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Abstract

The choice of an object representation is crucial for theatife performance of cognitive
tasks such as object recognition, fixation, etc. becausertioustly and efficiently vision tasks
can be performed depends on the choice of the representation

In this work we introduce Gabor Wavelet Networks as an effeand efficient object rep-
resentation. Gabor Wavelet Networks represent objects seits of weighted Gabor wavelets
that are specifically chosen to reflect the properties of ¢épeesented objects. The degrees of
freedom of each Gabor wavelet are allowed to vary continlyoliis is in contrast to the well-
known bunch graph approach, also based on Gabor waveletse Wie wavelet parameters are
chosen according to a specific discrete scheme that is bas aiscrete wavelet transform.
The optimized parameter choice of the Gabor Wavelet Netsvallows the representation to
be very sparse and specific to the represented objects. Wshwiv experimentally that the
specificity of the parameters can be exploited for the rettimgrof faces. Recognition rates are
shown to be as high &5%.

The degrees of freedom of wavelets allow any affine defoonatihat does not involve
shearing. Adding shearing to the degrees of freedom, GalaweMt Networks can easily be
deformed affinely. This makes tracking applications vergyea

Gabor Wavelet Networks represent objects through lineaabooations of Gabor wavelets.
Changing the dimensionality of the linear combination gesthe complexity and precision of
the representation. Computations based on the repreiserdigo vary in their complexity and
precision. Controlling the dimensionality of the lineandainations used in vision tasks allows
desired degrees of precision or speed to be achieved. Thibewieferred to aprogressive
attention Affine variability and progressive attention will be tedte an affine real-time face
tracking experiment.

The scalar weights in the linear combination of waveletslmonomputed by applying each
Gabor wavelet as a filter. The filter is applied to (projectatbpthe image only at the position
indicated by the wavelet parameters. The relation betweefilter responses and the weights
is linear, and the responses contain the same visual infmmas the weights. Therefore, the
optimized Gabor Wavelets of a network can be used not onlgefaresentation of an object but
also for optimized filtering. We have exploited this in a hg@de estimation experiment. Our
experiments have shown that the optimized filtering schemseperior to a filtering scheme in
which the filters are homogeneously distributed. The pasieration error was as low &s20°.
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Chapter 1

Introduction

It is a crucial question how object information, or imageommhation in general, should be
represented for cognitive systems to perform effectively efficiently. A good representation
is a hallmark for robust and successful performance andhbee of a representation has far-
ranging consequences for the entire system that reliesitipon

The reasons for this are manifold:

1.

The representation implies the distance and similargasarements. This is important
for, e.g., recognition tasks.

When dealing with digital images, the representatiob¢haodes the image information
usually results in a data reduction, and it is again the tyfpaformation representation
that determines which image information is relevant, seericoded, and which is not.

Other important properties are invariance properti¢is kgspect to perceived object sizes,
geometric deformations, and especially illumination ¢caonstancy [Funet al., 1998;
Rock, 1985]).

The abstraction capability of the representation hastmbntioned. On the one hand,
the representation can take information literally, i.eaih be data-driven @ppearance-
based This may be useful in some situations; in other situatiorshould be avoided:
well known are the amusing translations that derive from enodanguage translation
programs. On the other hand, the representation can be abstrashodel-driven.

. Also, the representation determines whether geometocmation is represented or dis-

carded. How important geometric information is was demmaest e.g. by [Zeki, 1993],

*like those included, e.g., iAlta Vista
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who reports absurdities that happened to humans whosesboairtheir ability to repre-
sent geometric information.

6. A further aspect is the efficiency of the representatioow lteaction time is of vital
importance to many cognitive systems. However, the reacieed depends on the data
that needs to be evaluated and on the number of filters thak toebe applied. The
possibility of controlling computation speed by contnogjithe complexity of the data
representation should be of great use for the construcfiantive vision systems.

The above points are only a selection from a variety of pdimis reveal the role of infor-
mation representation in cognitive systems.

Various image information representations for artificiadjoitive systems have been devel-
oped. We want to restrict our consideration to 2-D object repméstions only, and leave out
representations other than for objects and represensatidmgher dimensionality, such as e.g.
[Vetter and Blanz, 1998]. Therefore, when we use the ternjetilrepresentation” or “object
information”, we always refer to information that is derivgom 2-D image data.

