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Abstract

In this paper we propose a new 3D kernel for the recovery of 3D-
orientation signatures. The kernel is a Gaussian function defined in
local spherical coordinates and its Cartesian support has the shape
of a truncated cone with axis in radial direction and very small
angular support. A set of such kernels is obtained by uniformly
sampling the 2D space of polar and azimuth angles. The projec-
tion of a local neighborhood on such a kernel set produces a local
3D-orientation signature. In case of spatiotemporal analysis, such
a kernel set can be applied either on the derivative space of a local
neighborhood or on the local Fourier transform. The well known
planes arising from one or multiple motions produce maxima in
the orientation signature. Due to the kernel’s local support spa-
tiotemporal signatures possess higher orientation resolution than
3D steerable filters and motion maxima can be detected and local-
ized more accurately. We describe and show in experiments the
superiority of the proposed kernels compared to Hough transfor-
mation or EM-based multiple motion detection.

1 Introduction

The motivation of our approach is the local detection and
estimation of multiple motions in spatiotemporal imagery.
Optical flow estimation has been extensively studied and the
reader is referred to the surveys [4, 12] for an overview of
existing methods. While research in single motion estima-
tion is already mature, estimation and analysis of multiple
motions (i.e. occlusion and transparency) are still challeng-
ing problems.

In this paper we focus on the estimation of multiple mo-
tions from the spatiotemporal orientation aspect. Motion
estimation was first addressed from the point of view of ori-
entation analysis by Adelson and Bergen [1] who pointed
out that motion is equivalent to spatio-temporal orientation.
They introduced a spatio-temporal energy model for single
motion representation. Knutsson proposed the 3D structure
tensor for orientation recovery and this approach was fol-
lowed by Bigün [6], Jähne [18], and others. To describe

multiple motions, Shizawa et. al. [23, 22] proposed the
superposition principle. Fleet and Langley [7] as well as
Beauchemin and Barron [5] analyzed the spectral structure
of occlusion and transparency in detail. Transparency can
be described as two planes of energy concentration in the
spectral domain only, while occlusion produces two planes
both in the spectrum as well as in the spatiotemporal do-
main accompanied by distortion [5]. The corresponding
motion parameters are determined by the normal vectors of
these planes. Determining the precise orientation of two
motion planes, however, remains a difficult task in partic-
ularly when the angle between two motion planes is small
and energy is concentrated in the low frequencies.

Many authors proposed spectral sampling with Gabor or
similar filters [13, 10, 14, 27] in order to detect the motion
planes in the frequency domain. One of the main concerns
of these approaches is the enormous complexity of com-
putation in sampling the spectrum with fine resolution. To
resolve the conflict between performance and complexity,
the concept of steerability was introduced [9] and many 2D
steerable filters have been applied in image processing and
low level computer vision [19, 20, 24, 8]. But only few
approaches dealt with 3D steerability. These approaches ei-
ther steer derivatives of Gaussians [9, 25] or construct the
steerable filter directly in the spectral domain [2]. To
achieve high orientation resolution, a huge number of basis
functions is required whose support is the entire sphere of
orientations. Since detection of multiple motions presumes
a high orientation resolution either in the spatiotemporal
or in the frequency space current steerability approaches
proved to be impractical.

This motivated us to construct a new 3D-kernel with conic
support in the Cartesian spatiotemporal space. The 3D-
kernel is a Gaussian defined in the space of polar and az-
imuth angles with conic profile in the radial direction. The
local image feature space is projected onto a huge num-
ber of such kernels with tiny support and a signature with
high orientation resolution is obtained. Because of the tiny
support of filters the way how these filters decompose the
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sphere is of practically minor importance.

We describe how we can obtain such orientation signatures
in the image derivative space or in the local Fourier domain.
We compare this kernel projection to the Hough transform
and to expectation-maximization (EM) multiple plane esti-
mation (section 3). We show experiments with both occlu-
sion and transparency sequences in section 4.

