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Abstract

Responses of Gabor wavelets in the mid-frequency space build a local spectral representation scheme with optimal properties regarding

the time-frequency uncertainty principle. However, when using Gabor wavelets we observe a skewness in the mid-frequency space caused by

the unsymmetrically spreading effect of Gabor wavelets. Though in most current applications the skewness does not obstruct the sampling of

the spectral domain, it affects the identification and separation of source Signals from the filter response in the mid-frequency space. In this

paper, we present a modification of the original Gabor filter, the skew Gabor filter, which corrects skewness so that the filter response can be

described with a sum-of-Gaussians model in the mid-frequency space. The correction further enables us to use higher order moment

information to analytically separate different source signal components. This provides us with an elegant framework to de-blur the filter

response which is not characterized by the limited spectral resolution of other local spectral representations.
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1. Introduction

In this paper, we focus on the local spectral analysis. A

filter’s localization ability is measured by its support. For

local signal/image analysis, a narrow filter support is desired

both in the spatial domain and in the spectral domain.

However, there is a limit in improving the joint localization

ability according to the well-known uncertainty principle,

which proves that the product of the spatial and the spectral

support of an arbitrary filter has a lower bound. This lower

bound can be achieved only by Gaussians and modulated

Gaussians (Gabor filters) [13]. Gabor filters [13] are widely

used in local image analysis [1,15,20] because of this

attractive property. In addition, studies of biological vision
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also discovered that animal cortex can be well approximated

with Gabor filters [7,19,16].

In Gabor filters, impulse responses have the same support

at low and high frequencies. However, sometimes we would

prefer the support to be inversely proportional to the mid-

frequency, which is defined as the spectral distance between

the center of the filter kernel and the spectral origin. In the

time domain, for example, a low frequency signal has a

relatively long duration and a high frequency signal has a

relatively short duration. We wish to use a large time

window to include all parts of the low frequency signal and

use a small time window to better localize the high

frequency signal. This inverse proportionality in the spatial

domain can be ideally described as the dilation property

of wavelets in the spectral domain. The coupling of the

bandwidth with the mid-frequency yields Gabor wavelets,

a combination of Gabor filter and wavelets [21,6],

extensively used in signal analysis and image representation

(e.g. [20,28]).
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In the spatio-temporal orientation analysis, we also have

the same motivation to keep the spectral support of the filter

proportional to the mid-frequency. For example, the energy

Spectrum of a constant translational motion can be

characterized as an oriented plane passing through the

origin in the spectral domain [1,2]. Sampling the spectrum

with a set of Gabor filters at different frequencies and

orientations [15] may help us to estimate the orientation of

the spectral plane. Grzywacz and Yuille [14] further pointed

out that the orientation uncertainty can be measured by the

angle between two tangential lines, which pass through the

spectral origin and embrace the spectral filter support (see

Fig. 1). This angle is desired to be the same for filters

centered at different frequencies in order to keep orientation

estimation independent from frequency. This requires the

spectral support of the filter proportional to the mid-

frequency, thus justifies the applications of Gabor wavelets.

In applying Gabor wavelets, we observe a positive

skewness in the mid-frequency space [14], which is caused

by the unsymmetrically spreading effect of Gabor wavelets.

The spreading effect and the skewness did not draw

considerable attention in the computer vision community

because most applications of Gabor wavelets are classifi-

cation tasks. It is worth mentioning, however, that the filter

response in the mid-frequency space (we call this local

spectral representation the mid-spectrum) blurs the original

local spectrum. Consequently, many frequency-based

approaches suffer from the coarser resolution. For example,

Gabor filters fail to recover the orientation of the well-

known multiple motion planes in the spectral domain [2] in

multiple motion analysis. In order to improve the resolution

and even recover the original signals, deblurring techniques

have been developed, which usually assume symmetric

blurring of the original signals. Important applications of

deblurring techniques include source signal separation
Fig. 1. The motivation for applying 2D Gabor wavelets (redrawn from

[14]). We represent the spectral support of a 2D Gabor filter with a circle.

The angle between two tangential lines is a measure of angular uncertainty.

Applying a set of filters with constant scale may cause larger angular

uncertainty at lower frequencies (as shown by the angle between two

dashed lines). Thus, the spectral support of filters should be directly

proportional to the mid-frequency.
and multiple spectral orientation analysis. Obviously, the

skewness in applying Gabor wavelets does not fit the above

symmetry assumption and makes deblurring more difficult.

This limit motivates us to correct the skewness in the

mid-spectrum. The correction facilitates the deblurring of

filter responses so that we no more suffer from the limited

resolution of frequency-based approaches. The rest of the

paper is organized as follows: Section 2 studies

the skewness in detail and proposes a new filter to correct

the skewness in the mid-spectrum. In Section 3, we further

describe the corrected mid-spectrum with a sum-of-

Gaussians model and use higher order moment information

to identify and separate different 1D source signals. The

deblurring of the mid-spectrum is also demonstrated. In

Section 4, we extend the analysis to 2D spectral orientation

analysis. Section 5 presents some experiments to evaluate

the comparison between the new filter and Gabor wavelets.

This paper is concluded in Section 6.
2. Skew Gabor filter
2.1. The skewness of gabor wavelets

We first analyze the positive skewness in applying Gabor

wavelets. For simplicity we begin with a 1D Gabor filter

whose impulse response reads

g1ðx;u0;sxÞ Z
1ffiffiffiffiffiffi

2p
p

sx

eKðx2=2s2
x Þeju0x: (1)

Here u0 denotes the mid-frequency and sx is the scale

parameter. The spectrum of g1 (x; u0, sx) is a Gaussian

centered at u0

G1ðu;u0;sxÞ Z eðKs2
x ðuKu0Þ

2=2Þ (2)

with bandwidth inversely proportional to sx. In local signal

analysis, we usually calculate the spatial convolution

between g1(x; u0, sx) and the signal i(x) (here * denotes

convolution)

h1ðx;u0;sxÞ Z iðxÞ � g1ðxÞ Z

ðN

xZKN
iðxÞg1ðx KxÞdx; (3)

where the Gaussian envelope of g1(x) defines the local

neighborhood, although we still let dx go from KN to N
for simplicity. At a fixed position x0, the filter response is

simplified as an inner product

h1ðx0;u0; sxÞ Z

ðN

xZKN
iðxÞg1ðx0 KxÞdx: (4)

Using the facts that g1ðx0KxÞZg�
1 ðxKx0Þ and G�

1 ðuÞZ
G1ðuÞ (here * denotes conjugation) and the Parseval

theorem ([4], pp. 113–115), the above inner product can
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also be represented in the spectral domain as follows

h1ðx0;u0;sxÞ Z

ðN

xZKN
IðuÞG1ðuÞe

jux0 du: (5)

Here I(u) is the spectrum of i(x). Thus, at xZx0 (for

simplicity we may set x0Z0) we obtain a local spectral

representation of the original signal, which is a function

of the mid-frequency u0 and the scale sx. We call this

local spectral representation the mid-spectrum.