Also, it appears that the object representation approablaesave been used in the context
of face detection/recognition have been evaluated mosbtghly. Consequently, most of the
object representation approaches that we will considex vere used in the context of face
recognition.

Generally, two main types of 2 object representations appear to exiSeature-based
representationandtemplate-based representatid@sunelli and Poggio, 1993].

The feature-based approaches as used e.g. in¢€ak 1996; Govindaraju, 1996; Xt
al., 1994; Chellappat al, 1995; Hong, 1991; Nakamust al., 1991; Yuille, 1991; Zhang
et al, 1998; Lyons and Akamatsu, 1998; Delage¢sl., 1995; Denzler and Niemann, 1996;
Jaquin and Eleftheriadis, 1995; Blake and Isard, 1998]rd@s®objects through abstraction:
An object is represented as a selected collection of alhSatures. Simple abstract features
are e.g. edges, lines, line segments and points. More carfgd&ires may be composed from
several simple ones. Also, they can be local gray-valuepatt and even Gabor wavelet jets
[Wiskott et al, 1997] can be used as features. This type of representafids to an abstraction
from the image pixel values. In most feature-based appexthe selection of features as well
as their description is givea priori through heuristics.

The major drawbacks of abstract object representationkremen. Without further expla-
nation, they are the following:

tIn the following, the term “cognitive system” will alwaysfeg to artificial systems.



¢ Single abstract features are ambiguous. They are not abteqaely identify in an image
the structure they are describing. Therefore, a colleaticieatures always needs to be
considered so that their topology adds further importardehknowledge.

e Object representation solely through abstract featurassi¢o a loss of valuable image
data.

e The choice and description of features are heuristic. Sscoefailure of a task closely
correlates witha priori knowledge for the choice of features.

On the other hand, template-based representations, Kéfg] 1986; Loeve, 1955; Costen
et al, 1996; Sirovitch and Kirby, 1987; Kirby and Sirovich, 19%Xelmanret al,, 1992; Craw
et al, 1999; Moghaddam and Pentland, 1997; Turk and Pentland,; B@vleyet al.,, 1998;
Yang and Huang, 1994; Mata&g al, 1999] are completely data-driven. The template-based
representation uses in its simplest version a gray-valaelege of the object. But sophisticated
variations like PCA-related approaches [Jolliffe, 198@&ele, 1955] also exist. In contrast
to feature-based representations, a template-basedsespa&ion is a holistic representation,
where the object is treated as a whole. Prior knowledge idetedere only for segmenta-
tion of the object from the background. A rudimentary segt@agéon may result in significant
instabilities with respect to background variations.

The major known drawbacks of template-based represensateative to abstract repre-
sentations are the following:

e Geometrical deformations of abstract object informatiaralatively easy to handle, but
the problem of aligning template and image into a commondioate system appears to
be a major problem for template-based approaches.

e Abstract representations are mostly robust with respeatngéric deformations or illu-
mination, contrast and background changes, but these ekdead to great instabilities
in template-based approaches.

¢ On the other hand, the feature-based approach can adapirtiteenof features used to
the needs of the problem, but the holistic approach prahibis to a certain degree.

To summarize, abstraction from pixel gray-values intraducaluable robustness with re-
spect to illumination variations, etc., but valuable imagermation is lost. On the other hand,
relying on the pixel information only while preserving theage data leads to serious instabili-
ties.
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An object representation that combines feature-based emglate-based characteristics
is the approach of [Wiskott al., 1997], where the features are selecgéedriori, while the
description of each feature is subject to training.

We will introduce an object representation that can be desdras both feature-based and
template-based. The representation is feature-basedd®seaa object is represented as a col-
lection of features and their relative positions. The onfprmation that is stored in this repre-
sentation are these features. The features are found thaptgnization; no prior knowledge
is used. The representation is template-based becauseaomeck with the representation as
a template. The collection of features allows completemstaction. Almost no image infor-
mation is lost. However, since the template is composed ftaset of features, the number
of features used allows the precision of the template to Im¢raited, ranging from a coarse
representation to an almost photo-realistic one.

To be specific, we want to introdu€abor Wavelet Network&SWNs) as a 2-D object rep-
resentation framework. GWNSs are feature-based becaudgexut s represented as a collection
of specially parameterized and weighted Gabor wavelets.ohlty information that is stored in
this representation is the parameter vectors of each Gadbozlet.

