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Abstract

Responses of Gabor wavelets in the mid-frequency space build a
local spectral representation scheme with optimal properties re-
garding the time-frequency uncertainty principle. However, when
using Gabor wavelets we observe a skewness in the mid-frequency
space caused by the unsymmetrically spreading effect of Gabor
wavelets. Though in most current applications the skewness does
not obstruct the sampling of the spectral domain, it affects the
identification and separation of source signals from the filter re-
sponse in the mid-frequency space. In this paper, we present a
modification of the original Gabor filter, the skew Gabor filter, to
correct the skewness so that the filter responses can be described
with a sum-of-Gaussians model. The correction enables us to use
higher-order-moment information to analytically separate differ-
ent source signal components. This provides us with an analytical
framework to overcome the limited spectral resolution of other lo-
cal spectral representations. Examples in source signal separation
and local spectral multi-orientation analysis are shown.

1 Introduction

In this paper, we focus on the local spectral analysis. A
filter’s localization ability is measured by its support. For
local signal/image analysis, a narrow filter support is de-
sired both in the spatial domain and in the spectral domain.
However, there is a limit in improving the joint localization
ability according to the well known uncertainty principle.
Because Gabor filters [6] can achieve such a lower bound
they are widely used in many spectral analysis tasks such
as image representation (e.g. [11]) and the spatio-temporal
analysis of motions in image sequences (e.g. [1, 8]). In
the spatio-temporal models for motion estimation [1, 2], for
example, the energy spectrum of a constant translational
motion can be characterized as an oriented plane passing
through the origin in the spectral domain. Sampling the
spectrum with a set of Gabor filters at different frequencies
and orientations [8] may help us to estimate the orientation
of the spectral plane. Grzywacz and Yuille [7] further ar-
gued that the spectral support of a Gabor filter is a measure
of uncertainty and the angle between two tangential lines of

the support (which pass through the spectral origin) repre-
sents the uncertainty of orientation estimation. This angle
is desired to be the same for filters at different frequencies,
requiring the spectral support of the filter to be proportional
to the distance between the origin and the support center,
which is exactly the property of Gabor wavelets.

In applying Gabor wavelets, we observe a positive skew-
ness in the mid-frequency space [7], which is caused by the
unsymmetrically spreading effect of Gabor wavelets. The
spreading effect and the skewness did not draw consider-
able attention in the computer vision community because
most applications of Gabor wavelets are classification tasks.
It is worth mentioning, however, that the filter response in
the mid-frequency space (we call this local spectral repre-
sentation the mid-spectrum) blurs the original local spec-
trum. Consequently, frequency-based approaches often suf-
fer from the coarser resolution. For example, Gabor filters
fail to recover the orientation of the well-known multiple
motion planes in the spectral domain [2] in multiple motion
analysis. In oder to improve the resolution and even re-
cover the original signals, deblurring techniques have been
developed, which usually assume symmetric blurring of the
original signals. Important applications of deblurring tech-
niques include source signal separation and multiple spec-
tral orientation analysis. Obviously, the skewness in ap-
plying Gabor wavelets does not fit the above symmetry as-
sumption and makes deblurring more difficult.

This limitation motivates us to correct the skewness in the
mid-spectrum. The correction facilitates the deblurring of
filter responses so that we may overcome the limited res-
olution of frequency-based approaches. In section 2, we
shall study the skewness in detail. In section 3, we propose
a new filter to correct the skewness. Then, we further de-
scribe the corrected mid-spectrum with a sum-of-Gaussians
model and use higher-order-moment information to identify
different source signals in section 4. The issue of multi-
orientation analysis will be addressed in section 5 with ex-
perimental examples. This paper is concluded in section 6.