The mid-spectrum h1(u0, sx) spreads every spectral

Dirac component of the source signal into a function of u0

and therefore blurs the spectrum of the original signal.

Assume that the spectrum of the source signal is a Dirac

function I(u)Zd(uKui) originating from a complex

harmonic. Its mid-spectrum turns out to be

h1ðu0;sxÞ Z G1ðui;u0;sxÞ Z eðKs2
x ðu0KuiÞ

2=2Þ: (6)

If the parameter sx is a constant, then h1(u0, sx) is a

Gaussian spreading of d(uKui) and there is no skewness.

However, if the wavelet property is preferred, i.e. sx is

inversely proportional to u0

sx Z
C

u0

(7)

with C as a constant. Then, we obtain the positive skewness

of u0 [14] (see also Fig. 2)

h1ðu0;CÞ Z eðKC2ðu0KuiÞ
2=2u2

0Þ: (8)

We may straightforwardly extend the above analysis to

n-dimensional Gabor wavelets with isotropic envelope. For

2D Gabor wavelets in the spatio-temporal domain we have

the following relation

sx Z st Z
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
x0 Cu2

t0

p : (9)
Fig. 2. The skewness of Gabor wavelets. Left: The solid curve is h1 (u0, C) in Eq.

parameter ui/C. CZ3.5, uiZp/2. Right: 2D skewness h2(ux0, ut0, C) in Eq. (10).

Dirac function into a widely-spreading function.
The mid-spectrum of a 2D impulse d(ux0Kuxi, ut0Kuti)

then reads

h2ðux0;ut0;CÞ

Z exp K
C2½ðux0 KuxiÞ

2 C ðut0 KutiÞ
2�

2ðu2
x0 Cu2

t0Þ

� �
: (10)

Fig. 2 displays two skewness examples of 1D- and

2D-Gabor wavelets.

In many Gabor wavelets approaches, this skewness is

harmless because it does not obstruct the descriptions of

different signals with a set of samples [18,22]. Thus, the

main attention was attracted to the efficient covering/

sampling of the spectrum as well as the coefficient

estimation of the Gabor basis [3,20,28]. But we should

keep in mind that the Gabor wavelets filtering (see Eq. (8)

and Fig. 2) really blurs the input signal in the mid-frequency

space. As a result, the spectral resolution in the mid-

spectrum is much worse than that in the original signal.

More importantly, the non-symmetric blurring in the Gabor

wavelets further hampers the possible application of

deblurring techniques, which work well only under the

assumption of symmetric blurring. In order to apply

deblurring techniques in the mid-spectrum and eventually

use the mid-spectrum in source signal separation and

multiple-orientation analysis, we need to correct the

skewness in Gabor wavelets.
2.2. Correcting the skewness with skew Gabor filter

The positive skewness in Eq (8) is caused by the term u2
0

in the denominator of the exponential function. In order to

remove u2
0 from the denominator, we design a new skew

Gabor filter whose spectral definition reads

SG1ðu;u0;CÞ Z exp K
C2

2

� �
u Ku0

u

� 	2
� �

: (11)
(6) and the dotted curve is a Gaussian function centered at ui with the scale

CZ3.5, uxiZ2p/3, utiZp/2. In both cases, Gabor wavelets blur the input



Fig. 3. Spectra of skew Gabor filters with different C value. With CR3, limu/N SG1 (u; u0, C) is close to zero. u0Zp/2.

W. Yu et al. / Image and Vision Computing 23 (2005) 377–392380
Replacing the function G1(u;u0,sx) in Eq. (5) with

SG1 (u;u0,sx) yields

sh1ðu0;CÞ Z exp K
C2ðu0 KuiÞ

2

2u2
i

� �
: (12)

The new mid-spectrum is then an ideal Gaussian with

its scale parameter proportional to the mean value ui.

The symmetry in the mid-spectrum is therefore achieved

using the new filter. The spectral shape of the skew

Gabor filter, especially the tail of the filter depends very

much on the value of C since

lim
u/N

SG1ðu;u0;CÞ Z eðKC2=2Þ: (13)

From Fig. 3 it is clear to see that larger C values

make the tail of the filter closer to zero, which means

that the filter is more likely to have finite energy in the

spectral domain. Thus, a large C value is preferred in

order to simplify the application of the Fourier theory.

On the other hand, however, a large C value also needs

large filter kernel in the spatial domain. Obviously,
Fig. 4. Top: The real parts of a 1D skew Gabor filter (left) and a Gabor filter (middl

parts of both filters (left, skew Gabor; middle: Gabor) and their odd-symmetric d
the filter kernel could not be arbitrarily large in many

local image analysis applications. To make a compro-

mise, we must choose a reasonable C value. It is easy to

find out that when CZ3.5, the amplitude of eðKC2=2Þ is

about 0.22% of the maximal spectral amplitude of the

filter at u0 and can be considered as approximately

negligible. Thus, we choose CZ3.5 in this paper.

The spatial definition of the skew Gabor filter sg1(x) has no

analytical expression because there is no closed-form

representation of the inverse Fourier transform of SG1(u).

We may obtain an FIR version of both the real and the

imaginary part of the skew Gabor filter sg1(x) using an FIR

window in the Fourier domain and discrete Fourier transform

(DFT). In Fig. 4 we display one example of the skew Gabor

filter. Although the skew Gabor filter decays more slowly in

the spatial domain than the Gabor filter, the energy primarily

lies inside the central part of the Gaussian envelope (i.e.

between K12 and 12 on the left side in Fig. 4). If we extract

the central part of the plot as an FIR filter, the energy loss is

negligible.
e) as well as their even-symmetric difference (right). Bottom, The imaginary

ifference (right). The parameters are CZ3.5 and u0Zp/2.