GWNs are template-based because the represented objdnt campletely reconstructed
by the weighted sum of the wavelets. In this sense, the obgattiiterally be viewed as the
sum of its features. The use of Gabor wavelets introducesntbael for the object features.
Furthermore, the GWN framework supplies all the algorittmasded to cope with illumination
change, affine deformation, segmentation and alignmemhieofdpresentation to an object in an
image.

GWNs combine the advantages of both representations:

e The robustness with respect to geometric deformationslamaiination changes is inher-
ited from the feature-based representation.

¢ GWNs are robust with respect to ambiguities of single festuyecause GWNSs inherit
the holistic view of an object from the template-based aggio

¢ The loss of valuable image data is avoided, except for thenrgesy value and the con-
trast, which are normalized.

e The number of features that are used to describe an objediecadapted according to
need. This also allows the precision of the description ty batween coarse and photo-
realistic.
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In the following, we will discuss various approaches to abjepresentation. In Section 1.2
we will summarize the contribution of the thesis and in Settl.3 we will give an outline of
the thesis’ structure.

1.1 Related Work

In this section we will present the major and most recent ipabbns that present ap-
proaches to 2-D object representation. We should mentiaintkiere exist a great variety of
object representations, but we shall discuss only thoseatteaprecise enough to allow the
recognition of individual objects or of object classes.

1.1.1 Template-Based Approaches

One of the most successful approaches to template-basembieCl representation is based
on Principal Component Analysis (PCA) [Jolliffe, 1986; Mee1955], such as the eigenface ap-
proach [Turk and Pentland, 1991] and various enhanceméoigijaddam and Pentland, 1997,
Zhaoet al,, 1998]. The eigenface approach has shown its advantages aohtext of detection
[Sung and Poggio, 1994] and recognition [Phillgisal, 1998]. Its major drawbacks are its
sensitivity to perspective deformations and illuminatiianges [Belhumewt al, 1997; Craw
et al, 1999]. PCA approximates texture only; geometrical infation is not evaluated. Fur-
thermore, the alignment of object images into a common dpate system is still a problem.
Another PCA-based approach is the active appearance maddl)([Cootes et al., 1998].
This approach enhances the eigenface approach consiesabiicluding geometrical infor-
mation. This allows alignment of image data into a commondioate system; the alignment
technique can be elegantly formulated within the AAM framekwv Recognition and tracking
applications have also been done within this framework [&dlset al., 1998]. An advantage
of this approach is the ability to model, in a photo-reatistay, almost any face, gesture and
gender. However, this is an expensive task. In fact, use ing precision levels in order
to spare computational resources and to restrict considert the data actually needed for
a certain application seems not be easy. Generally, eigemfpproaches encode information
on a pixel basis. This is also true for the active appearappeoach, but a further level of
abstraction is achieved via the appearance parameterqpaplees [Rowlet al., 1998; Poggio
and Beymer, 1995] represent other template-based ap@m®aainere object representations
are found implicitly through application of artificial nalmetworks (ANNs). The inputs to
the ANNSs are subsampled gray-value images of the objectjecbtiass. In [Yang and Huang,
1994; Matast al., 1999], templates and subsampled versions of the temlegabrectly used,
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and the authors optimize their correlation approaches imgus.g., geometric knowledge.
1.1.2 Feature-Based Approaches

In [Cox et al,, 1996; Govindaraju, 1996; Reisfeld and Yeshurun, 1998; ¥od Cipolla,
1997], a feature-based representation for face deteciontroduced. Face knowledge is rep-
resented through rudimentary line descriptions and ani@kplescription of their relations.
Features are detected in an image through spatial filtedsfiler responses are grouped ac-
cording to geometric and gray-value constrains. Prolsiulirameworks are used to reinforce
probabilities and to evaluate the likelihood that the cdati is a certain object. In [Herpers
and Sommer, 1998; Lam and Yan, 1996;eXial,, 1994], single object features are explicitly
modeled through static line models. In [Blake and Isard,819%e well-known active con-
tour models are presented. In [Zhagigal, 1998], differences between geometric features and
wavelet features are discussed.