2 The Skewness of Gabor Wavelets

We first study the positive skewness in applying Gabor
wavelets. For simplicity we begin with a 1-D Gabor filter
whose impulse response reads

g1(x;ω0, σx) =
1√

2πσx

e
− x2

2σ2
x ejω0x. (1)

Here ω0 denotes the mid-frequency and σx is the scale pa-
rameter. The spectrum of g1(x;ω0, σx) is a Gaussian cen-
tered at ω0

G1(ω;ω0, σx) = e−
σ2

x(ω−ω0)2

2 (2)

with bandwidth inversely proportional to σx. In local signal
analysis, we usually calculate the spatial convolution be-
tween g1(x;ω0, σx) and the signal i(x), yielding

h1(x;ω0, σx) =
∫ ∞

ξ=−∞
i(ξ)g1(x − ξ)dξ. (3)

At a fixed position x0, the filter response is simplified as an
inner product

h1(x0;ω0, σx) =
∫ ∞

ξ=−∞
i(ξ)g1(x0 − ξ)dξ. (4)

Here the Gaussian envelope of g1(x) defines the local
neighborhood, although dξ still goes from −∞ to ∞. Us-
ing the Parseval theorem ([4], pp.113-115) and the facts that
g1(x0 − x) = g�

1(x − x0) and G�
1(ω) = G1(ω) (here �

denotes conjugation), the above inner product can also be
represented in the spectral domain as follows

h1(x0;ω0, σx) =
∫ ∞

ω=−∞
I(ω)G1(ω)ejωx0dω. (5)

Here I(ω) is the spectrum of i(x). Thus, at x = x0 (for
simplicity we may set x0 = 0) we obtain a local spectral
representation of the original signal, which is a function of
the mid-frequency ω0 and the scale σx. We call this local
spectral representation the mid-spectrum.

The mid-spectrum h1(ω0, σx) spreads every spectral Dirac
component of the source signal into a function of ω0 and
therefore blurs the spectrum of the source signal. Assume
that the spectrum of the source signal is a Dirac function
I(ω) = δ(ω − ωi) originating from a complex harmonic.
Its mid-spectrum turns out to be

h1(ω0, σx) = G1(ω0;ωi, σx) = e−
σ2

x(ω0−ωi)
2

2 . (6)

If the parameter σx is a constant like in plain Gabor filters,
then h1(ω0, σx) is a Gaussian spreading of δ(ω − ωi) and

there is no skewness. However, if the wavelet property is
preferred, i.e. σx is inversely proportional to ω0

σx =
C

ω0
(7)

with C as a constant. Then, we observe the positive skew-
ness of ω0 [7] (see also figure 1)

h1(ω0) = e
−C2(ω0−ωi)

2

2ω2
0 . (8)

We may straightforwardly extend the above analysis to n-
dimensional Gabor wavelets with isotropic envelope. For
2-D Gabor wavelets in the spatio-temporal domain with the
following relation

σx = σt =
C√

ω2
x0 + ω2

t0

, (9)

the mid-spectrum of a 2-D impulse δ(ωx − ωxi, ωt − ωti)
then reads

h2(ωx0, ωt0) = e
−C2[(ωx0−ωxi)

2+(ωt0−ωti)
2]

2(ω2
x0+ω2

t0) . (10)

Figure 1 displays two skewness examples of 1D- and 2D-
Gabor wavelets.
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Figure 1: The skewness of Gabor wavelets. Left: The solid
curve is h1(ω0) in equation (8) and the dotted curve is a
Gaussian function centered at ωi with the scale parameter
ωi

C . C = 3.5, ωi = π
2 . Right: 2-D skewness h2(ωx0, ωt0)

in equation (10). White pixels denote large values. C =
3.5, ωxi = 2π

3 , ωti = π
2 . In both cases, Gabor wavelets blur

the input Dirac function into a widely-spreading function.

