to the num-



ber of basis �lters. In order to implement the steer-able wedge �lter [13] with N basis �lters of tapsize P we require N (P 2 + 360�� ) multiplications andN (P 2 � 1) + 360�� (N � 1) additions, where � is thesampling interval in the angle domain. Our RWAM isa sampling method and we must choose a small sam-pling interval (an angle step of 1� is �ne enough tocharacterize all possible junctions) in order to extractlocal structure information. The complexity reductionis two-fold. First, we apply �lters with much smallersupport than the basis �lters in [13]. Secondly, dueto averaging we have up to the Gaussian derivativewith respect to the angle only additions and about360 multiplications.It should be noticed that the local polar mappingcan be done "o�-line" since it is a transform betweencoordinates and is therefore valid for all di�erent im-ages. The resulting look-up-table (LUT) is of negligi-ble complexity in comparison to the averaging step.Precisely, to employRWAM we need addition, mul-tiplication and division. Addition is used in calculat-ing averaging values and in applying G1. Its amountA is a function of W , ��, R and S. Taking the over-lapping of adjacent wedges into account we have:A = W�� �(R + 1)2 + 360��� (S � 1) (3)We need M multiplications for 1D di�erentiation:M = 360��� S (4)To estimate mean gray values in wedges we calculatealso divisions with the complexity D:D = 360��� (5)Because multiplication and division have the same cal-culating complexityM and D can be merged.In order to compare computational complexities,the radial expansion of masks in [13] and our methodshould be the same so that the following relation issatis�ed: P = 2R + 1. Both sampling intervals aredesigned to be identical as well: � = �� = 1�. There-fore we need totally N (P 2 + 360) multiplications andN (P 2�1)+360(N�1) additions in the steerable wedge�lter[13] and M +D = 360(S+1) multiplications andW�(R+1)2+360(S�1) additions in RWAM. Thoughthe computational cost of these two methods are func-tions of di�erent parameters, we can compare them bystudying the e�ort to achieve the same resolution.Figure 5 is such an example. To achieve theequivalent orientational selectivity, 45 basis �lters, to-tally 59445 multiplications and 59040 additions (N =

45; P = 31) are required in the steerable wedge �l-ter method [13], while using RWAM we compute only4320 multiplications and 6817 additions (W = 4�; R =15; S = 11). From this comparison we can draw aconclusion that RWAM is more e�cient to achievehigh resolution. Moreover, the computational load iseven lower at higher resolution, i.e., at smaller W inRWAM. This property is very attractive if we notethat in the steerable wedge �lter [13] higher angle res-olution always results in a higher number N of basis�lters.
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(c): 45 basis filters
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(a): Keyjunction Figure 5: (a): Binary Siemens star with 16 edgesspanning roughly evenly in the orientation space. (b):Polar plot of the result using the steerable wedge �lter[13] composed of 23 basis �lters with 31-tap size. Wecan not see orientations of edges correctly. (c): Thesame as in (b) but using 45 basis �lters. The orienta-tions of edges can be seen now. The strange perfor-mance of the steerable wedge �lter [13] is due to theangular aliasing e�ect in the mask. (d): Averagingoutput g(�) using RWAM with W = 4�, R = 15. (e):Di�erentiation output h(�) of RWAM with S = 11.(f): Polar plot of (e). The orientations of the edgesare clearly presented.Beside the computational e�ciency RWAM is alsoadaptable to scale variations. It is known that all �l-ters are sensitive to scale changes [6]. For instance,a wide line will be recognized as two edges by �lterswith small scale. In �lter methods we need to intro-duce scale steerability to cope with this modi�cation[10]. This results in even more computations. How-ever, RWAM can adapt the scale variations by adjust-ing W straightforwardly (s. �gure 6). A set of wedgeswith di�erent W can further be used to characterizejunctions from small to large scales.



The scale of steerable wedge �lters [13] is inverselyproportional to the orientational selectivity. It shouldbe adapted for scale changes in a similar way. Butin [13] quadratic �lters are used such that they havethe same responses for lines and edges. This is notsuitable for describing scale changes.
5 basis filters 

