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aMedical Physics of the Diagnostic Radiology, University Hospital Schleswig-Holstein,
Michaelisstr. 9, 24105 Kiel, Germany

bChristian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik,
Christian-Albrechts-Platz 4, 24118 Kiel, Germany

ABSTRACT

Trabecular networks of cancellous bone show complex and stochastic characteristics, which have to be modelled
in an adequate way to determine pathological changes of the network induced by osteoporosis. The analysis of
complexity may be handled by the use of the Markov Theory, which is based on local interactions of a set of
elements and thus can be applied to trabecular networks. The conditional entropy which is investigated as a
potential measure of complexity, estimates the order of a structure and thus provides a means for classification
of healthy versus osteoporotic bone structures. Since the conditional entropy is based on transition probabilities,
stochastic characteristics are modelled, too. From a set of 29 female human vertebra T12, classified into two
groups of 18 non-osteoporotic and 11 osteoporotic vertebrae axial biopsies were excised from the centre of the
vertebral body. A digital model of the trabecular network was extracted with a Micro-CT device (FanBeam
Microscope, Stratec, Pforzheim, Germany). Transition probabilities between neighboured voxels were coded as
a set of 18 symbols describing the local dimension of a voxel and its relationship to its neighbours within a
certain distance. A tree graph of the symbolic transitions coded the transition probabilities and founded a basis
for the calculation of the local conditional entropy as a measure of order. The estimated local entropy for a
distance at and above 10 voxels showed significantly higher values for the non-osteoporotic subjects than for the
osteoporotic ones. This difference indicates, that non-osteoporotic trabecular networks show a higher degree of
disorder compared to the osteoporotic ones.
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1. INTRODUCTION

As all bones, vertebrae are subject to changes with regard to age and diseases like osteoporosis. Bones are
described by two main characteristics: bone mineral density (BMD) and architecture. Since bone density can
explain up to 83% of the variation in mechanical properties of machined specimens of vertebrae,1 knowledge
about the structural aspects of the way how bone material is arranged may be important in terms of explaining
bone integrity. Additionally, the ability to determine pathologic changes of the trabecular network of human
vertebrae may allow early detection as well as monitoring the progression of diseases like osteoporosis.

There are several approaches to describe structural properties.2 For example, direct measures of bone
morphometry of cancellous bone are the trabecular number (Tb.N), the trabecular separation (Tb.Sp) or the
trabecular thickness (Tb.Th). An example of a structural parameter of a higher order is the degree of anisotropy
(DA), which is a measure of the alignment of trabecular connections. While the former standard parameters
(Tb.N, Tb.Sp, Tb.Th) are calculated as mean values of a distribution, the parameter DA is a more complex
measure by not only averaging but combining the information from the trabecular network within a certain
distance.
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Figure 1. Two examples of trabecular networks: The left side shows a bone biopsy with a healthy network, the right
side contains an osteoporotic network with a lower number of trabeculae compared to the left one.

Simple parameters may not reflect the pathologic changes of the complex properties of trabecular networks:
These networks consist of multiple osseous connections of mainly two primitives: plate like and rod like trabecular
elements (see figure 1). Being build of a set of primitives which are connected to each other, the connections
of trabecular networks represent interactions of primitives. Since multiple interactions of a set of elements can
form a complex system, we study the application of characteristics of complex systems to trabecular networks.