In many Gabor wavelets approaches (e.g. [10, 12]), this
skewness is harmless because it does not obstruct the de-
scriptions of different signals with a set of samples. Thus,
the main attention was attracted to the efficient cover-
ing/sampling of the spectrum as well as the coefficient es-
timation of the Gabor basis [3, 11]. But we should keep in
mind that Gabor wavelets really blur the input signal in the
mid-frequency space. As a result, the spectral resolution
in the mid-spectrum is much worse than that in the origi-
nal signal. More importantly, the non-symmetric blurring
in the Gabor wavelets further hampers the possible applica-
tion of deblurring techniques, which work well only under



the assumption of symmetric blurring. In order to apply de-
blurring techniques in the mid-spectrum and eventually use
the mid-spectrum in source signal separation and multiple-
orientation analysis, we need to correct the skewness in Ga-
bor wavelets.

3 Skew Gabor Filter

In order to correct the skewness, we design a new skew Ga-
bor filter whose spectral definition reads

SG1(ω;ω0, C) = exp{−C2(ω − ω0)2

2 ω2
}. (11)

For a source signal whose spectrum is a Dirac function
I(ω) = δ(ω − ωi), the mid-spectrum after skew Gabor fil-
tering is an ideal Gaussian

sh1(ω0, C) = exp{−C2(ω0 − ωi)2

2 ω2
i

}. (12)

The symmetry in the mid-spectrum is therefore achieved us-
ing the new filter.

The spectral shape of the skew Gabor filter, especially the
tail of the filter depends very much on the value of C:

lim
ω→∞SG1(ω;ω0, C) = e−

C2
2 . (13)

Figure 2 shows clearly that larger C values make the tail of
the filter closer to zero, which means that the filter is more
likely to have finite energy in the spectral domain. Thus,
a large C value is preferred in order to simplify the appli-
cation of the Fourier theory. On the other hand, however,
a large C value also needs large filter kernel in the spatial
domain. Obviously, the filter kernel could not be arbitrar-
ily large in many local image analysis applications. In this
paper, we choose C = 3.5 so that the filter kernel has a rea-
sonable size in the spatial domain. Also, its energy in the
spectral domain is approximately finite since the amplitude

of e−
C2
2 with C = 3.5 is about 0.22% of the maximal spec-

tral amplitude of the filter at ω0 and can be considered as
approximately negligible.
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Figure 2: Spectra of skew Gabor filters with different C
values. With C ≥ 3, limω→∞ SG1(ω;ω0, C) is close to
zero. ω0 = π

2 .

The skew Gabor filter in the spatial domain sg1(x) has no
analytical expression because there is no closed-form rep-
resentation of the inverse Fourier transform of SG1(ω). We

may obtain an FIR version of both the real and the imag-
inary part of sg1(x) using an FIR window in the Fourier
domain and inverse discrete Fourier transform (DFT). One
example of the skew Gabor filter in the spatial domain is
shown in figure 3. Although the skew Gabor filter decays
slower than the Gabor filter, the energy primarily lies inside
the central part of the Gaussian envelope (i.e. between −12
and 12 on the left side in figure 3). If we extract the central
part of the plot as an FIR filter, the energy loss is negligible.
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Figure 3: Top: The real parts of a 1-D skew Gabor fil-
ter (left) and a Gabor filter (middle) as well as their even-
symmetric difference (right). Bottom: The imaginary
parts of both filters (left: skew Gabor; middle: Gabor) and
their odd-symmetric difference (right). The parameters are
C = 3.5 and ω0 = π

2 .

Similarly, we may correct the skewness of 2-D Gabor
wavelets by using a 2-D skew Gabor filter

SG2(ωx, ωt) = e
−C2[(ωx−ωx0)2+(ωt−ωt0)2]

2(ω2
x+ω2

t ) . (14)

The mid-spectrum corresponding to δ(ωx − ωxi, ωt − ωti)
is then a 2-D Gaussian centered at (ωxi, ωti)

sh2(ωx0, ωt0, C) = e
−C2[(ωx0−ωxi)

2+(ωt0−ωti)
2]

2(ω2
xi

+ω2
ti

) . (15)