Fig. 5. Left, 1D cosine sequence f ðx; tÞZ5 cosðp=4ðxC0:5tÞÞ: Middle: Mid-spectrum using Gabor wavelets with CZ3.5. Right, Mid-spectrum using 2D skew

Gabor filters with the same C. The skewness in the middle image is corrected.
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Similarly, we may correct the skewness of 2D Gabor

wavelets by using a 2D skew Gabor filter

SG2ðux;ut;ux0;ut0;CÞ

Z exp K
C2

2

� �
ðux Kux0Þ

2 C ðut Kut0Þ
2

u2
x Cu2

t


 �� �
: (14)

The mid-spectrum corresponding to d(ux0Kuxi, ut0Kuti)

is then a 2D Gaussian centered at (uxi, uti)

sh2ðux0;ut0;CÞ

Z exp K
C2

2

� �
ðux0 KuxiÞ

2 C ðut0 KutiÞ
2

u2
xi Cu2

ti


 �� �
: (15)

Fig. 5 shows an example of a 1D cosine sequence. We

apply both Gabor wavelets and skew Gabor filters to obtain

local spectral representation. Clearly, the positive skewness

in the mid-spectrum using Gabor wavelets is corrected by

using the skew Gabor filters. Here we use only one constant

C to keep the Gaussian envelope isotropic. We may also

apply two different constants (i.e. CxsCt) to form a mid-

spectrum with an elongated Gaussian shape. But this is

beyond the scope of this paper.
3. 1D source signal separation

In this section, we demonstrate the merit of correcting the

positive skewness in 1D source signal separation. Assume
Fig. 6. Left: The mid-spectrum after Gabor wavelets filtering is an overlap of two

Gabor filtering. We have totally four unknowns: the amplitudes a1 and a2, and th

determined by m1/C and m2/C, respectively.
we have a source signal s(x) in the spatial domain whose

local spectrum S(u) consists of two Dirac components

SðuÞ Z a1dðu Km1ÞCa2dðu Km2Þ; (16)

where a1 and a2 denote their amplitudes and m1 and m2

denote their offsets. Our goal is to estimate these amplitudes

and offsets from the local mid-spectrum so that the source

components can be identified and separated. Here we

provide such a simple example with known parameters to

simplify the comparison between Gabor wavelets and skew

Gabor filters. Our focus is the comparison between two

different local spectral analysis methods. Certainly the

traditional Fourier analysis can easily deal with such a

simple spectrum. But the traditional Fourier transform also

has to face the poor localization ability in the spatial

domain, aliasing problem in the sampling, and block effect

in extracting a Fourier window. Actually, it was these

problems that make the local spectral analysis methods

attractive since they provide solutions to these problems.

If we apply plain Gabor wavelets for filtering, the mid-

spectrum is an overlap of two skewness curves (cf. Fig. 6)

h0ðu0Þ Z a1eðKC2ðu0Km1Þ
2=2u2

0Þ Ca2eðKC2ðu0Km2Þ
2=2u2

0Þ: (17)

No analytic approach is available to extract those four

parameters from the skewness curve. Though iterative

algorithms (e.g. [8,24]) or learning methods (e.g. [9]) may

be used to extract the desired parameters, these non-analytic

approaches are computationally inefficient and are sensitive

to initial values and parameter setting in the cost function.
skewness curves. Right, The superposition of two Gaussians after 1D skew

e mean values m1 and m2. The scale parameters of these two Gaussians are
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Further, they are susceptible to local minima in the

regression procedure. Thus, we prefer to have an analytic

framework for parameter regression.

The correction of skewness makes this idea possible.

Under the same assumption as that in Eq. (16), the mid-

spectrum after skew Gabor filtering is then a sum of two

differently weighted and shifted Gaussian functions (for

simplicity we omit the coefficient term ð1=
ffiffiffiffiffiffi
2p

p
sÞ of the

Gaussian)

gðu0Þ Z g1ðu0ÞCg2ðu0Þ (18)

with

g1ðu0Þ Z a1eKðu0Km1Þ
2=2ðm1=CÞ2

g2ðu0Þ Z a2eKðu0Km2Þ
2=2ðm2=CÞ2

8<
: (19)

In above Gaussians the scale parameters are proportional

to the mean values. In Fig. 6 we demonstrate the mid-

spectrum of skew Gabor filtering, which is an overlap of two

Gaussian curves.

The sum-of-Gaussians model is well studied from the

statistical aspect and is widely-used in neural network

approaches (e.g. [9,24]). One benefit of this model is that we

are able to use higher order moment information to extract

parameters. According to Appendix A, we obtain the

following system of equations in a1, a2, m1, and m2

a1m1 Ca2m2 Z m0

Cffiffiffiffiffiffi
2p

p Z b1

a1m2
1 Ca2m2

2 Z m1b1 Z b2

a1m3
1 Ca2m3

2 Z
1

1

C2
C1

m2b1 Z b3

a1m4
1 Ca2m4

2 Z
1

3

C2
C1

m3b1 Z b4

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(20)
Fig. 7. Top: The source signal and its energy spectrum. Bottom: The positive mid-s

(right). These curves are actually overlapping of the spreading responses of two
Here m0 denotes the integration of g(u0) and m1, m2, and

m3 denote the first three order moments of g(u0)/m0.

Solving these equations (Appendix B) yields

a1 Z
að2ab2 Cbb1 Cb1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 K4ac

p
Þ

b2 K4ac Kb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 K4ac

p

a2 Z
að2ab2 Cbb1 Kb1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 K4ac

p
Þ

b2 K4ac Cb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 K4ac

p

m1 Z
Kb C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 K4ac

p

2a

m2 Z
Kb K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 K4ac

p

2a

;

8>>>>>>>>>>><
>>>>>>>>>>>:

(21)

where b1, b2, b3, and b4 are defined in (20) and the variables

a, b, and c are defined as

a Z b2
2 Kb1b3

b Z b1b4 Kb2b3

c Z b2
3 Kb2b4

:

8>><
>>:

(22)

The term b2K4ac is guaranteed to be no less than zero

(see Appendix B). If b2K4acZ0, there is only one single

Gaussian (i.e. m1Zm2) and we can estimate its mean value

and amplitude by using Eqs. (A1) and (A2).

In Fig. 7, we display a concrete example of source signal

separation. The source signal is composed of two cosine

functions

sðxÞ Z 2 cos
p

4
x

� 	
Ccos

3p

8
x

� �
(23)

with the spectrum

SðuÞ Z d uG
p

4

� 	
C

1

2
d uG

3p

8

� �
;

pectra (solid lines) using Gabor wavelets (left) and using skew Gabor filters

Dirac functions (shown as crosses). CZ3.5.