Beside the complexity of trabecular networks, a second aspect has to be taken into account: The stochastic
nature which is inherent to natural objects is reflected in the kind of combination of osseous connections: It is
well known that the orientation of the trabeculae is influenced by trajectories defined by forces running through
the bone. Since a vertebra is mainly exposed vertical forces, within a vertebra two main orientations of the
trabeculae can be found: horizontal ones which bear the main load and vertical ones which stabilize the horizontal
trabeculae. Since a vertebra is a biological system with multiple stochastic impacts, not only these two main
directions can be found, furthermore a mixture of several kinds of directions and connections of trabeculae build
the network (see figure 1). Thus, the deterministic part of the trabecular network is modulated by stochastic
impacts. This inherent stochastic nature of cancellous bone which is influenced by various physiological as well
as pathological factors has to be represented by an adequate mathematical model. Within the framework of
Markov Processes probability graphs model systems of elements, whose characteristics are dependent only on
their neighbours.3 This breaks down the curse of complex interactions while preserving stochastic characteristics
and can be justified by mechanical considerations: The force a single trabecula is exposed is determined solely
by the neighboured trabeculae connected to it.

A possible characterisation of differences between healthy and osteoporotic networks is the measure of order
or disorder of trabecular networks. Based on the amount of information found in the network structure, the
entropy of this structure can be calculated,4 and the Complexity Theory gives the method to determine the
degree of order or disorder based on entropy.5 Specifically, the conditional entropy models the local interactions
found between trabeculae or - a level of resolution down - between voxels, and thus incorporates the second
aspect of stochastics into the method investigated in this study. Since computations of conditional entropy are
based on symbolic coded structures, a transformation of the continuous valued measurements of the trabecular
networks to a discrete valued description symbolic has to be performed.

The application of the conditional entropy enables the investigation of the main hypothesis of this work,
which states, that an osteoporotic trabecular network of a human vertebra shows a lower amount of Entropy
and thus a higher degree of order than a healthy one.
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2. METHODS

After specifying the material used in this study a survey over the techniques for obtaining and evaluating an
adequate discrete representation of the measured bone biopsies is given now:

2.1. Material

A set of 29 female human vertebra T12 without any fractures was classified by an experienced radiologist into
two groups of 18 non-osteoporotic and 11 osteoporotic vertebrae. If a vertebra was obtained from a spine which
showed an osteoporotic fracture on another vertebra, it was assigned to the osteoporotic group, otherwise to the
non-osteoporotic group. The donators of the vertebra of the osteoporotic group had a mean age of 83.18 (+/-
6.98) years, while the mean age for the non-osteoporotic group was 81.61 (+/- 7.2) years. The difference between
the age of the groups was not significant. The mean of the bone mineral density (BMD) of the osteoporotic
vertebrae was 56.03 (+/- 25.05) mg/cm3. The mean BMD for the non-osteoporotic group was 58.92 (+/- 24.82)
mg/cm3. Again, the difference of bone mineral density between the two groups was not significant.

To extract a model of the trabecular network from a human vertebra in vitro, from each vertebra a central
biopsy of 8mm diameter and 10 mm length was obtained. Scanning each biopsy with a Micro-CT (FanBeam
Microscope, Stratec, Pforzheim, Germany) resulted in a dataset of 512 x 512 x 1000 isotropic voxels of 25
micrometers side length. This measurement assigned each voxel a continuous representation of the corresponding
density of the biopsy.

2.2. Mapping the voxel space to a symbolic space

To assess measures of complexity a symbolic representation of the trabecular network is needed. This can be
achieved by performing a discretisation of the continuous values of the trabecular network using the values of
the voxels and their neighbourships. The following four steps are used to map the continuous valued voxel space
to the discrete valued symbolic representation:

1. Binarisation

2. Calculating the local dimension of a voxel

3. Exclusion of ambiguities when detecting relationships between voxels

4. Extraction of symbolic sequences out of the 3D-volume.

Binarisation

The first step towards a symbolic description of the trabecular network was a classification of the voxelspace into
two types of voxels: bone and marrow. Since the bone biopsies were measured with a high resolution of 25 µm,
a high contrast between bone and marrow were achieved. As a result, the classification into bone and marrow
voxels could be done by applying fixed threshold to the continuous valued voxels.