1.1.3 The Bunch Graph Approach

The bunch graph approach [Wiskettal, 1997], as mentioned above, combines characteris-
tics of feature-based and template-based representalibesapproach is based on the discrete
wavelet transform: A set of Gabor wavelets is applied at afdefind-selected prominent object
points, so that each point is represented by a set of filtporeses, called gt.

During a training phase, jets are computed on a set of trgiimrages, but always for the
same set of prominent object points. After the training phas entire set of jets exists for each
prominent object point. The sets of jets, together withrthelative positions, define launch
graph

In order to represent a novel image, the bunch graph firstlsearautomatically for the
prominent object points by using the set of stored jets fehgaoint. At the detected object
features, new jets are computed and added to the bunch graph.

For recognition of an object, the best-matching jets arecsedtl from the bunch graph and a
voting strategy is used for final identification.

1.1.4 Histogram-Based Approaches

Histogram-based approaches are presented in giaht 1998; Schiele and Crowley, 2000;
Swain and Ballard, 1991]. In these approaches objects arzided and characterized by vec-
tors of local feature measurements, such as color, Gaudsraratives, etc. Multidimensional
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histograms are used to approximate the probability derfigitgtion for local and global ap-
pearance. Histograms discard geometric information. héamore, foreground-background
segmentation is not possible with this representation ta@dpproach is not very robust with
respect to background variations when the segmentatiast dane properly.

1.2 Contribution

This dissertation presents GWNSs as an object represemigbiproach that is both feature-
based and template-based. Even though Wavelet Networlsaiready introduced by [Zhang
and Benveniste, 1992], they have hardly been used or evetianed in active research. We
will argue that the potential of GWNs has been underestithak@is thesis contributes a thor-
ough evaluation of their properties as well as their ad\geggand disadvantages for real appli-
cations.

In detail, GWNSs supply a representational and algorithmaaiework for the design of typ-
ical appearance-based visual applications that are usgd,jreHuman-Computer-Interaction
(HCI), such as face tracking, face recognition and gazectlete For these three tasks the
framework offers a unified approach to

e the representation of image data and
¢ the formulation of algorithms.

The algorithmic framework is strictly 2-D appearance-loasehis means that model and tem-
plate knowledge, which is represented by the GWNs, is eteduan the basis of object ap-
pearance in a 2-D gray-value image, and the algorithms deehobdn any hand-selected model
knowledge.

In detail, we will show that

1. GWNs offer both a template-based and a feature-basedtobresentation,

2. GWNs are able to cope with affine object deformations arnld @hanges in illumination
and contrast,

3. the algorithmic framework for alignment of the objectnegentation with an object image
is inherent in the representation,

4. the representation is sparse and efficient.

In various experiments we will further demonstrate thediwihg:
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1. GWNs can be used efficiently for face tracking. Face tragkuill be realized in an
appearance-based manner while the GWN framework offersabéed algorithmic basis
for affine tracking through so-callesliperwavelets

2. GWNs allow an object to be represented with any desiredgiom, from coarse to almost
photo-realistic. This will allow computation speed and toenputational precision to be
controled. We will introduce the terprogressive attentiofor the variability in percep-
tion precision. The same term has been introduced by [Zakyodnd Peleg, 1990] for
image compression.

3. GWNs offer a sparse representation of image data. Theeypass is achieved because the
Gabor wavelets introduce a model for local image featurdgecds that are represented
with a GWN can be considered as weighted collections of lonabe features. Data
reductions of up to 98 can be achieved through this representation.

4. The sparseness of the representation and the use of a fapthed local image features
lead to very specific representations of objects where tlim@ed parameters of each of
the Gabor wavelets reflect the structure of the represeijedto Through this specificity,
accurate recognition can be realized. Algorithms for rettogn are natural parts of the
GWN framework. Without any further heuristics, the recaigmi rate is as high a87%
for a small database with large facial expression variation

5. GWNs represent object data through a weighted sum of @peparameterized Gabor
wavelets. We will show that the weights and the filter respsrage linearly related. The
Gabor wavelets can be used not only for reconstruction,lbatfar image filtering. The
linear relation implies that the Gabor wavelets are not oplymized for reconstruction,
but also for filtering. GWNSs therefore offer an optimizedaste for filtering images, i.e.
for optimized extraction of image data through a small s&babor filters that are given
by a GWN.