2 Conic Kernels

2.1 Definition

We compute a local spherical mapping on the input data:���������	��
�����������������	�
, where

����� ����� �!��� 
�
,
� �

"$#&%('�"*) �,+-��(���.� "$#&%('�"*) � /0 -21�3 + 1 � (figure 1). In order to

have fine orientation resolution, we use conic kernels with
small angular supports to sample the orientation space lo-
cally. A conic kernel centered at

���$4�����56�
reads

798;:=<?> @2A�B(���������&���DCE�GF 8H:=<I> @2A�BJ �����&�	�
K 8H:=<I> @2A�BLNM�O P > LNMRQTS �����

�
(1)

where
K 8;: < > @ A BL MRO P > L M�Q�S ���$� is a compensation function along the

radial direction described later. The angular part of the ker-
nel is a 2D Gaussian function in the

�����&���
-space:
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As the azimuth angle
�

is periodic, we define m �=nE� to rep-
resent the minimal circular difference between

�
and
� 4

(
����� 4porq s^t ��u^v s^t �

)

m ��������4?�wCV�yx{z ) ��| �~}r�64&|b�2| �~}���4N}�u*v s t |b�2| ��}���4���u*v s t | � l
Theoretically, a Gaussian function is not compactly sup-
ported. To form an FIR filter we cut off the angular part
of F

8H:�<f> @2A�BJ �������	�
at the boundary of a circular mask with a

fixed diameter � . The diameter � is usually a function ofZ
and we set � ��v Z so that the energy loss of the cut-off

area is negligible. Figure 1 shows one example of such a
conic kernel.

After applying such a conic kernel on
���������R���	�

we obtain a
sample at

��� 4 ��� 5 �
�D�E� <f� ��A��[� � ���
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(3)

Now let us consider the sampling of the
�������	�

plane using
a set of conic kernels. A sphere surface forms a rectangular
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Figure 1: A conic kernel centered at ���¨¬f�=�*,� with radial bound-
aries ®w¯N° ± and ®w¯N²f³ . Left: The definition of the spherical co-
ordinate system. Middle: The filter kernel in the 3D Cartesian
coordinate system. The keypoint is at the center of the sphere.
Right: The filter kernel with � , � and ¥ as coordinates. The conic
kernel turns into a cylinder with a diameter ´ . In the ���$�=�R� plane
the circular mask of the cylinder is weighted by a 2D Gaussian
function, as shown above the cylinder.

region in the
�������	�

plane, which is periodic along the
�

di-
rection and is mirror-symmetric about the boundary along
the
�

direction. We let neighboring kernels overlap in or-
der to cover the entire rectangular region and use the pe-
riodicity along the

�
direction and mirror-symmetry along

the
�

direction to solve the boundary problem. The num-
ber of required conic kernels in sampling the entire rect-
angular region is determined by the scale parameter

Z
(cf.

equation (2)) as well as the sampling step parameter (i.e.
the angular distance between the centers of two neighbor-
ing sampling masks, cf. figure 2). In this paper we set
the horizontal- and vertical- sampling step to be the same
as µ �{� µ �¡�¶u Z . As the entire

���R���	�
plane has a range of} W,· s^t¹¸ �{º W,· s^t and

}D» st¼¸ � ¸ » s^t
, by using

Z �¾½¿ t
we need totally

u^v s¹À W,·RW �Áv^Â W v s conic kernels to sample
the
�������	�

plane with a resolution of W t . All conic kernels
have very narrow angular support keeping thus complexity
in a moderate level.
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Figure 2: One example of sampling ���$�=�R� plane with a set of
conic kernels. The horizontal or vertical distance between two
neighboring masks is equal to the radius of one mask.

The proposed decomposition of the sphere is not uniform
and theoretically it produces a non-rotation-invariant signa-
ture. However, due to the huge numbers of filters and their
tiny support the decomposition has practically the same
effect with uniformly sampling the sphere with the same
huge number of kernels whose centers in that case would
be a subdivision of the icosahedron. If we apply, as above,
65160 filters of very small support we obtain approximately
the same result. The reason why we prefer regular decom-
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position lies mainly in the simplicity of indexing and dis-
playing.