Local dimension

Secondly, a refinement of the classification of the bone and marrow voxels into three categories was performed.
For each voxel of the type bone the local dimension was calculated (see figure 2). This was achieved by a
technique which was used by Bruske6: For each voxel, the set of relative vectors to its neighbour voxel of the
type bone within a distance of five voxels was determined. Based on this set AT = (v1, ..., vn) a Local Principal
Component Analysis (LPCA) was performed by calculating the set of eigenvalues µi of the covariance matrix
σ = 1

N AT A. To assess the local dimension of a voxel, the number of eigenvalues which fulfill the criterion from
Fukunaga et. al.7 was used. This criterion regards an eigenvalue as significant, if the equation

µi

maxµj
> a (1)
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Figure 2. This slice through the 3D volume shows the classified trabecular network. The black region represents marrow,
while the different gray levels correspond to the three dimensions (dark gray: 1D, the medium gray 2D, light gray: 3D)

is fulfilled. Experiments showed that a value of a=5 lead to reasonable classifications of the local dimension.
This classification founded an estimation of the role a single voxel plays in the framework of the trabecular
network: A dimension of one is likely to corresponded to a voxel of a rod like trabecula, a dimension of two may
correspond to a plate like type, and a dimension of three belongs to a voxel of a junction type. Of course, the
set of voxels of a trabecular network cannot be partitioned into these strict cases, since usually mixtures of these
three types are found.

The preceding steps of binarisation and calculation of the local dimension transformed the continuous valued
volume of the trabecular network into a discrete valued volume of the types:

• marrow

• bone with assigned local dimension of 1

• bone with assigned local dimension of 2

• bone with assigned local dimension of 3

Thus, the voxels as well as the relationships between neighboured voxels of the measured volume were
described on a symbolic level.

Removal of ambiguities

Thirdly, due to the cylindrical shape of the biopsy the set of distinguishable neighbourhood relations has to be
determined. In our case, a rotation of the cylindrical biopsy around its main axis is not detectable. Additionally,
the orientation of the biopsy upwards or downwards is not distinguishable (see figure 3). In consequence, the only
relationships between neighboured voxels which can be taken into account are the vertical and the horizontal
direction. Thus, all possible horizontal directions from a voxel to its neighbours are combined to the horizontal
class h. Similarly, the directions upwards and downwards build the vertical class v of neighbourhoods.

Symbolic sequences of a 3D-structure

The classification of the bone voxels into three classes of dimension on the one side as well as the neighbour
relationships of the type horizontal and vertical on the other side are sufficient to build sequences of voxel
relationships on a symbolic level: Considering a bone voxel v1 with an assigned local dimension of 3 and its
vertically neighboured bone voxel v2 with an assigned local dimension of 2, we can write this relationship as the
symbolic code v32. More generally, all relationships between neighboured voxels can be written by an symbolic
code out of the set
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Figure 3. a) Due to the cylindrical shape of the biopsies a rotation along the main axis as well as the up- and down
side cannot be distinguished. b) As a consequence, all horizontal directions are combined to the horizontal class h, and
the directions upwards and downwards builds the vertical class v. c) Thus, the resulting symbolic representations of
distinguishable neighbourhood relations consists of the two symbols v and h.

A = {v11, v12, v13, v21, . . . , v33, h11, h12, h13, . . . , h33} (2)

Based on this alphabet A with its 18 symbolic descriptions of voxel transitions, a set of symbolic sequences
of length n is defined as follows:

An = {(c1, . . . , cn)|ci ∈ A, i ∈ {1, . . . , n}} (3)

In order to obtain the alphabet An, for each biopsy a graph of transition probabilities was build (see figure
4). The sequences of transitions between the voxels were determined by recursively finding all possible symbolic
sequences of transitions from a junction type voxel (a voxel with assigned dimension of 3) to neighboured bone
voxels within a certain distance. Each node of the resulting tree coded a voxel of a certain type, and each edge
of the tree coded the transition probability of the source voxel to a target voxel with a certain dimension and
direction. This graph of conditional transition probabilities was suitable for calculating the locally bounded
conditional entropy of the underlying trabecular network as a measure of order. The function of the conditional
entropy over a distance of two to eighteen voxels was calculated and compared with regard to the osteoporotic
and non-osteoporotic vertebrae.