6. We will present an appearance-based pose estimatiooaghpin which input images are
filtered with optimized filters. The reduced set of filtersegieup computation and train-
ing time of a subsequently applied ANNs and the pose estimagisults are excellent.

1.3 Thesis Outline

Chapter 2 gives a background and an introduction to GWNstidse2.1 starts with a gen-
eral introduction to wavelets and related terms. We thea gigeneral introduction to wavelet
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networks (Subsection 2.1.5) followed by a general intréidacto Gabor filters (Subsection
2.1.6). Finally, Section 2.2 gives an extensive introduttio GWNs and to important con-
straints on the Gabor functions used. The remaining sectidrChapter 2 will discuss how
GWNs are optimized (Subsection 2.3), how weights are coetp(Subsection 2.4), and how
different GWNs can be compared (Section 2.5). Furtherntségance measures within wavelet
space will be discussed (Subsection 2.5.2). Also, the snperwavelewill be introduced; it
will allow any affine deformation of image data that is remed by a GWN (Section 2.6).

In Chapter 3 we will discuss the most important propertie§S8¥Ns, including (1) the
relation between a GWN and the represented object (Sectign(3) the property of variable
representation precision of the GWN, from coarse to almbstgrealistic (Section 3.2), and
(3) the property of optimized filtering through the linealateon between wavelet weights and
filter responses (Section 3.3).

Chapters 2 and 3 will cover all be important topics and prisgeiof GWNSs that have been
investigated and that are needed for the applications ithesicin the thesis.

Chapters 4 through 6 discuss how appearance-based trgChkiagter 4), appearance-based
face recognition (Chapter 5), and appearance-based pirs@esn (Chapter 6) can be realized
with techniques that are part of the GWN framework. With miarceptions, these chapters
are independent of each other and depend solely on Chapaes 2

In Chapter 4 we first introduce th@ogressive attention schem#/e then will exploit this
scheme and show that progressive attention allows confttohcking speed and tracking pre-
cision. Progressive attention and affine tracking with swpeelets will be treated thoroughly
in various experiments.

In Chapter 5 we introduce a novel face recognition approhahexploits the sparseness
of the GWN representation. In experiments we show how faaasbe recognized in spite of
affine deformations, variations in facial expression, dlognination.

In Chapter 6 we exploit the optimized filtering scheme thabfiered by the GWN for
pose estimation. The estimation results achieved arerlibtia the results of any other pose
estimation approach that is known to us. The approach agploits techniques that are part of
the GWN framework. The speed is high and can be controllexlitiir the progressive attention
property.

Finally, Chapter 7 closes with a summary of the main topias armdiscussion of further
issues that remain to be investigated.

The existing literature on image representation and orkitnge recognition and pose esti-
mation is large and varied. Reviews of the literature withsequently be spread throughout the
dissertation. Chapter 2 contains the relevant citationsvivelets, wavelet networks and re-



10 CHAPTER 1. INTRODUCTION

lated topics. Chapters 4 through 6 contain, each in one efitly sections, a report of relevant
background and related work, with selected citations alade® topics.
Each experimental chapter is concluded with final remarksietihe applications.



Chapter 2

Introduction to Gabor Wavelet Networks

In this chapter we will give an extensive and thorough inicitbn to Gabor Wavelet Networks.
The actual introduction will start in Section 2.2 and wiltinde a discussion of

¢ the relationship between filter responses and wavelet ceefts,
¢ distance measurements between

— different wavelet networks and

— different sets of wavelet coefficients, derived from the samavelet network,

as well as
¢ different norms.

First, however, we will start with an introduction to the vt transform itself from which
GWNs are derived. This will be done in Section 2.1 to the extexeded in order to introduce
GWNs.

2.1 Foundations

In this section we give a short introduction to the wavelabhgform. The wavelet transform
is often referred to as th&avelet decompositiorthus emphasizing the fact that the wavelet
transform decomposes a function into a superposition otless. We will use the ternvavelet
transformhereatfter.

We will start with the continuous 1-D wavelet transform amahiinue with the discrete 1-
D wavelet transform for orthogonal and non-orthogonal #amThen we will extend the 1-D
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transform to the 2-D wavelet transform. After that, we waView very briefly the two wavelet
approaches most commonly taken today to image processthigrage representation.