We build a look-up-table (LUT) “off-line” to store the local
spherical mapping. The online application of the LUT is of
negligible complexity compared with calculating the filter
responses. The LUT-based mapping can be applied both in
the spatiotemporal as well as in the spectral domain, though
the filter support in figure 1 is only displayed in the spatial
domain.

To obtain a continuous orientation signature
� �����&���

from
the discrete one we use 2D Gaussian functions with local
support F

8;: < > @ A BJ �������	�
as interpolation functions:

� �����&�	�`CE� ½�������:=<	� ] ½�
 J �
� J ��@2A�� ] � J ���

8H:=<I> @2A�B F
8H:=<I> @2A�BJ �����&�	� l

(4)

This constitutes an approximation and not an interpolation
of orientation signature and appears also in Radial Basis
Functions approaches [21].

2.2 Comparisons with Current 3D Steerable Filters

Current 3D-steerable filters are rotated copies of either 3D-
Gaussians [9, 25] or specified basis filters in frequency
space [2]. Let us consider first the n-th derivative of 3D
Gaussians along the x-axis (we omit normalization con-
stants) F� � ���� - ��������� } ��� � � � � � 
 � ��� X�� . The an-
gular terms in the first three derivatives in the spheri-
cal coordinates are then

} %���� ���� %���� �?��� , %���� � ���^� %���� � �?�	�
(we omit the term

} W from the actual representation� � %���� � ���^� % ��� � �T�	�*} W because it makes no difference to an-
gular variation), and

u % ��� ���^� % ��� �T�	�p} % ��� ¿ ���^� %���� ¿ �T�	� , re-
spectively. All of them are different combinations of spher-
ical harmonic functions.

Andersson [2] designed an alternative 3D steerable filter di-
rectly in the frequency domain. He designed the spectral
basis filters as !#" 4 � $N��� F �	%��¨� &' " 4 n(&$N� " � where

$
and

&$
are an

arbitrary frequency coordinate vector and its corresponding
normalized unit vector, respectively. The vector

&' " 4 denotes
the orientation of the ) -th basis filter of order * , and F �	%��
represents the radial frequency response.

The main drawback of both approaches is their coarse ori-
entation resolution. In this paper we will not delve into the
quantitative definition of orientation resolution due to space
limitation. Instead, we provide an illustrative proof. For a
filter, its angular support is a natural indicator of the ori-
entation resolution: The smaller the angular support, the
finer the orientation resolution. In figure 3 we show the first
Gaussian derivative F ½ , Andersson’s third order filter ! ¿ in
frequency domain [2], and our conic filter, respectively. In
the bottom row we show their angular supports in the

�������	�

space. Note that the angular support of a filter like Ander-
sson’s in the spatial domain is the same as that in the fre-
quency domain since the Fourier transform is an isometric
mapping (i.e. it keeps angles). The irregularity of the Gaus-
sian derivative in the

�����&�	�
space with

| �p|,+.- s t
is caused

by the discrete representation of filter kernels. The Gaussian
derivative F ½ has such a large angular support that only the
gap between its two lobes (shown as the black curve) may
be useful. Actually, Huang and Chen used this gap to ob-
tain the orientation of one plane in single motion estimation
[17]. The orientation resolution of Andersson’s filter is bet-
ter (cf. figure 7 as well) but still lower than in the conical
kernel. The reason why no steerable filters are applied in
multiple motion estimation stems exactly from the resolu-
tion limitation of current steerable filters. In contrast, our
filter has a much smaller angular support which enables us
to analyze multiple orientations more precisely.