As specified in section 2.2 the local dimension assigned to each voxel of type bone represents the dimension of
the local volume (all voxels within a distance of 5) around each voxel. This classification enables the extraction
of transitions from voxels to their neighbours while collecting the direction (horizontal or vertical) as well as the
local dimension of a voxel and its neighbour. Doing this, a sequence of transitions defines a sequence of symbolic
descriptions of these transitions (see figure 4).

2.3. Calculation of the conditional entropy

The basic hypothesis of this work, a higher degree of order of an osteoporotic trabecular network of a human
vertebra compared to a healthy vertebra can be tested using the approach of conditional entropy. This technique
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Figure 4. a) Sequence of neighboured voxel relationships taken from the space of transition probabilities between classified
voxels. b) Tree of probabilities: Transition probabilities are stored in the edges, while probabilities of sequences (and all
prefixes) are stored in the nodes.

is a tool for the classification of a structure between the two extremes of a purely random structure and a
completely ordered one. The basic idea is to ask, whether a given structure (c1, ..., cn), consisting of letters
ci of an alphabet A gives some hint for the extension (cn+1, cn+2, ...) of this sequence, or if this extension is
independent of the prefix (c1, ..., cn). In the following section two examples of the aforementioned extremal
structures are given:

Nondeterminism and order: Two extremes in the space of predictability

A system which shows nondeterministic characteristics can be assigned to a state between the two extremes of a
random or an ordered system. Now two simple examples of these two extremes are given: The first one consists
of a purely random structure, where each subsequence is independent from its prefix. This is the one-dimensional
Bernoulli Sequence (see figure 5): Each letter ci of the sequence (c1, ..., cn) is drawn independently with regard
to certain probability distributions p(c1), ..., p(cn) and subsequently concatenated to each other. For example the
sequence 010101110010100101 is an example for such a Bernoulli sequence. The probability for an letter ck+1 as
an extension of the sequence (c1, . . . , ck) is given by the equation

p(ck+1|(c1, . . . , ck)) = p(ck+1) (4)

The second example is the counterpart of a random structure. It is a completely ordered, periodic sequence
of letters (c1, ..., cn) with the condition ci = cj , j = i + t for some fixed period length t. A trivial example with a
period of t = 3 is abcabcabc... (see figure 5). Within this sequence, all future extensions of a prefix are determined,
if at least three letters are known: From any subsequence (ci, ci+1, ci+1) ∈ A3 the letter ci+3 is known as letter
ci with probability

p(ci+3 = ci|(ci, ci+1, ci+2)) = 1 (5)

This conditional probability can be interpreted as the degree of predictability of an extension of a known
structure. To extend this predictability to the conditional entropy as a measure of uncertainty of extension, the
term entropy is introduced now within the context of symbolic sequences.
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Markov Sequence of order 6
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0

Figure 5. The conditional entropy depends on the range of correlations. A Bernoulli sequence shows no correlation
between any two elements (refer to equation 4), thus the gain of information (i.e. the uncertainty) when extending the
sequence by one element is maximal each time. A Markov sequence with limited range of memory (here within a distance
of 6) shows a decreased information gain within its range of memory, but preserves a certain level of information gain
when extending the sequence behind the range of its memory. The periodical sequence does not gain any information
when its period is known. (after8)

Entropy as a Measure of Information

Based on a set of structures of different sizes, for example sequences of symbolic elements, a probability density
can be defined. Furthermore, a measure of information of these substructures can be defined based on this
probability density. In fact, the block entropy, which can be interpreted as mean uncertainty for a set of sequences
(strings) c ∈ An of length n of an alphabet A with λ elements is defined as an functional H of p8:

Hn = −
∑

c1,...,cn∈An

p(c1, ..., cn) logλ p(c1, ..., cn) (6)

To extend this approach to the problem of measuring the information gain when extending a given sequence
of length n by one element, we use the definition of conditional entropy8:

Hn+1|n =
∑

c1,...,cn∈An

p(c1, ..., cn) ×−
∑

cn∈A

p(cn+1|c1, ..., cn) logλ p(cn+1|c1, ..., cn) (7)

The gain of information obtained by the extension of a sequence by one element calculated by equation 7 can
be used to determine the existence of relationships between subparts of a structure, since the range of correlations
determine the characteristic type of information gain over several steps (see figure 5).

3. RESULTS

To investigate the ability to discriminate between the two groups of osteoporotic and non-osteoporotic vertebrae,
the local dimension itself as well as the conditional entropy were investigated.
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Figure 6. The differences of the conditional entropy increase over the distance from a starting voxel with assigned local
dimension of 3. Starting from distance of 10 the differences are significant.

Discrimination by local dimension

The local dimension which was calculated to establish a symbolic coding of the voxel space showed itself dis-
criminative power with regard to the two groups of trabecular networks: The number of voxels of a biopsy which
were assigned to a local dimension of 2 discriminated significantly (p < 0.001, r2 = 21.6%).

The number of voxels of assigned local dimension of 3 showed a trend (p < 0.08), while the number of voxels
with dimension of 1 were not significant with regard to a discrimination.

Discrimination by local entropy

All sub-trees with depths between 2 and 18 of the tree of transition probabilities were determined. Each node
of a sub-tree with depth n defines a sequence of transition probabilities towards this node with corresponding
length n which was used to calculate the conditional entropy by equation (7). Thus, each node at depth n of
the tree of transition probabilities corresponds to a sequence of symbols or trajectory (c1, . . . , cn) ∈ An, and is
identified as symbolic sequence of length n below.

For a trajectory length of 10 voxels and above, the estimation of the conditional entropy based on the transition
probabilities of the symbolic coded voxel interactions showed significantly higher values for the non-osteoporotic
subjects than for the osteoporotic ones (see figure 6).

In table 1 the degree of explanation of the variation between the osteoporotic and the non-osteoporotic group
is given. An increase of explanatory power was found starting from sequences of length 12 and above.
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Length of symbolic sequence r2 Group discrimination (anova)
2 n.s.
4 n.s.
6 n.s.
8 n.s.
10 0.25
12 0.16
14 0.19
16 0.23
18 0.30

Table 1: Beginning with a symbolic length of 12 an increase of the values of r2 was found.

Although the two groups of vertebra did not differ significantly in terms of bone mineral density, a relationship
between the conditional entropy and the BMD was investigated. Depending on the length of the sequences a
weak or moderate correlation was found (see table 2). Correlations were calculated using a linear fit as well as
a polynomial fit with a degree of 2.

Length of symbolic sequence r2 (linear fit) r2 (polynomial fit (degree=2))
2 n.s. n.s.
4 n.s. 0.33
6 0.22 0.24
8 0.23 0.23
10 0.31 0.31
12 0.4 0.42
14 0.34 0.36
16 0.34 0.35
18 0.24 0.24

Table 2: The correlation coefficients between the conditional entropy and the BMD are given for a linear
correlation as well as for a polynomial fit of degree 2 (n.s. = not significant).

4. DISCUSSION

In the past years many approaches were investigated to describe characteristics of cancellous bone. Frequently
used approaches describe directly the appearance of the trabeculae in terms of trabecular thickness (Tb.Th),
trabecular separation (Tb.Sp) and trabecular number (Tb.N).9 Other methods define more comprehensive
measures like the degree of anisotropy based on the Mean Intercept Length (MIL) parameter2 but, like the
direct measures Tb.Th, Tb.N and Tb.Sp, these do not deal with the complexity of the trabecular network.