4 1-D Source Signal Separation

In the following, we demonstrate the merit of correcting the
positive skewness. We start with a 1-D source signal sep-
aration example by assuming that the spectrum of an input
signal is composed of two Dirac components

S(ω) = a1δ(ω − µ1) + a2δ(ω − µ2), (16)

where their amplitudes (a1 and a2) and offsets (µ1 and µ2)
are unknown. Our goal is to estimate these amplitudes and
offsets from the mid-spectrum so that the source compo-
nents can be identified and separated. Here we provide such



a simple example with known parameters to simplify the
comparison between Gabor wavelets and skew Gabor fil-
ters. Our focus is the comparison between two different
local spectral analysis methods. Certainly the traditional
Fourier analysis can easily deal with such a simple spec-
trum. But the traditional Fourier transform also has to face
the poor localization ability in the spatial domain, aliasing
problem in the sampling, and block effect in extracting a
Fourier window. Actually, it was these problems that make
the local spectral analysis methods attractive since they pro-
vide solutions to these problems.

When we apply plain Gabor wavelets for filtering, the mid-
spectrum is an overlap of two skewness curves (cf. equa-
tion (8)) and it is very hard to detect the source signals by di-
rectly searching for the local maxima (cf. figure 4). Though
iterative algorithms (e.g. [13]) or learning methods (e.g.
[5]) may be used to extract the desired parameters, such
non-analytic approaches are computationally inefficient and
are sensitive to initial values and related parameters in the
cost function. Besides, they are susceptible to local min-
ima in the regression procedure. Thus, we prefer to use an
analytic framework for parameter regression.

The correction of skewness makes this idea possible. Un-
der the same assumption as that in equation (16), the mid-
spectrum of skew Gabor filters is then a sum of two differ-
ently weighted and shifted Gaussian functions (for simplic-
ity we omit the coefficient term 1√

2πσ
of Gaussian)

g(ω0) = g1(ω0) + g2(ω0) (17)

with



g1(ω0) = a1e
− (ω0−µ1)2

2(
µ1
C

)2

g2(ω0) = a2e
− (ω0−µ2)2

2(
µ2
C

)2

. (18)

The scale parameters in above Gaussians are proportional
to the mean values. In figure 5 we demonstrate the mid-
spectrum of plain Gabor wavelet filtering as well as the mid-
spectrum of skew Gabor filtering.

The sum-of-Gaussians model is well studied from statis-
tic aspect and is widely used in neural network approaches
(e.g. [13]). One benefit of this model is that we are able
to use higher-order moment information to extract parame-
ters. The calculation of the moments leads to the following
system of equations in a1, a2, µ1, and µ2




a1µ1 + a2µ2 = m0
C√
2π

= b1

a1µ
2
1 + a2µ

2
2 = m1b1 = b2

a1µ
3
1 + a2µ

3
2 = 1

1
C2 +1

m2b1 = b3

a1µ
4
1 + a2µ

4
2 = 1

3
C2 +1

m3b1 = b4

. (19)
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Figure 4: Left: The mid-spectrum of plain Gabor wavelet
filtering. Right: The superposition of two Gaussians after
1-D skew Gabor filtering. The scale parameters of these two
Gaussians are determined by µ1

C and µ2
C , respectively.

Here m0 denotes the integration of g(ω0) and m1, m2,
and m3 denote the first three order moments of g(ω0)/m0.
Without loss of generality we assume 0 < µ1 ≤ µ2. Solv-
ing these equations yields




a1 = a(2ab2+bb1+b1
√

b2−4ac)

b2−4ac−b
√

b2−4ac

a2 = a(2ab2+bb1−b1
√

b2−4ac)

b2−4ac+b
√

b2−4ac

µ1 = −b+
√

b2−4ac
2a

µ2 = −b−√
b2−4ac
2a

, (20)

where the variables a, b, and c are defined as



a = (b2)2 − b1b3

b = b1b4 − b2b3

c = (b3)2 − b2b4

. (21)

Here real solutions are guaranteed since the discriminator is
always not less than zero

b2 − 4ac = [a1a2µ1µ2(µ1 − µ2)3]2 ≥ 0 (22)

If b2 − 4ac = 0, there is only one single Gaussian (i.e.
µ1 = µ2) and we can simply estimate its mean value and
amplitude from the first two equations in (19).