30

210

60

240

90

270

120

300

150

330

180 0

15 basis filters 

30

210

60

240

90

270

120

300

150

330

180 0

23 basis filters 

30

210

60

240

90

270

120

300

150

330

180 0

45 basis filters 

30

210

60

240

90

270

120

300

150

330

180 0

W = 5 degrees

30

210

60

240

90

270

120

300

150

330

180 0

W = 15 degrees

30

210

60

240

90

270

120

300

150

330

180 0

W = 25 degrees

30

210

60

240

90

270

120

300

150

330

180 0

W = 35 degrees

30

210

60

240

90

270

120

300

150

330

180 0Figure 6: RWAM is adaptable to scale changes. Top:A junction with line width of 15 pixels. Middle: Re-sponses of steerable wedge �lters [13] with di�erentnumber of basis �lters. With the increase of basis�lters the angle resolution rises. But the lines arerecognized as edges due to their intrinsic structures.Bottom: Averaging outputs of RWAM with di�erentW . The positions of the orientational maxima aremore and more accurate with the increase of W . AtW = 25� we can get the desired representation. Ofcourse if W is too big, the angle resolution will bedamaged, just like demonstrated at W = 35�.We have seen the successful behavior of RWAM onsynthetic junction characterization. In the followingreal experimental results are presented. In �gure 7we show the high orientational selectivity of RWAM.While the steerable wedge �lter [13] detects only thedominant dark line between the lips of Lena, RWAMrecognizes di�erent orientations of her two lips. Thisinformation can be very useful in face recognition. In�gure 8 we show junctions with textural neighbor-hood. The e�ect of texture is illustrated by the ripplesin g(�) in the middle row which can lead to many lo-cal maxima in h(�) due to the derivative. In order toattenuate such ripples we set larger W and S in ourmethod. Another real example of edge junctions ispresented in �gure 9. In comparison to the steerablewedge �lter [13] with 30 basis �lters our method char-acterizes the directions of junctions more distinctively

but is relatively sensitive to high frequency compo-nents due to the derivative.
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averaging �lter with a Gaussian function as a smooth-ing �lter with a reasonable complexity increase.
A

B
C

D

90

270

180 0

90

270

180 0

90

270

180 0

90

270

180 0

(A)

90

270

180 0

(B)

90

270

180 0

(C)

90

270

180 0

(D)

90

270

180 0Figure 8: Top: "Block world" image. The junctionsare marked with letters. A:horizontal edge; B: ver-tical line; C: 'L' edge junction; D: 'T' edge junction.Middle: Averaging outputs g(�) of RWAM. Bottom:Di�erentiation outputs h(�). For B we get its orienta-tion information directly from the middle row. For A,C and D we get their orientation information from thebottom row. It is worth mentioning that inD althoughthe dark edge near 270� is very blurred, RWAM canstill address it. W = 10�; R = 9; S = 17.References[1] E.P. Simoncelli, W.T. Freeman, E.H. Adelson andD.J. Heeger. Shiftable multi-scale transforms. IEEETrans. Information Theory, 38(2):587{607, 1992.[2] D. H. Ballard and L. E. Wixson. Object recogni-tion using steerable �lters at multiple scales. In IEEEWorkshop on Qualitative Vision, pages 2{10, 1993.[3] W. Beil. Steerable �lters and invariance theory. Pat-tern Recognition Letters, 15:453{460, 1994.[4] W. Foerstner. A framework for low level feature ex-traction. In European Conf. on Computer Vision, vol-ume II, pages 383{394, Stockholm, Sweden, May 2-6,J.O. Eklundh (Ed.), Springer LNCS 801, 1994.[5] W.T. Freeman and E.H. Adelson. The design and useof steerable �lters. IEEE Trans. Pattern Analysis andMachine Intelligence, 13:891{906, 1991.[6] J.J. Koenderink and A.J. van Doorn. Generic neigh-borhood operators. IEEE Trans. Pattern Analysisand Machine Intelligence, 14(6):597{605, 1992.

A
B

  ‘‘C

D

(A)

90

270

180 0

(B)

90

270

180 0

(C)

90

270

180 0

(D)

90

270

180 0

90

270

180 0

90

270

180 0

90

270

180 0

90

270

180 0Figure 9: Top: Parkbench with marked edge junc-tions. A: horizontal edge; B:vertical edge; C: cor-ner; D: 'T' junction. Middle: Steerable wedge �l-ter results using 30 basis �lters. P = 19. Bot-tom: h(�) of RWAM. All junctions are matched.W = 10�; R = 9; S = 21.[7] M. Michaelis and G. Sommer. Junction classi�cationby multiple orientation detection. In European Conf.on Computer Vision, volume I, pages 101{108, Stock-holm, Sweden, May 2-6, J.O. Eklundh (Ed.), SpringerLNCS 800, 1994.[8] M. Michaelis and G. Sommer. A Lie group ap-proach to steerable �lters. Pattern Recognition Let-ters, 16:1165{1174, 1995.[9] P. Perona. Deformable kernels for early vision. InConference on Computer Vision and Pattern Recog-nition, pages 222{227, Maui, Hawaii, June 3-6, 1991.[10] P. Perona. Steerable-scalable kernels for edge detec-tion and junction analysis. Image and Vision Com-puting, 10(10):663{672, 1992.[11] K. Rohr. Recognizing corners by �tting parametricmodels. International Journal of Computer Vision,9(3):213{230, 1992.[12] K. Rohr. On the precision in estimating the locationof edges and corners. Journal of Mathematical Imag-ing and Vision, 7:7{22, 1997.[13] E. P. Simoncelli and H. Farid. Steerable wedge �l-ters for local orientation analysis. IEEE Trans. ImageProcessing, 5(9):1377{1382, 1996.