Gaussian Derivative Andersson Conic Filter
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Figure 3: Top: The Gaussian derivative
�0/

(left, redrawn from
[17]), 132 (middle, redrawn from [2]), and our filter (right) cen-
tered at � �5476

© 8�879 �=� �5:76
© ; <79 . Bottom: The corresponding

angular supports of the kernels shown with white regions in the���$�=�R� space indicate their orientation resolution.

The computational burden of applying a steerable filter is
determined by the number of basis filters and the spatial
support of each basis filter. Given the fact that current steer-
able filters are based on a global decomposition principle
and our filter is based on a local decomposition principle, it
is more reasonable to compare their complexity by consid-
ering the computational burden per pixel in the input data.
Concretely,

= The Gaussian derivative F ½ is composed of three basis
filters of global support. Each pixel in the input data
is therefore involved in the scalar product as well as in
the interpolation procedure three times.

= Andersson’s ! ¿ filter has ten basis filters. Thus, each
pixel is involved ten times.

= In our filter the quadratic area (
� 4 ¸ � ¸ � 4 3 ½ ,��5 ¸ � ¸ ��5 3 ½ ) is covered by four quadrant masks

(cf. figure 2). Roughly speaking, a pixel in this area
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is involved in the scalar product four times. As the in-
terpolation function has the same support as the conic
kernel, a pixel is also involved in the interpolation four
times.

We should be aware of the point that a complexity compari-
son is fair only when the corresponding filters are compara-
ble in orientation resolution. The conic kernel is more effi-
cient than Andersson’s ! ¿ but slightly less efficient than the
first Gaussian derivative which however lacks in orientation
resolution.

Another possibility to achieve such a fine orientation reso-
lution with a global decomposition method is to generalize
the filter design technique used by Simoncelli and Farid [24]
from 2D to 3D space and use flexible combinations of pre-
chosen spherical harmonic components to form a 3D filter
with narrow angular shape. However, as we already pointed
out in [29], we would also have to face the considerably
higher computation effort in order to build a 3D filter mask
with narrow angular shape (In order to achieve the same
fine orientation resolution in 2D space, a steerable filter us-
ing global decomposition method needs generally about ten
times more computation than the 2D version of our conic
filter [29]. In 3D space this difference will be even larger
due to the increase of dimension). One might think that
higher order derivatives would increase orientation resolu-
tion. This can hardly be achieved because Gaussian deriva-
tives are fixed combinations of spherical harmonics – the
reader may plot the angular supports of Gaussian deriva-
tives for an illustrative proof.

The proposed conic filtering is also related to 3D orientation
histograms obtained usually in gradient space. It differs in
the sampling of the orientation space: the conical supports
in the angle space here overlap whereas the orientation his-
togram follows merely the Hough sampling principle [16].

2.3 Compensation via Radial Variation

In this section, we address the design of the weighting func-
tion
K ���$�

(cf. equation (1)). In the spherical coordinates
the azimuth angle

�
and the polar angle

�
are defined differ-

ently. All points with the same
�

on a sphere surface lie on a
great circle of this sphere, whereas all points with the same�

(except
� � st

) lie on a small circle. If we divide the
whole

�������	�
space with a homogeneous grid, it is easy to

see that the higher the latitude value is, the denser the grid
points are on the sphere surface [15]. We may establish the
weighting function

K ���$�
as the sum of discrete weights in

the filter kernels to compensate the non-uniform distribution
on the sphere surface. The consequence is that we are no
more able to know the real distribution density information
on the sphere surface. However, the density information is
desirable in many motion estimation approaches. Thus, we

would like to preserve the distribution density information
by simply setting

K ���$� � W .
2.4 Conic Kernel Response to a 3D-Plane

In the 3D Cartesian coordinate system, a plane passing
through the origin

� s � s � s �
with a unit normal vector � �� ' ½ � ' � � ' ¿ ��� reads� ' ½ � � ' � ��
 ' ¿ � s l (5)