In figure 5 we display an example of source signal separa-
tion. The input signal is composed of two cosine functions

s(x) = 2 cos(
π

4
x) + cos(

3π

8
x) (23)

with the spectrum S(ω) = δ(ω± π
4 )+ 1

2δ(ω± 3π
8 ). Now we

sample the positive spectral space with Gabor wavelets and
skew Gabor filters. We start the mid-frequency at ω0 = π

128
and increase it with a step of π

128 to get a dense sampling.
Here we set the highest mid-frequency as ω0 = 7π

8 so
that we do not need to consider the boundaries in the mid-
spectrum. Although the spectrum of the input signal is a
simple sum of two Dirac functions, the mid-spectra using
both filters are so blurred that it is hard to identify the source
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Figure 5: Top: The source signal and its energy spectrum.
Bottom: The positive mid-spectra (solid lines) using plain
Gabor wavelets (left) and using skew Gabor filters (right).
These curves are actually overlapping of the spreading re-
sponses of two Dirac functions (shown as crosses).

signals by direct observation (see figure 5). The positive
skewness in applying Gabor wavelets even makes it impos-
sible to apply deblurring methods. In contrast, after cor-
recting the skewness we can estimate the amplitudes and
the locations of two positive Dirac components analytically
using higher order moment information (cf. equation (20)).
The estimation results are very close to the true values (see
table 1). For comparison, we also extract higher order mo-
ment information blindly from the mid-spectrum after Ga-
bor wavelets filtering and use equation (20) again for esti-
mation. As the sum-of-Gaussians model is no more valid,
the estimation results are far away from the true values, as
shown in table 1 as well.

Parameter True Value GW SG
a1 1 1.1451 0.9976
a2 0.5 0.2870 0.4825
µ1 π/4 = 0.7854 1.0814 0.8130
µ2 3π/8 = 1.1781 1.7965 1.2079

Table 1: Estimation results using Gabor wavelets (GW) and
skew Gabor filters (SG). For comparison we apply the same
higher-order-moment framework on the mid-spectra.

In the negative frequencies, we may perform a similar pro-
cedure to extract the desired parameters. Then, we are able
to identify the source signal components in spite of the blur-
ring in the mid-spectrum. In other words, this method can
“deblur” the mid-spectrum. Taking into account that a lot of
efforts had to be made in filter design so that the blurring af-
ter filtering does not significantly affect the identification of
signals or orientations (e.g. [15]), this framework provides
an analytical solution to improve the spectral resolution.

5 Local Spectral Multi-Orientation Analysis

In this section, we analyze the appearance of multiple orien-
tations in 2-D spectral space. This has applications in multi-
ple motion analysis. It is known that both 1-D occlusion and
1-D transparency may be modeled as multiple lines in the
spectral domain, with some distortion in case of occlusion
and without distortion in case of transparency. Thus, the
problem of motion estimation turns out to be an issue of ori-
entation analysis in the spatio-temporal space. As the angle
between two spectral lines can be arbitrary, eigen-analysis
(e.g. [14, 9]) cannot properly determine the orientation of
multiple lines. Sampling the spectrum with Gabor filters
[8] provided a good motivation, but suffered under the lim-
ited resolution. Here we prove that this limitation may be
overcome using skew Gabor filters.