Calculations of the Fractal Dimension were applied to radiographs of cubic specimen of human trabecu-
lar bone10 and investigated in the context of 3D-trabecular networks to discriminate between osteoporotic and
healthy distal radii.11 Additional investigations with regard to the complexity of branching trabeculae12 were
done. The application of fractal dimension assumes the existence of self similarity across several levels of mag-
nification in the trabecular network, since this is the underlying mechanism of determining fractal dimension.

Trabecular networks represent multiple interactions of primitives of osseous connections and thus form a
complex structure. Thus, concepts as the entropy, which are related to complexity may be suited to asses
complex characteristics. Several measures of order, disorder and orderliness have already been defined based on
a symbolic representation of 2D-HRCT images.13 In that work, the symbolic alphabet was based on a multi-
level thresholding resulting in static elements combined with measures of dynamics in terms of local gray value
differences. It was found, that the complexity of a trabecular network decreases when considering the sequence
of a healthy, an osteopenic and an osteoporotic network. However, while the order declines between healthy and
osteopenic networks, it increases again between osteopenic and osteoporotic cases. Additionally, the definitions
of the symbolic elements are closely related to the gray value levels, which may lead to the close relationships of
these parameters to bone mineral density as found in that work.
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In this paper, the difference of the order between the osteoporotic and non-osteoporotic group was investi-
gated. The groups did non differ significantly with regard to BMD and age. As a result, the conditional entropy
as a measure of order allowed to discriminate the two groups independently of the BMD.

To achieve the aim of comprehensively characterising complexity, our approach was based on a gray-level
independent model of the trabecular network, which is not bound to a restricted set of symbols. Instead, the
symbolic representation contained all possible and non ambiguous relationships in three dimensions between bone
voxels with an assigned local dimension. The alphabet A of 18 symbolic codes was used as the basis for con-
structing one dimensional structures, specifically sequences of increasing length representing voxel relationships
when traversing through the voxel space. The extension of a given sequence by one symbolic coded neighbour
relationship taken from the alphabet A led to the calculation of the conditional entropy. This computation was
enabled by a recursively calculated probabilistic tree storing the sequences of different lengths starting from a
voxel with assigned local dimension of 3.

A concept of a local measure of dimension already used in the investigation of trabecular networks is the
Structure Model Index (SMI).14 Since this is a continuous measure describing plate- versus rod-like trabeculae,
it would have to be mapped to symbolic values to enable its use for the evaluation of conditional entropy.
Furthermore, the SMI is an integrative measure over a volume. A measure of local dimension which is applicable
to each voxel of the volume appeared to be more appropriate for coding the volume with a symbolic alphabet,
which forced us to use a local principal component analysis for each voxel.

When characterising natural complex structures, it may be not sufficient to restrict the research to complexity
measures. A more comprehensive way has to take the stochastical character of trabecular networks into account.
This lead to methods embedded in the Markov Theory. A method, which combines the requirements of modelling
complexity and stochastics is the conditional entropy which was investigated in this study. There are several
motivating examples of using conditional entropy in the analysis of natural and artificial sequences8: Natural
sequences like DNA-molecules can be evaluated with this technique as well as artificial sequences like music and
texts from books. For example, it was found, that music in general has lower conditional entropy and thus a
higher degree of order than texts.8

To apply the conditional entropy to the representations of the trabecular networks obtained by Micro-CT,
the continuous space voxels are embedded in had to be transfered into a discrete valued symbolic space. This
transformation was performed by determination of the local dimension and the relationships between voxels.
Ambiguities induced by the cylindrical form of the bone biopsies were eliminated by reducing the relationships
to the distinguishable cases of horizontal and vertical relationships, resulting in an alphabet A of 18 symbolic
codes of voxels transitions.