In order to represent a plane with parameters
�

and
�

, we
convert the Cartesian coordinates into spherical coordinates��� ���	��
���� �����������	�

and
� ' ½ � ' � � ' ¿ �U� � W ���  ���  � . Elim-

ination of
�

yields an equation with variables
�

and
�

%���� �T�	� % ��� �T�  � % ��� ���~}��  �[� � z ) �?�	� � z ) �?�  ��� s l (6)

For horizontal and vertical planes with normal vectors par-
allel to the coordinate axes, their corresponding representa-
tions in the

���R���	�
space are straight lines. In motion anal-

ysis we usually encounter tilted planes which, in the
�����&���

space, turn into harmonic curves with different amplitudes
and phases (cf. figure 4). For each curve, the normal vector
of the corresponding plane is determined by the coordinates���

and
���

of maximal response as follows:� �  � � � � W,· s t�  � » s^t } ��� l (7)

The
�  and

�  are then used in motion estimation� $ � %���� ���  � % �$' �?�  �� � � z ) ���  � % �$' �T�  �
l

(8)
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Figure 4: Left: A plane with normal vector �	� ; ��
,��
�� (plotted
with small circles) and a plane with normal vector �	
2��
,��
�� (plot-
ted with dots) in the Cartesian coordinates. Right: The corre-
sponding curves in the ���*�I��� space. See text for details about the
extreme point. The curve corresponding to the second plane has
only positive � coordinates.

On the the
�

axis,
��

lies in the middle of two zero-crossing
points which have a distance of W,· s�t . This extra geometry
constraint is very useful in determining the number of mo-
tions automatically as well as in obtaining reasonable ini-
tial values of motion parameters. In practice, we obtain a
set of points in the

�����&���
space. Extracting the parame-

ters
���  ���  � from these points is then a standard regression

problem. For a single curve least square estimation is appli-
cable; for multiple curves we may apply the EM algorithm
as described below.
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3 Motion Estimation Using Conic Filtering

3.1 Algorithm

1. Fix radial parameters ® ¯N° ± and ® ¯N²f³ as well as the angular
parameter � which determines ´ ,

� � , and
� � automatically.

Also fix another threshold parameter � ( � � ; 9 ).
2. Set �¨¬ � � 
�� 8�9 , �* � ��� 8�9 ;

3. If �¨¬�� 
�� 8�9if �*
	�� 8 9apply the filter centered at ��� ¬ �=�  � on the local derivative
space or the local energy spectrum by using the LUT
(cf.
� � � <f� �¨A��

in eq. (3));�* � �*� � � ;
end��¬ � ��¬�� � � ;

end

4. Cluster the nonzero
� �E� <I� ��A��

near � axis (i.e. � � 	 ��	 � )
into the same group if their distance is less than ; � .

5. If the centroids of two groups have a distance ��� 
�� 8 9 �
� ��
�� 8 9 � ��� , these two groups form a group-pair. The num-
ber of group-pairs indicates the number of motions.

6. For each group-pair, search along the positive � direction
from their middle point and cluster the nonzero

� �E� <I� �¨A��
into

different polar groups like in step 4. The weight-center of the
vertical group gives us a guess of �����D�=���U� and consequently
an initialization of �����������^� (cf. eq. (7)).

6. Apply eq. (6) based EM to get final �������=���� for motion es-
timation (cf. eq. (8)).

Since the equation (5) based 3D Hough transform as well as
the planar EM algorithm can extract the orientation param-
eters of planes directly, the readers may ask why we project
the 3D data onto the 2D feature space before parameter ex-
traction. The answer lies in the following analysis of the 3D
Hough transform and the EM algorithm.