The main point here is to study the angular distribution of
the energy spectrum. For two spectral lines passing through
the origin, the polar integration of the spectral lines along
the radial direction yields the sum of two Dirac components
in the angular space, which reminds us the similarity be-
tween 2-D orientation analysis and 1-D source signal sep-
aration. In fact, the mid-spectrum after 2-D skew Gabor
filtering consists of 2-D Gaussians concentrating along the
spectral lines — the skewness has been corrected. The re-
maining question is if the angular distribution of the mid-
spectrum can be described as a sum of two Gaussians. To
answer this question, let us first study the angular distribu-
tion of one 2-D Gaussian.

For a 2-D Gaussian centered at Oi = (ωxi, ωti) (cf. fig-
ure 6), its angular distribution after a polar integration reads
(here we only show the result due to the space limitation)

sha(θ) =
1
2π

e−
C2
2 +

C

2
√

2π
cos(θ − θi) e−

C2 sin2(θ−θi)
2

·[1 + erf(
C√
2

cos(θ − θi))], (24)

where θi is the polar angle of the point Oi and erf(x) is the
error integral function defined as

erf(x) =
2√
π

∫ x

0

e−t2dt.

This expression is rather complicated at a first sight. But it
has only one parameter θ and is symmetric with respect to
the angle θi. Further, the only difference between the polar
integration and the marginal integration of a 2-D Gaussian
is the integration path: the polar integration paths go along
the radial direction, while the marginal integration paths go
in a parallel direction. It is known that the marginal inte-
gration of a 2-D Gaussian is a 1-D Gaussian. Therefore,
it is reasonable to guess that equation (24) can be approx-



imated by a 1-D Gaussian N(θi, σa), especially when the
polar integration paths are close to be parallel.
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Figure 6: The polar integration of an isotropic Gaussian can
be approximated by an ideal Gaussian function N(θi, σa).
Left: The solid circle centered at Oi represents the support
of the Gaussian. The pencil of lines passing through the ori-
gin denotes the integration paths. The middle point of the
intersection between a integration path and the solid circle
lies on the dotted circle passing through the origin and Oi.
Middle: The solid curve is the plot of sha(θ) (cf. equa-
tion (24)) with C = 3.5 and θi = arctan( 5

3 ). A Gaussian
N(θi, σa) with σa = sin−1(1/C) is plotted with crosses.
Right: The difference between sha(θ) and N(θi, σa). The
maximal difference is less than 2% of sha(θi).

Indeed, the arc variable is a good approximation of the di-
ameter near the point Oi, especially if C is large enough.
Mathematically, the relation can be expressed as (cf. fig-
ure 6):

σa = sin−1(|ri| / |l0|) = sin−1(1 / C). (25)

This angle σa is an ideal index to describe the approxima-
tion error because it indicates the difference between the arc
variable and the linear variable. The smaller the σa value is,
the smaller the approximation error (for the marginal inte-
gration with no approximation error, this angle equals to
zero). For the example shown in figure 6 with C = 3.5, the
maximal difference between sha(θ) and N(θi, σa) is less
than 2% of the maximal amplitude of sha(θ) (i.e. sha(θi)).

Now let us come to the angular distribution of the com-
plete mid-spectrum after 2-D skew Gabor filtering. As the
mid-spectrum of two motions is a set of 2-D Gaussians cen-
tered on two spectral lines, the polar integration of the mid-
spectrum along each spectral line is then a sum of 1-D Gaus-
sians with the same mean value and the same scale param-
eter σa. Consequently, the angular distribution of the mid-
spectrum is the superposition of two 1-D Gaussians. Mathe-
matically, the superposition of two angular Gaussians reads

ga(θ) = a1e
− (θ−µ1)2

2σ2
a + a2e

− (θ−µ2)2

2σ2
a . (26)

The above equation is very similar to equations (17) and
(18) except that the variances of two Gaussians are now
constant. Therefore, we can use the same method intro-
duced in section 4 to analytically solve the mean values of

two angular Gaussians. In the following, we will show that
it is impossible to apply the analytical framework without
correcting the skewness of Gabor wavelets.