Table 1

Estimation results on Mid-Spectra using Gabor wavelets and skew Gabor

filters

Parameter True value Gabor wavelets Skew gabor

filter

a1 1 1.1451 0.9976

a2 0.5 0.2870 0.4825

m1 p/4Z0.7854 1.0814 0.8130

m2 3p/8Z1.1781 1.7965 1.2079

For comparison we apply the same higher-order-moment framework for

estimation. As the mid-spectrum using Gabor wavelets does not fit the sum-

of-Gaussians model, the corresponding results are not reasonable at all.
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which is symmetric in the spectral domain. Now we sample

the positive spectral space with Gabor wavelets and skew

Gabor filters. We start the mid-frequency at u0Zp/128 and

increase it with a fine step of p/128. The mid-spectra of both

filters are clearly displayed due to the dense sampling. Here

we set the highest mid-frequency as u0Z7p/8 so that we do

not need to consider the boundary problem in the discrete

mid-spectrum. Although the spectrum of the input signal is a

simple sum of two Dirac functions, the mid-spectra using

both filters are so blurred that it is hard to identify the source

signals by direct observation (see Fig. 7). The positive

skewness in applying Gabor wavelets even makes it

impossible to apply deblurring methods. In contrast, after

correcting the skewness we can estimate the amplitudes and

the locations of two positive Dirac components analytically

using higher order moment information (cf. Eq. (21)).

The estimation results are very close to the true values

(see Table 1). For comparison, we also extract higher order

moment information blindly from the mid-spectrum after

Gabor wavelets filtering and use Eq. (21) again for

estimation. As the sum-of-Gaussians model is no more

valid, the estimation results are far away from the true

values, as shown in Table 1 as well.

In the negative frequencies, we may perform a similar

procedure to extract the desired parameters. Then, we are

able to identify the source signal components in spite of the

blurring in the mid-spectrum. In other words, this method

can “deblur” the mid-spectrum.

Taking into account that a lot of efforts had to be made in

filter design so that the blurring after filtering does not

significantly affect the identification of signals or orien-

tations (e.g. [23,27,29]), this framework provides an elegant

solution to improve the resolution in the mid-frequency

space.
1 This integration is well known as Radon Transform [25].
4. Spectral orientation analysis in the 2D

spatial-temporal space

In this section, we analyze multiple orientations in the 2D

spectral space. This has important applications in 1D

multiple motion estimation. According to [11,12,2,30],
both 1D occlusion and transparency may be modelled as

energy concentration along multiple lines passing through

the origin in the spectral domain with some energy

distortion in the case of occlusion and without any distortion

in the case of transparency. The normal vectors of these

spectral lines denote motion parameters. Thus, the problem

of motion estimation turns out to be orientation analysis in

the Fourier space. Determining the orientation of spectral

lines, however, is a challenging task since the angle between

two spectral lines can be arbitrary. Eigenvalue analysis (e.g.

[26,17]) cannot properly determine the orientation of

multiple lines. Sampling the spectrum with Gabor wavelets

provided a good motivation, but suffered under the limited

resolution. Here we prove that this limitation can be

overcome using skew Gabor filters.

To simplify the spectral orientation analysis, we focus on

the angular distribution of the energy spectrum. The polar

integration of the spectral lines in the energy spectrum along

the radial direction1 yields the sum of two Dirac

components

sðqÞ Z a1dðq Kq1ÞCa2dðq Kq2Þ: (24)

Here q1 and q2 denote the orientation of the spectral lines,

and a1 and a2 represent the energy concentration of the

spectral lines.

This equation reminds us of the similarity between 2D

orientation analysis and 1D source signal separation (cf. Eq.

(16)). Now we need to check if the polar integration of the

2D mid-spectrum also gives us the nice angular distribution

fitting the sum-of-Gaussians model. The mid-spectrum after

2D Gabor wavelets filtering consists of differently-weighted

non-symmetric skewness-surfaces concentrating along the

spectral lines. Obviously, the corresponding angular distri-

bution would not be symmetric and therefore, would not fit

the sum-of-Gaussians model. In contrast, the mid-spectrum

after skew Gabor filtering consists of 2D Gaussians

concentrating along the spectral lines—the skewness has

been corrected. The remaining question is whether the

symmetric angular distribution is a sum of Gaussians. In

order to answer this question, we first study the angular

distribution of one 2D Gaussian.

For a 2D Gaussian centered at OiZ(ux,i, uti) (cf. Fig. 8),

its angular distribution reads

(see Appendix C for detail)

shaðqÞ Z
1

2p
exp K

C2

2

� �
C

C

2
ffiffiffiffiffiffi
2p

p cosðq KqiÞ

!exp K
C2 sin2ðq KqiÞ

2

� �

! 1 Cerf
Cffiffiffi
2

p cosðq KqiÞ

� �� �
; ð25Þ



Fig. 8. Left: The polar integration of an isotropic Gaussian centered at OiZ(uxi, uti) can be approximated by an ideal Gaussian function N(qi, sa). The solid

circle represents the support of the Gaussian. The pencil of lines passing through the origin denotes the integration paths. The middle point of the intersection

between a integration path and the solid circle lies on the dotted circle passing through the origin and qi. Middle: The solid curve is the plot of sha(q) (see

Eq. (25) with CZ3.5 and (qiZarctan(5/3)). It is very similar to the Gaussian N(qi, sa). For comparison we plot the Gaussian with crosses as well. The scale of

this Gaussian is saZsinK1(1/C). Right: The difference between sha(q) and N(qi, sa). The maximal difference is less than 2% of sha(qi).
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where qi is the polar angle of the Gaussian center (uxi,uti)

and erf(x) is the error integral function defined as

erfðxÞ Z
2ffiffiffiffi
p

p

ðx

0
eKt2

dt:

This expression is symmetric with respect to the angle qi

and has its maximum there. At a first sight, it is rather

complicated. But it has only one parameter C. Further, the

only difference between the polar integration and the

marginal integration of a 2D Gaussian is the integration

path: the polar integration paths go along the radial

direction, while the marginal integration paths go in a

parallel direction. It is known that the marginal integration

of a 2D Gaussian is a 1D Gaussian. Therefore, it is

reasonable to guess that Eq. (25) can be approximated by a

Gaussian N(qi, sa), especially when the polar integration

paths are close to be parallel.

In order to determine the scale parameter sa of the

Gaussian, we turn to the geometric aspect of this

approximation. In Fig. 8, we represent the support of a

2D isotropic Gaussian centered at Oi with a solid circle.

The radius ri of this circle is proportional to the scale of

the Gaussian sC Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

xiCu2
ti

p
=C. For the simplicity of

the following analysis we set riZsC. The lines passing

through the origin (1_1, /, 1_i, /) represent the paths

of polar integration. Along each path, the linear segment

between two intersection points on the solid circle forms

a chord of the circle. It is not difficult to verify that the

middle point ti of the chords lie on another circle passing

through the origin O and Oi, i.e. the dotted circle in

Fig. 8. Correspondingly, the distance between Oi and ti
changes after the arc between them on the dotted circle.