The number of voxels of the local dimension calculated to determine the conditional entropy were itself
significantly discriminating the two groups of osteoporotic and healthy trabecular structures: The number of
voxels classified as 2-dimensional were significantly lower for the osteoporotic trabecular networks than for the
healthy ones. The same was valid for the voxels of dimension of 3, although this difference showed only a trend.
The voxels of assigned dimension of 1 did not show any significance. This may contribute to the thesis, that
two dimensional (plate like) and three dimensional (junction like) trabeculae are lost within the progress of
osteoporosis.

Furthermore, the voxels of assigned local dimension of 2 were significantly positively correlated to the failure
load of the neighboured vertebrae T9-T11. Since two dimensional voxels contribute mainly to plate like trabec-
ulae, the decrease of two dimensional voxels and thus the decrease of plates in osteoporotic networks may reduce
the stability.

The conditional entropy was investigated as a measure of order of the trabecular networks. This parameter
gives an estimation of how an extension of a structure is predetermined based on the given structure, but it
is not mandatory bound to the colloquial understanding of the term order as a descriptor for self-similarity or
regularity. While a structure which is regular is usually depicted as ordered, the conditional entropy defines order
as the degree of predetermination when extending a given structure. Thus, a low conditional entropy, which is
equivalent to a high degree of predetermination is necessary, but not sufficient for the property of order in the
sense of regularity.
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Nevertheless, the properties of a trabecular network are bound to the external forces. More precisely, the
configuration of the osseous connections is forced to show regular patterns since the external forces are directed
vertical through the vertebra, and typically additional osseous connections perpendicular to the horizontal con-
nections are build. Since the trabecular network shows this regularity, a decreased predetermination may be
interpreted as a loss of regularity or an increase of conditional entropy respectively. In consequence, the condi-
tional entropy seems to be related to the regularity of the trabecular network.

Investigating the conditional entropy of the two groups of bone biopsies, the conditional entropy differed
significantly between the osteoporotic and healthy structures. For lengths of 10 voxels and above we found a
lower conditional entropy for the osteoporotic structures than for the healthy ones. Thus, a higher degree of
predetermination or order may be assigned to the osteoporotic networks. This may be explained by the loss of
horizontal vertebra and a resulting higher fraction of vertical trabeculae typically found in osteoporotic bones.
Summarizing, healthy networks may show a more unordered pattern of osseous connections, while osteoporotic
bones rely on the vertical trabeculae left during the osteoporotic thinning process.

The correlation of the conditional entropy and hence the correlation of the order of the trabecular network
to the bone mineral density was weak or moderate, depending on the length of symbolic sequences taken into
account. This result differs from the outcomes in,13 where a strong correlation between complexity and order
and the BMD was found. The reason for these different outcomes may be found in the different definitions of
complexity and order.

A limitation of this study is the limited quantity of bone biopsies used. A confirmation of these results with
an independent set of networks has to be done. Secondly, the probabilistic tree shows an exponential increase
of branches, since the number branches leaving each node is 18. Thus, the number of nodes of each generation
x is given by 18x. Further effort is needed to optimise the algorithm in order to extend the length of sequences
investigated for reasonable levels of computing power.

5. CONCLUSION

In this paper we have derived a method for estimating the degree of order of a trabecular network. Using this
method, the hypothesis was investigated, that osteoporotic trabecular networks of human vertebra show different
levels of entropy than non-osteoporotic ones. Although, for computational reasons the size of structures in which
dependencies were investigated was limited to 18 voxels, this hypothesis was confirmed: for distances at and
above 10 voxels osteoporotic trabecular networks showed significantly higher degree of order compared to healthy
ones.

To our knowledge the conditional entropy of a trabecular network, embedded into the Markov Theory of local
interactions is a new measure of osteoporotic changes of cancellous bone which may allow to assess the complex
and stochastic nature of this kind of networks in an adequate way.

An independent set of trabecular networks has to be used to validate the results obtained in this study.
Further optimisations of the implementation are necessary to extend the range of dependencies in order to
include the intrinsic dimension of trabecular networks, which may lay outside the range observed in this study.
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