5.1 Evaluation Example

To demonstrate the merit of skewness correction, we com-
pare Gabor wavelets and skew Gabor filter using two syn-
thetic examples with known ground truth and one real ex-
ample. The first example demonstrates the deblurring abil-
ity of our framework. We synthesize a 2-D signal whose
spectrum is composed of two spectral lines passing through
the origin (figure 7). The polar angles of these two lines
are 30◦ and 60◦, respectively. The mid-spectra after Gabor
wavelets filtering and skew Gabor filtering are both strongly
blurred so that the source signals are hardly to recognize in
the mid-spectra. For comparison, we apply the same higher-
order-moment framework on the polar integration results of
both mid-spectra. The estimated polar angles are listed in
table 2 together with the true values. Clearly, the results
from skew Gabor filtering are closer to the true values than
the results from Gabor wavelets filtering.
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Figure 7: Row 1: The real part (left), the imaginary part
(middle), and the energy spectrum (right) of a 2-D signal.
The polar angles of two lines in the spectrum are 30◦ and
60◦, respectively. Row 2: The mid-spectra using 2-D Ga-
bor wavelets (left) and skew Gabor filters (middle) with
C = 3.5 and their difference (right). The mid-frequency
satisfies π/4 ≤

√
ω2

x0 + ω2
t0 ≤ 3π/4. Row 3: Normal-

ized angular distributions of the mid-spectra (left: Gabor
wavelets; middle: skew Gabor filter) and their difference
(right). Note that the difference image has a smaller scale.

The second example is to estimate motion parameters from



Parameter True Value GW SG
µ1 30◦ 11.39◦ 26.50◦

µ2 60◦ 55.72◦ 62.19◦

Table 2: Estimation results using Gabor wavelets (GW) and
skew Gabor filters (SG).
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Figure 8: Row 1: The 1-D random dot transparency se-
quence (left) and its energy spectrum after applying DFT
directly. The overlapping of two source signals forms ori-
ented structures in the spatial-temporal plane. Row 2: The
mid-spectra after Gabor wavelets filtering (left) and skew
Gabor filtering (middle). Their difference is shown on the
right. Row 3: The normalized angular distributions corre-
sponding to the mid-spectra and their difference. The esti-
mated polar angles of the spectral lines are listed in table 3.

Parameter True Value GW SG
µ1 18.43◦ 26.32◦ 16.38◦

µ2 45.00◦ 58.98◦ 45.74◦

v1 = cot(µ1 − 90◦) −0.33 −0.49 −0.29
v2 = cot(µ2 − 90◦) −1.00 −1.66 −1.03

Table 3: Estimation results in the synthesized transparency
sequence using Gabor wavelets (GW) and skew Gabor fil-
ters (SG).

a 1-D transparency sequence, which is the simple overlap-
ping of two source signals. We set the velocities of two
source signals as −0.33 [pixel/frame] and −1 [pixel/frame],
respectively. Correspondingly, the polar angles of two spec-
tral lines are 18.43◦ and 45.00◦. Note that the spatial peri-
odicity of discrete Fourier transform (DFT) cannot be ful-
filled for such a non-harmonic image. Consequently, we
observe the aliasing effect after applying DFT directly on
the original signal, as shown in figure 8. In order to avoid

the aliasing problem, we low-pass the signal before starting
the spectral-sampling. Similar to the first example, the mid-
spectra after both Gabor wavelets filtering and skew Gabor
filtering are displayed in figure 8. After the polar integration
of the mid-spectra, we use the higher-order-moment frame-
work to estimate the polar angles of the original spectral
lines and further use the equation v = cot(µ − 90◦) to es-
timate the velocities of the source signals. Table 3 shows
clearly that the polar angles of the spectral lines and the esti-
mated velocities after Gabor wavelets filtering are far away
from the true values, while skew Gabor filtering provides
reasonable results.
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Figure 9: Row 1 Left: Extracting an X-T plane from a real
transparency sequence. Row 1 Middle: The X-T plane in
detail. In the white window, two motions are nearly con-
stant. Row 1 Right: The energy spectrum of the signal in
the white window after direct DFT. The vertical energy bar
is not a printing problem. It is caused by the temporal inten-
sity variation in the white window (cf. Row 1 Middle). Row
2: The mid-spectra after Gabor wavelets filtering (left) and
skew Gabor filtering (middle) and their difference (right).
Row 3: Normalized angular distributions of the mid-spectra
and their difference (from left to right).