In other words, the remaining variable after polar

integration varies non-linearly along the arc on the

dotted circle. In the marginal integration of a 2D

Gaussian with the integration paths parallel to l0 in

Fig. 8, the variable of the resulting 1D Gaussian changes

linearly on the line perpendicular to l0, as shown by the

solid diameter passing through Oi. From the variable

perspective, this difference explains why the polar
integration of a 2D Gaussian is not exactly a 1D

Gaussian.

On the other side, however, we also observe that the arc

variable is a good approximation of the diameter axis near

the point Oi, especially if C is adequately large (e.g.

CZ3.5). Thus, the angular distribution sha(q) can be

approximated by a Gaussian function with an appropriate

scale parameter sa. From Fig. 8 it is clear that sa is equal to

the angle between l0 and l1. As ri is perpendicular to the

tangent line l1 at the tangent point t1, we have

sinðsaÞ Z
jrij

jl0j
Z

1

C
: (26)

Thus,

sa Z sinK1 1

C

� �
: (27)

The angle sa can be used to describe the approximation

error because it indicates the difference between the arc

variable after the polar integration and the linear variable

after the marginal integration. The larger the sa value is, the

larger the approximation error (for the marginal integration,

this angle equals to zero). Eq. (27) also points out that sa is a

function of C. Thus, we come to the conclusion that the

approximation error can be controlled by C. Note that the

distance between the Gaussian center Oi and the origin O

does not play a role here in determining the approximation

error when C is fixed. For the example shown in Fig. 8

with CZ3.5, the maximal difference between sha(q) and

N(qi, sa) is less than 2% of the maximal amplitude of sha(q)

(i.e. sha(qi)).

Now let us come to the angular distribution of the

complete mid-spectrum after 2D skew Gabor filtering. As

the mid-spectrum of two motions is a set of 2D Gaussians

centered on two spectral lines, the polar integration of the

mid-spectrum along each spectral line is then a sum of 1D

Gaussians with the same mean value and the same scale

parameter sa. Consequently, the angular distribution of the

mid-spectrum is the superposition of two 1D Gaussians and

we are able to analyze 2D orientation with the framework

introduced in Section 3. The only difference here is that
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the parameter sa is no more proportional to qi, but a constant

determined by C. Mathematically, the superposition of two

angular Gaussians reads

gaðqÞ Z a1eðKðqKm1Þ
2=2s2

aÞ Ca2eðKðqKm2Þ
2=2s2

aÞ: (28)

Here our goal is to determine four unknowns a1 a2, m1

and m2. According to the derivation in Appendix D, we have

the following equation system

a1 Ca2 Z
m0ffiffiffiffiffiffi
2p

p
sa

Z b�
1

a1m1 Ca2m2 Z
m1m0ffiffiffiffiffiffi
2p

p
sa

Z b�
2

a1m2
1 Ca2m2

2 Z
ðm2 Ks2

aÞm0ffiffiffiffiffiffi
2p

p
sa

Z b�
3

a1m3
1 Ca2m3

2 Z
ðm3 K3s2

am1Þm0ffiffiffiffiffiffi
2p

p
sa

Z b�
4

;

8>>>>>>>>>><
>>>>>>>>>>:

(29)

where m0 denotes the integration of ga(q) and m1, m2, and m3

denote the first three order moments of ga(q)/m0. The

solutions of this system read (see Appendix D for detail)

a1 Z
b�

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�Þ2 K4a�c�

p
Cb�b�

1 C2a�b�
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�Þ2 K4a�c�

p
a2 Z

b�
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�Þ2 K4a�c�

p
Kb�b�

1 K2a�b�
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�Þ2 K4a�c�

p
m1 Z

Kb� C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�Þ2 K4a�c�

p
2a�

m2 Z
Kb* K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb*Þ2 K4a*c*

p
2a*

;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(30)

where a*, b*, and c* are defined as

a� Z ðb�
2 Þ

2 Kb�
1 b�

3

b� Z b�
1 b�

4 Kb�
2 b�

3

c� Z ðb�
3 Þ

2 Kb�
2 b�

4

:

8>><
>>:

(31)

Now we obtain the orientation of the spectral lines

analytically, even when the mid-spectrum is blurred. The

normal vectors of these spectral lines further indicate the

velocities of multiple motions.
5. Evaluation

To evaluate the performance of our framework, we use

two synthetic examples with known ground truth and one

real example. The first example demonstrates the deblurring

ability of our framework. We synthesize a 2D signal whose

spectrum is composed of two spectral lines passing through

the origin (Fig. 9). The polar angles of these two lines are 30

and 608, respectively. The mid-spectra after Gabor wavelets

filtering and skew Gabor filtering are both strongly blurred

so that the source signals are hardly to recognize in the mid-

spectra. For comparison, we apply the same higher-order-

moment framework on the polar integration results of both
mid-spectra. The estimated polar angles are listed in Table 2

together with the true values. Clearly, the results from skew

Gabor filtering is superior to the results from Gabor

wavelets filtering.

The second example is to estimate motion parameters

from a 1D transparency sequence, which is the simple

overlapping of two source signals. We set the velocities of

two source signals as K0.33 [pixel/frame] and K1

[pixel/frame], respectively. Correspondingly, the polar

angles of two spectral lines are 18.43 and 45.008. Note

that the spatial periodicity of discrete Fourier transform

(DFT) cannot be fulfilled for such a non-harmonic image.

Consequently, we observe the aliasing effect after applying

DFT directly on the original signal, as shown in Fig. 10.

In order to avoid the aliasing problem, we low-pass the

signal before starting the spectral-sampling. Similar to the

first example, the mid-spectra after both Gabor wavelets

filtering and skew Gabor filtering are displayed in Fig. 10.

After the polar integration of the mid-spectra, we use the

higher-order-moment framework to estimate the polar

angles of the original spectral lines and further use the

equation vZcot(mK908) to estimate the velocities of the

source signals. Table 3 shows clearly that the polar angles of

the spectral lines and the estimated velocities after Gabor

wavelets filtering are far away from the true values, while

skew Gabor filtering provides reasonable results.

In order to check the performance of the higher-order-

moment framework under the affection of spectral distor-

tion, we also use a 1D occlusion sequence with the same

motion parameters as the transparency sequence. The

difference between occlusion and transparency is that

occlusion involves a step function in the spatial domain-

thus causing the distortion in the spectral domain, while

transparency is the simple overlapping of two source signals

both in the spatial domain and in the spectral domain [30].