3.2 Comparison with Hough Transform and EM esti-
mation

The Hough transform [16] is a sample and search method
for parameter extraction. Concretely, for a set of points co-
ordinated with

��� 4 - ��� 4 + ��� 4�� ��� ) � W �¨n¨n,nN��� � we draw the
corresponding vectors in the

� ' ½ � ' � � ' ¿ � space satisfying
the equation (5). Then we search in the

� ' ½ � ' � � ' ¿ � space
the position with the maximal number of vector intersec-
tions to obtain the desired normal vector

� ' ½ � � ' � � � ' ¿ ��� .
This vector is used for motion estimation� $ � �  �"!�# !� � �  1 ! # !

l
(9)

Practically, we sample the speed space (i.e.
�	$ � � � �¼� -

space) with a finite interval and relax the orthogonality cri-
terion with a positive threshold $ yielding|$��4 - $ � � �¨4 + � � � �¨4%�U| ¸ $

l
(10)

The equation (10) based 3D Hough transform is equivalent
to a 3D filter with a concave disk shape centered at the ori-
gin of the 3D space (cf. figure 5). The comparison between
our filter shape (figure 1) and the shape of the disk leads to
the conclusion that our filter samples the orientation space
more efficiently than the 3D Hough transform. The con-
clusion is also confirmed by the Hough image of a point
in figure 6. The Hough image is actually the impulse re-
sponse of the concave disk filter. It is very similar to our
filter response of a 3D plane except that the Hough image
has no negative

�
value (we only use normal vectors with' ¿ + s

). Taking into account that the filter response of a
3D plane consists of plenty of filter responses of points we
justify the above conclusion easily. The aforementioned su-
periority enables our filter to reduce the enormous memory
requirement in Hough based approaches [28], especially the
gigantic overlapping of the Hough curves (figure 6). As a
result, we can extract the parameters of motion planes with
much less complexity.

o y
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Figure 5: The 3D Hough transform is equivalent to a filter with
a concave disk shape. Left: General projection plot of the filter
mask. The vector & is normal to the filter mask. Right: Side
view of the filter mask. The angular thickness ' of the disk is
determined by the clustering threshold ( in equation (10).
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Figure 6: Left: Vectors satisfying eq. (10) form a curve similar
to our filter response of a 3D plane. The width of the curve is
determined by the clustering threshold ( in eq. (10). Right: The
Hough image of an occlusion sequence (cf. figure 7).

Since the intersections of different curves in the Hough im-
age are blurred due to the introduction of $ , the global max-
imal position is no more a peak, but a smooth uni-modal
distribution. While the search of the global maximal posi-
tion is still feasible, the search of the second maximal po-
sition is generally problematic because the properties of the
uni-modal distribution are unknown and we do not know
how to get rid of the neighbors of the global maximum au-
tomatically in seeking the second maximum. Besides, even
by choosing the neighborhood manually, the second maxi-
mum is blurred and its position is biased by the distribution
around the first maximum. Both will result in an inaccurate
estimation.
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The EM algorithm consists of subsequent iterations of the
expectation and maximization step until there is no signifi-
cant difference in the parameter estimates. In the expecta-
tion step, the membership weights of points are updated by
the new results of parameter estimation; in the maximiza-
tion step, we use the usual maximum likelihood method to
estimate parameters with the updated assignment of points
to groups.

Since the EM algorithm is an iterative method, it has no
closed-form solution. Generally, we do not know the num-
ber of motions exactly. Unlike other implicit constraints
[3, 11, 26], other filter helps to determine the number of
motions explicitly. Moreover, convergence and robustness
of the EM algorithm are very much dependent on the initial
values. Using the orientation signature of our filter we can
facilitate a good initial value close to the correct solution.

4 Experiments

We begin with an artificial occlusion sequence in fig-
ure 7. The occluding signal has constant flow of

� W � W �
[pixel/frame] and the occluded signal has flow of

� W �¨} W � .
We use the impulse response of the first Gaussian derivative
with a support of

Â À Â À Â
pixels and a

u*u À u*u À W window
for orientation analysis in the derivative space. For spec-
tral orientation analysis we choose a

u X À u X À u X
window

and adapt all spectral components in this window. Here we
cannot take a narrower mask like in the derivative space be-
cause otherwise the spectral resolution will be too coarse.
The orientation signatures using our filter show two distinct
curves whose extreme points locating near