Figure 9 shows a real transparency sequence consisting of
a right-moving portrait and a left-moving package mirrored
on the frame of the portrait. Since both motions are hori-
zontal, we can simplify the problem of motion estimation
by cutting an X-T plane through the image sequence. In the
X-T plane, we observe two motions as two oriented struc-
tures. In the 64×64 white window, we take the DFT directly
and obtain the energy spectrum (row 1 right in figure 9).
Unlike in the synthetic examples, the ground truth of the
motion parameters is unknown. Fortunately, the motions in
the white window are almost constant. Thus, we can extract



Parameter True Value GW SG
µ1 ≈ −20.56◦ −26.27◦ −22.97◦

µ2 ≈ 18.43◦ 26.83◦ 25.29◦

µ2 − µ1 38.99◦ 53.10◦ 48.26◦

v1 ≈ 0.37 0.49 0.42
v2 ≈ −0.33 −0.51 −0.47

Table 4: Measured and estimated parameter values in the
real transparency sequence. The results using skew Gabor
filtering (SG) are closer to the measured values than the re-
sults using Gabor wavelets filtering (GW).

the motion parameters roughly by measuring the structure
orientation.

Table 4 shows that the skew Gabor filter provides results
closer to the measured values than Gabor wavelets. The dif-
ference between the skew Gabor filter and Gabor wavelets is
not as significant as the difference in the random dot trans-
parency example. This is partially due to the fact that the
visible energy components outside the spectral lines bias
the sum-of-Gaussians model (There are energy components
lying horizontally and vertically outside the spectral lines
due to the aliasing effect, noise, and temporal variation of
intensity). More importantly, the spectral lines in the energy
spectrum happen to be nearly symmetric about the ωx-axis.
As the skewness of each spectral line after Gabor wavelets
filtering (cf. equation (10)) appears along the direction leav-
ing the ωx0-axis, the skewness in the mid-spectrum has been
partially compensated due to the symmetric properties of
the spectral lines (This analysis can be proved by the an-
gular distribution of the mid-spectrum in figure 9). Conse-
quently, the mid-spectrum after Gabor wavelets filtering is
closer to the sum-of-Gaussians model.

6 Conclusion and Future Work

In this paper, we have proposed a new filter to correct the
skewness of Gabor wavelets in the mid-frequency space.
After the correction, we are able to model the distribution
in the parameter space with a sum-of-Gaussians model. We
then use a higher-order-moment framework to analytically
separate two source signals in 1-D space and in 2-D angular
space.

The application examples in this paper are very simple. We
have limited the number of Gaussians to be no more than
two and we have not considered noise in the higher-order-
moment framework. We have not shown how to extend
the current framework to the 3-D spatial-temporal space
to analyze multiple motions in the real world, in which
the spectral lines turn out to be spectral planes. These is-
sues certainly need to be addressed before we can apply

the higher-order-moment framework in more complex ap-
plications. Nevertheless, the advantages of correcting the
skewness of Gabor wavelets should be recognized: The
statistical simplicity of Gaussians is a very attractive prop-
erty. While describing the spectral distribution analytically
is very difficult without correcting the skewness, the use of
sum-of-Gaussians model is straightforward after correcting
the skewness. It also shows a possible way to deblur filtered
signals and eventually overcome the limited resolution of
spectral representations.
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