This difference is also shown in Fig. 11, where we can

clearly observe the energy distortion of occlusion. The mid-

spectra of the source signals are more disturbed and their

normalized angular distributions have significant energy

everywhere. As a result, the simple sum-of-Gaussians

model is no more valid. If we still use the higher-order-

moment framework on the angular distribution of the mid-

spectra, the estimation results are not reliable at all, as

shown in Table 3 as well. Improving the robustness against

the noise is one of the topics in the future work.

The second example shows that the sum-of-Gaussians

model cannot be used in the analysis of occlusion

sequences. Therefore, we only use a real transparency

sequence in the following to further compare Gabor

wavelets and skew Gabor filters. Fig. 12 shows an image

sequence consisting of a right-moving portrait and a left-

moving package mirrored on the frame of the portrait. Since

both motions are horizontal, we can simplify the motion

estimation problem in the 2D sequence as an estimation in

the 1D sequence by cutting a X–T plane through the image

sequence, as shown in the first row of Fig. 12. In the X–T



Fig. 9. Row 1: The real part (left), the imaginary part (middle), and the energy spectrum (right) of a 2D signal. The polar angles of two lines in the spectrum are

30 and 608, respectively. Row 2:The mid-spectra using 2D Gabor wavelets (left) and skew Gabor filters (middle) with CZ3.5 and their difference (right). The

mid-frequency satisfies p=4%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

x0 Cu2
t0

p
%3p=4. Row 3: Normalized angular distributions of the mid-spectra (left: Gabor wavelets; middle: skew Gabor

filter) and their difference (right). Note that the difference image has a smaller scale.

Table 2

Estimation results on Mid-Spectra using Gabor wavelets and skew Gabor

filters

Parameter True value Gabor wavelets

filtering

Skew Gabor

filtering

m1 (8) 30 11.39 26.50

m2 (8) 60 55.72 62.19

For comparison we apply the same higher-order-moment framework for

estimation. Skew Gabor filtering provides resonables results, while Gabor

wavelets cannot.
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plane, we observe two motions as two oriented structures. In

the 64!64 white window, we take the DFT directly and

obtain the energy spectrum (row 1 right in Fig. 12). As the

two motions are almost constant in the window, we are

surprised to observe that some energy components locate

outside the expected spectral lines. After careful study of the

spatial-temporal image, we find out that the energy

components lying horizontally outside the spectral lines

are caused by noise and the aliasing effect of DFT, while the

temporal intensity variations are responsible for the vertical

energy bar (The dominant temporal variations are three

black horizontal lines above the white window (cf. row 1

middle in Fig. 12). There are also some almost invisible

dark lines lying horizontally in the window). Fortunately,

the energy level of these disturbing components is much

lower than the energy level of those components concen-

trating along the spectral lines (cf. row 3 in Fig. 12). Thus,

we still can use the sum-of-Gaussians model to estimate
the polar angles of the spectral lines, although we are aware

of the possible bias caused by the noise.

The real problem is that we do not know the ground truth

about the motions, which makes the comparison difficult.

Fortunately, the motions in the white window are almost

constant. Thus, we can extract the motion parameters

roughly by measuring the structure orientation. The polar

angles of two structures are 69.44 and 108.438 with an angle



Fig. 10. Row 1: The 1D random dot transparency sequence (left) and its energy spectrum after applying DFT directly. The motion parameters are v1ZK0.33

[pixel/frame] and v2ZK1.00 (pixel/frame]. Here the signals are moving toward the negative direction of the X-axis. The overlapping of two source signals

form oriented structures in the spatial-temporal plane. Row 2: The mid-spectra after Gabor wavelets filtering (left) and skew Gabor filtering (middle). Their

difference is shown on the right. Row 3: The normalized angular distributions corresponding to the mid-spectra and their difference. The estimated polar angles

of the spectral lines are listed in Table 3.
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of 38.998 between them. According to the Fourier analysis,

the polar angles of two spectral lines are K20.56 and

18.438, respectively. The angle between them is the same as

in the spatial domain since the Fourier transform is an

isometric mapping. Table 4 shows that the skew Gabor filter

provides results closer to the measured values than Gabor

wavelets. However, the difference between the skew Gabor

filter and Gabor wavelets is not significant comparing to the

difference in the random dot transparency example. For this

phenomenon we have the following explanations:
Table 3

Estimation results in both transparency and occlusion sequences

Sequence Parameter True value

Transparency m1 18.438

m2 45.008

v1Zcot(m1K908) K0.33

v2Zcot(m2K908) K1.00

Occlusion m1 18.438

m2 45.008

v1Zcot(m1K908) K0.33

v2Zcot(m2K908) K1.00

In the transparency sequence, the sum-of-Gaussians model is valid for the angular

reasonable estimation results. A blind application of the same framework on the mi

from the true values. In the occlusion sequence, the sum-of-Gaussians model is fra

spectral lines are no more reasonable. As a result, the estimated motion paramete
†

dist

d-sp

gile

rs v
The energy spectrum in the white window is not a pure

overlap of two spectral lines. The visible energy

components outside the spectral lines bias the sum-of-

Gaussians model. This explains why we cannot obtain

the perfect results using the skew Gabor filter.
†
 The spectral lines in the energy spectrum happen to be

nearly symmetric about the ux-axis, while the skewness

of each spectral line after Gabor wavelets filtering

(cf. Eq. (10)) appears in the direction leaving the

ux0-axis. In other words, the skewness surfaces of both
Gabor wavelets Skew gabor filter

26.328 16.388

58.988 45.748

K0.49 K0.29

K1.66 K1.03

2.478 4.418

92.118 90.688

– –

– –

ribution of the mid-spectrum after skew Gabor filtering. Thus, we obtain

ectrum after Gabor wavelets filtering shows that the results are far away

under the affection of the distortion so that the estimated polar angles of

1 and v2 are not reliable.



Fig. 11. Row 1: The 1D random dot occlusion sequence (left) with the same motion parameters as the 1D transparency sequence in Fig. 10. The occlusion

boundary is moving toward the positive direction of the X-axis. The energy spectrum (right) after the DFT is disturbed by the distortion. Row 2: The mid-

spectra after Gabor wavelets filtering (left) and skew Gabor filtering (middle). The energy is less concentrated than the energy in the transparency sequence due

to the distortion. The difference of two mid-spectra is shown on the right. Row 3: The normalized angular distributions corresponding to the mid-spectra and

their difference. The minimal energy component is much higher than its counterpart in Fig. 10. The estimated polar angles of the spectral lines are listed in

Table 3.
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spectral lines happen to be nearly symmetric about the

ux0-axis—the skewness in the mid-spectrum has been

cancelled out due to the symmetric properties of the

spectral lines (This analysis can be proved by the angular

distribution of the mid-spectrum in Fig. 12). Without the

skewness, the mid-spectrum after Gabor wavelets

filtering is closer to the sum-of-Gaussians model. Thus,

the results after Gabor wavelets filtering are almost

comparable to those after skew Gabor filtering.