�=} W u^Â t �&Â - t �
and
� W uÂ*t$��Â -�t¨� , respectively. In contrast, the orientation

signatures of applying F ½ and ! ¿ clearly fail to provide
the correct structure of multiple planes: Though we observe
some blurred peaks in both signatures, these peaks either
are at the wrong position ( F ½ ) or only correspond to the
dominant curve ( ! ¿ ).
Table 1 lists the EM estimation results using our spatial ori-
entation signature and spectral orientation signature. Here
we take the orientation signatures both with and without av-
eraging compensation to confirm the analysis in section 2.4.
In the first test we set initial values arbitrarily. In the second
test we take proper initialization according to the extreme
point analysis introduced in section 2.5. The estimation re-
sults without averaging compensation are better than the re-
sults with compensation and proper initialization reduce the
number of iterations in the EM algorithm greatly. Besides,
the data quality in the spatial orientation signature is good
enough so that the estimation results with arbitrarily initial
values are as precise as the results with properly initial val-
ues. But the curves in the spectral orientation signature are
blurred and the EM algorithm is susceptible to be blocked
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Figure 7: Top: One frame of an occlusion sequence can be sepa-
rated as overlapping of two motions. The white window indicates
the multiple motion region in which we compare orientation sig-
natures of different filters. The white arrows denote the moving
directions and the black regions denote static background. Mid-
dle: The amplitudes of orientation signatures using

�0/
(left) and1 2 (right). Bottom: The orientation signatures using our filter in

the derivative space (left) and in the spectral domain (right).

by a local minimum. Properly initial values help the EM
algorithm converge to the the desired global minimum. The
spectral estimation results are not comparable to the spa-
tial estimation results because the data quality are not in the
same level, as already shown by two orientation signatures.

model initial values compensation iteration occluding occluded
arbitrarily yes # _ ��� �

1 � d ��� �����
e
_ ��� ��	�� d=j ��� �
� �

e
spatial set no # _ ��� ����� d ��� �����

e
_ ��� ����� d=j ��� �����

e
model properly yes � _ ��� � # � d � � �����

e
_ ��� �
1 # d=j ��� �����

e
set no � _ ��� ����� d ��� ���
�

e
_ ��� ��� # d=j ��� ���	

e
arbitrarily yes

� _ � � � �
� d � � � �	
e
_ � � � �
1
d=j � � � 	��

e
spectral set no

	 _ ��� ����� d ��� ��	
�
e
_ � � � ��� d=j � � �����

e
model properly yes

1
_ � � � �
1
d � � � � �
e
_ � � � � � d=j � � � 	��

e
set no

1
_ ��� ����� d � � ���

1 e
_ � � ����� d=j � � �

1 � e
Table 1: Estimation results of the occlusion sequence shown
in figure 7. We use ��� / � ��� / � � � � 8$© �$� 8*© : � and ����� � ����� � � ��	
 © ; ��� 8*© 
�� as arbitrary initialization and the properly initial
values are set as ��� / � ��� / � � � � 8*© �*��
 © 
�� and ����� � ����� � � �� 8$© �$��� 
 © 
�� . For both approaches we use the same tolerance pa-
rameter � ¢ � 8*© 
 .
In order to test the performance of the EM algorithm on
determining the number of motions, we propose an exam-
ple of a single moving signal with a velocity

� W �¨} W � . Both
spatial and spectral EM algorithms should converge to one
speed even with arbitrarily initial values if they are able to
determine the number of motions automatically. With the
initial values

� W l X �¨} s l W � and
� s l · � s l u^� the spatial EM al-

gorithm converges to
� s l »*»Â!�¨} W l s^s W � after

X
iterations and

the spectral EM algorithm converges to
� W l s Â����,} W l s -�Â*�

and
� s l »Â W �¨} W l s W^W � after

X
iterations. Taking into account

that the spectrum of the sequence is blurred, the result is not
surprising. To confirm if the spectral EM algorithm con-
verges with the properly initial values, we run the program
again by setting both initial values as

� s l »��¨} W l W � . This time
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the spectral EM algorithm converges to
� W l s*s -R�¨} W l s X »� af-

ter
X

iterations. Thus, we verify that the EM algorithm can-
not the number of motions exactly and the properly initial
values play a critical role for data with “bad” quality.

In figure 8 is an occlusion sequence consisting of an oc-
cluding signal moving right with a velocity of about

� W � s �
and an occluded signal moving left at about

��} W � s � . Us-
ing this knowledge we compare the orientation resolutions
of different filters. Inside the white window in the W v -th
frame we apply F ½ , ! ¿ , and our conic filter in the deriva-
tive space to obtain orientation signatures. Both F ½ and ! ¿
can only roughly indicate the curve with the extreme point� W,· s^t ��-Â t � with blurred peaks. Our filter provides a rea-
sonable signature. Its two extreme points lie near

� s t ��-Â t �
and
� W2· st ��-Â t � and are ideally consistent with the motions.
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Figure 8: Top: The first, 
 < -th and
: ; -th frames of an occlusion

sequence. The white window in the 
 < -th frame indicates an oc-
clusion region. Bottom: The amplitudes of orientation signatures
applying

�#/
(left), 132 (middle), and our conic filter (right) in the

derivative space of the white window in frame 
 < .

Figure 9 shows the well known “flower garden” occlusion
sequence. In one multiple motion region (white window)
we calculate the partial derivatives and apply F ½ , ! ¿ and
our conic filter to obtain orientation signatures in the deriva-
tive space (cf. row 2) for resolution comparison. To demon-
strate the entire procedure of multiple motion estimation,
we first estimate motions with the single motion model. At
the occlusion boundaries the results are not correct. After
the eigenvalue analysis [18] we detect two motion candidate
regions and the regions with the aperture problem. Only in
the multiple motion candidate regions apply we the spatial
EM algorithm to estimate motions (row 4).

In figures 10 we demonstrate a real example of transparency
sequence. It contains a right moving portrait and a mirrored
left moving muesli package. We use the eigenvalue analysis
to determine the multiple motion candidates and apply the
EM algorithm on the spectral signatures for motion estima-
tion. Note that the spatial estimation algorithms cannot treat
transparency sequences. The optical flow in the spectral EM
approach is sparse. It is due to the fact that in some regions
of the package we do not have adequate texture informa-
tion. For a robust performance we ignore these regions in
estimation after the eigenvalue analysis [18].
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Figure 9: Row 1: The 
 � -th,
: ; -th and

4 � -th frames of the
“flower garden” sequence. Row 2: The orientation signatures ap-
plying

�#/
(left), 1 2 (middle), and our conic filter (right) in the

white window. Row 3 Left: Estimation results using the single
motion model. Row 3 Middle: Two motion candidate regions.
Row 3 Right: Regions with the aperture problem. Row 4: Opti-
cal flow of the occluding (left) and of the occluded signal (right)
using the EM algorithm on our spatial orientation signatures.

Figure 10: Row 1: The first, 
 < -th and
: ; -th frames of the image

sequence. Each frame has ; � ��� : � 4 pixels. Row 2 Left: Esti-
mation results using the single motion model in the 
 < -th frame.
Row 2 Right: Marked two motion candidate regions according to
the eigenvalue analysis. Row 3: Optical flow of two signals using
the EM algorithm on our spectral orientation signatures.

5 Conclusion

In this paper we studied the recovery of multiple motions
from the standpoint of orientation analysis. We proposed a
new 3D conic kernel for motion estimation. This method is

7



superior to current 3D steerability approaches in achieving
higher orientation resolution with lower complexity. Com-
parisons showed that this new method is similar to the 3D
Hough transform, but more efficient and robust. Besides, it
facilitates the convergence of EM estimation when results
are used as EM start values.
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