We can verify the first explanation by using the fact that

the noise outside the spectral lines is close to an uniform

distribution in the angular space. We can roughly suppress

the energy of the noise by deducting a certain amount of

energy everywhere. Denoting the angular energy distri-

bution as s0, we replace s0 with s0Kmin(s0) before

applying the the higher-order-moment framework. This

modification suppresses a large part of the energy

components outside the spectral lines and the improvement

of the estimation precision is sufficient to support the above

explanation. Interestingly, the same adjustment also works

for the symmetric mid-spectrum after Gabor wavelets

filtering. Certainly we could not expect the ad hoc

modification in this specific example works in general
cases because the energy distribution of noise is generally

unknown. Also, the distortion in the occlusion example

cannot be suppressed by this simple trick of energy

deduction. A systematic solution to this problem remains

open.
6. Conclusion and discussion

In this paper, we have proposed a new filter to correct

the skewness of Gabor wavelets in the mid-frequency

space. After the correction we are able to model the

distribution in the parameter space with a sum of

different Gaussian functions. Comparing with the non-

symmetric skewness curves, the benefit of using Gaussian

functions for distribution description is obvious: Gaus-

sians have good localization ability and are capable of

providing simple yet rich descriptions of signals. From

the point of view of probabilistic signal processing and

pattern recognition, this correction simplifies the tasks of

signal analysis significantly. For example, the analytical

framework for source signal separation benefits from the

statistical simplicity of Gaussians in calculating higher

order moments.



Fig. 12. Row 1 Left: Extracting an X–T plane from a real transparency sequence. Row 1 Middle: The X–T plane in detail with a white window denoting the

location of local spectral analysis. Two motions are nearly constant inside the window. Row 1 Right: The energy spectrum of the signal in the white window

after using DFT directly. The vertical energy bar is not a printing problem. It is caused by the temporal intensity variation in the white window (cf. Row 1

Middle). Row 2: The mid-spectra after Gabor wavelets filtering (left) and skew Gabor filtering (middle) and their difference (right). Row 3: The normalized

angular distribution of the mid-spectra (left: Gabor wavelets; middle: skew Gabor filter; right: their difference). The estimated polar angles of the spectral lines

are listed in Table 4.
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Higher order moment information is also used in

independent component analysis (ICA) approaches [5,10].

In ICA approaches we need a numerical solution (e.g.

singular value decomposition (SVD)) because the distri-

bution is unknown. In our framework, however, the sum-of-

Gaussians model makes an analytic solution possible.

Another point of our source signal separation framework

is that most frequency-based methods suffer from low

resolution (e.g. [30]) due to spreading and overlapping.
Table 4

Measured and estimated parameter values in the real transparency sequence

Parameter True value GW G

m1 (8) zK20.56 K26.27 K

m2 (8) z18.43 26.83

v1Zcot(m1K908) z0.37 0.49

v2Zcot(m2K908) zK0.33 K0.51

m2Km1 (8) z38.99 53.10

The results using skew Gabor filtering are closer to the measured values than the re

the affection of energy components outside the spectral lines in Fig. 12 If we su

component from each term in the angular distribution, the results are then improved

energy deduction, SG means skew Gabor filter, and SGWED means skew Gabor
By achieving the spreading to have a Gaussian shape, we

can separate two overlapping Gaussians in the mid-

frequency space. This enables us to reach very fine

resolution in the spectral domain and eventually solve the

aliasing problem.

The higher-order-moment framework can only separate

two Gaussian functions. This requires that the source signal

should have no more than two harmonic components.

Under the affection of noise with even low energy level,
WWED SG SGWED

23.38 K22.97 K20.36

24.42 25.29 23.69

0.43 0.42 0.37

K0.45 K0.47 K0.44

47.80 48.26 44.05

sults using Gabor wavelets filtering. But these results are not perfect due to

ppress these energy components by deducting the amount of the minimal

. Here GW denotes Gabor wavelets, GWWED denotes Gabor wavelets with

filter with energy deduction.
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the number of source signal components is easily over two

and causes the higher-order-moment framework to have a

poor performance. In order to improve the robustness

against noise and eventually extend the range of appli-

cations (e.g. occlusion analysis), we must either extend the

allowable number of source components or develop a new

optimization framework to suppress the noise.

In this paper, we limit our application in the 2D spatial-

temporal space. We plan to extend the current framework to

the 3D spatial-temporal space to analyze multiple motions

in the real world, in which the spectral lines turn out to be

spectral planes. With the increase of dimension, the

computational complexity problem also needs to be

addressed. We may reduce the computational load by

using elongated filter kernels to sample the mid-frequency

space more efficiently and by studying how sparsely we can

sample the spectrum without affecting the parameter

regression.
Appendix A

For convenience we change the variable in Eq. (18) to x

gðxÞ Z a1eKðxKm1Þ
2=ð2ðm1=CÞÞ2 Ca2eKðxKm2Þ

2=ð2ðm2=CÞ2 :

In order to use moments, we must normalize g1(x), g2(x),

and g(x) to obtain the corresponding distribution density

functions f1(x), f2(x), and f(x):

m01 Z

ð
g1ðxÞdx Z

ffiffiffiffiffiffi
2p

p

C
a1m1;

m02 Z

ð
g2ðxÞdx Z

ffiffiffiffiffiffi
2p

p

C
a2m2;

m0 Z

ð
gðxÞdx Z

ffiffiffiffiffiffi
2p

p

C
ða1m1 Ca2m2Þ;

f1ðxÞ Z
1

m01

g1ðxÞ Z
1ffiffiffiffi

2p
p

C
m1

eKððxKm1Þ
2=2ðm1=CÞ2Þ;

f2ðxÞ Z
1

m02

g2ðxÞ Z
1ffiffiffiffi

2p
p

C
m2

eKððxKm2Þ
2=2ðm2=CÞ2Þ;

f ðxÞ Z
1

m0

gðxÞ Z
1

a1m1 Ca2m2

½a1m1f1ðxÞCa2m2f2ðxÞ�:

(A1)

The first three order moments of f(x) read

m1 Z

ð
xf ðxÞdx Z

1

a1m1 Ca2m2

ða1m2
1 Ca2m2

2Þ; (A2)

m2 Z

ð
x2f ðxÞdx Z

1
C2 C1

a1m1 Ca2m2

ða1m3
1 Ca2m3

2Þ; (A3)
m3 Z

ð
x3f ðxÞdx Z

3
C2 C1

a1m1 Ca2m2

ða1m4
1 Ca2m4

2Þ: (A4)

Reformulate Eqs. (A1)–(A4) yields the equation

system (20).
Appendix B

After defining x1Za1m1, x2Za2m2, we get an equation

system of variables x1, x2, m1, and m2 from (20)

x1 Cx2 Z b1; (B1)

x1m1 Cx2m2 Z b2; (B2)

x1m2
1 Cx2m2

2 Z b3; (B3)

x1m3
1 Cx2m3

2 Z b4: (B4)

From (B1) and (B2) we obtain

x1ðm1 Km2Þ Z b2 Kb1m2; (B1.1)

x2ðm1 Km2Þ Z b1m1 Kb2: (B2.1)

We multiply both sides of (B3) and (B4) with (m1Km2)

and simplify them as

ðb2 Kb1m1Þm2 Z b3 Kb2m1; (B3.1)

ðb2 Kb1m1Þm
2
2 C ðb2 Kb1m1Þm1m2 Cb2m2

1 Kb4 Z 0:

(B4.1)
Submit (B3.1) into (B4.1) yields

am2
1 Cbm1 Cc Z 0 (B5)

with

a Z b2
2 Kb1b3

b Z b1b4 Kb2b3

c Z b2
3 Kb2b4

:

8>><
>>:

This is a standard one variable, two order equation whose

discriminator reads

b2 K4ac Z ðb1b4 Kb2b3Þ
2 K4ðb2

2 Kb1b3Þðb
2
3 Kb2b4Þ

Z ½a1a2m1m2ðm1 Km2Þ
3�2R0 (B6Þ

The equality is attainable only when m1Zm2, i.e. when

we have only one single Gaussian. Then we only need to use

(A1) and (A2) directly to extract its amplitude and mean

value. In case of b2K4acO0, we have two real roots

(without loss of generality we assume ml!m2)

m1 Z
Kb C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 K4ac

p

2a

m2 Z
Kb K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 K4ac

p

2a

:

8>><
>>:

(B7)

Submitting m1 and m2 into (B1.1) and (B2.1) and

further taking into account that x1Zalm1, x2Za2m2 we
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solve a1 and a2

a1 Z
að2ab2 Cbb1 Cb1
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að2ab2 Cbb1 Kb1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 K4ac

p
Þ

b2 K4ac Cb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 K4ac

p

:

8>>><
>>>:

(B8)
Appendix C

In order to calculate the angular distribution of Gaussian

function after polar integration we use the following

knowledge

ð2p

qZ0

ðN

rZ0
sh2ðr; q;CÞr dr dq

Z

ð
ux0

ð
ut0

sh2ðux0;ut0;CÞdux0 dut0 Z 2p
u2

xi Cu2
ti

C2
;

where sh2(r, q, C) is the polar representation

of sh2 (ux0, ut0, C). Using the polar mapping

(uxi, uti)/(ri, qi) and (ux0, ut0)/(r, q) we have

sh2ðr;q;CÞZexp K
r2 Cr2

i K2rri cosðqKqiÞ

2r2
i =C

2

� �

Zexp K
ðr Kri cosðqKqiÞÞ

2 Cr2
i sin2ðqKqiÞ

2r2
i =C

2

� �
:

The radial integration yieldsðN

rZ0
sh2ðr;q;CÞrdrZexp K

C2 sin2ðqKqiÞ

2

� �

!

ðN

rZ0
exp K

ðrKri cosðqKqiÞÞ
2

2r2
i =C

2

� �
rdr

(C1Þ

AsðN

rZ0
exp K

ðrKri cosðqKqiÞÞ
2

2r2
i =C

2

� �
rdr

Z
r2

i

C2
exp K

C2 cos2ðqKqiÞ

2

� �

C

ffiffiffiffiffiffi
2p

p
r2

i cosðqKqiÞ

2C
1Cerf

Cffiffiffi
2

p cosðqKqiÞ

� �� �
;

Eq. (C1) turns out to be

ðN

rZ0
sh2ðr;q;CÞrdrZ

r2
i

C2
exp K

C2

2

� �
C

ffiffiffiffiffiffi
2p

p
r2

i cosðqKqiÞ

2C

!exp K
C2 sin2ðqKqiÞ

2

� �

! 1Cerf
Cffiffiffi
2

p cosðqKqiÞ

� �� �
:

After the normalization with 2pðu2
xiCu2

ti=C
2ÞZ2pðr2

i =

C2Þ we have the angular distribution function

shaðqÞ Z
1

2p
exp K

C2

2

� �
C

C

2
ffiffiffiffiffiffi
2p

p cosðq KqiÞ

!exp K
C2 sin2ðq KqiÞ

2

� �

! 1 Cerf
Cffiffiffi
2

p cosðq KqiÞ

� �� �
:

Appendix D

To follow the derivation in Appendices A and B, we

change the variable in Eq. (28) to x

gaðxÞ Z a1eKððxKm1Þ
2=2s2

aÞ Ca2eKððxKm2Þ
2=2s2

aÞ: (D1)

Similar to (A1)–(A4), the integration of ga(x) (i.e. m0)

and the first three order moments of ga(x)/m0 read

m0 Z
ffiffiffiffiffiffi
2p

p
saða1 Ca2Þ; (D2)

m1 Z
1

a1 Ca2

ða1m1 Ca2m2Þ; (D3)

m2 Z
1

a1 Ca2

ða1m2
1 Ca2m2

2ÞCs2
a; (D4)

m3 Z
1

a1 Ca2

ða1m3
1 Ca2m3

2ÞC3s2
am1: (D5)

Reformulating (D2)–(D5) yields the equation system

(29). This equation system is the same as (B1)–(B4). We

may simply get the solutions of m1 and m2 from (B7)

m1 Z
Kb� C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�Þ2 K4a�c�

p
2a�

m2 Z
Kb� K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�Þ2 K4a�c�

p
2a�

:

8>><
>>:

(D6)

with

a� Z ðb�
2 Þ

2 Kb�
1 b�

3

b� Z b�
1 b�

4 Kb�
2 b�

3

c� Z ðb�
3 Þ

2 Kb�
2 b�

4

:

8>><
>>:

(D7)

Substituting (D6) into (B1.1) and (B2.1) solves the rest

two variables

a1 Z
b�

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�Þ2 K4a�c�

p
Cb�b�

1 C2a�b�
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�Þ2 K4a�c�

p
a2 Z

b�
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�Þ2 K4a�c�

p
Kb�b�

1 K2a�b�
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�Þ2 K4a�c�

p
:

8>>><
>>>:

(D8)

Thus, we get the solutions of these four unknowns.
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