2.1.1 The 1-D Continuous Wavelet Transform

In this subsection we follow mainly the notation of [Daubresh 1992].
A functiony € L?(R) that satisfies

[ (w)]?
R [wll
is called anadmissible waveletHere = \/%7 [ ety (t)dt is the Fourier transform of.
Equation (2.1) is often referred to as thdmissibility condition In the following, when we
use the termnwaveletwe assume that the wavelet is admissible. The admissiloiibdition
ensures that the Fourier transformyoflecays sufficiently quickly when approaching zero. The
admissibility condition is important for the derivationtbieresolution of identityormula (2.3).

For any functionf € L?(R) the continuous-D wavelet transform is given by

(wa)(a,b)z\ﬁ/f ( )dt
= (s, ) (2.2)

witha € R\ {0}, b € R, ¢,,(t) = ﬁzp (=) and(- , -) denoting thel.? (R)-inner product.

0<Cy=2r [ B0 gy < oo (2.1)

The functiony is often called thenother waveleand the functiong), , are calledvavelets

The corresponding inverse wavelet transforasolution of identityformula, or Calderon
eqguation that reconstructs a functigrirom its wavelet coefficients is [Calderén, 1964; Gross-
mann and Morlet, 1984]

10 = g [ fesnen oo (50)

dadb
= o [ [ nvan S 23)

Eq. 2.3 was first proved in 1964 [Calderon, 1964]. The irdaégn with respect ta andb is
done over the entireontinuous phase spac&he parameters, b are continuous oveR and
control the dilation and translation of the mother wavelgidction). The termphase space
is borrowed from physics and refers to two-dimensional #frequency space, considered as a
geometric whole [Daubechies, 1990]. It can be seen that wiesmtegral in eq. (2.1) diverges
the functionf cannot be reconstructed. For details of the proof see, [€glderon, 1964;
Daubechies, 1992; Lougt al., 1994].

Equation (2.3) can be interpreted in two ways: It shows
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1. thata functiory can be uniquely represented in terms of its wavelet coefiis{d.., f ) (a, b)
and that there is a one-to-one correspondence betweendius¢te 1% (R) and vectors
in the infinite-dimensional vector space over the wavelgts= ¢ (=2).

2. that a functiory can be written as a superposition of the wavelgts
2.1.2 The 1-D Discrete Wavelet Transform

It is known that the representatidd., f)(a, b) of eq. (2.2) is highly redundant and that the
continuous phase space can be discretized without lostoomation [Chui, 1992; Daubechies,
1992; Mallat, 1998]. In this sense, 16t ¢ R\ {0} x R be a discrete set. Thel}, =
{mn | (m,n) € S} defines adiscrete family of waveletsThe setS can be understood as a
(not necessarily homogeneous) sampling grid of the phasmesp

Using the family of wavelets3,,, the wavelet coefficient6L,, f)(m,n) = (¢, , f) for
(n,m) € S are calculated by applying eq. (2.2). In eq. (2.3), the deutikgral is then replaced
by a double sum. However, there does not exist a direct desesgsion of (2.3). Hence before
we can write a functiorf in terms of its discrete wavelet coefficier{ts, f ) (m, n), we have to
introduce some more concepts.

Obviously, for a given wavelet function, how well a functionf € 1.?(R) can be repre-
sented by its discrete wavelet coefficiefis, f)(m, n), (m,n) € S, depends on the sampling
grid S or, equivalently, on the discrete family of waveléts. In order to quantify this, the
termframeneeds to be introduced. It is usually defined in a more genamaher [Daubechies,
1992], but we define it here according to our needs:

Definition 1

Lety € L*(R) be a waveletS a sampling grid, and®; = {{mn | (m,n) € S} a discrete
family of wavelets. We say thds, constitutes drame if there exist constantd > 0 and
B < oo such that for allf € 1.?(R)

AlfIE: £ Xpnmes Cmn » N2> < BIISIE: (2.4)

where||f||2, = [ |f(z)[*dz (which is referred to as thenergy of f). A andB are called
frame bounds.

When a discrete family of wavelets forms a frame, it provide®mplete and lossless rep-
resentation ofinyfunction f € I.? [Daubechies, 1990].
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In order to provide more detail, we introduce some addiliterans: B, is calledorthonor-
malin L? (R) if for ¢;, ¢; € By

1, ifi=j

P e =8y =
Wi i ’ {o, if i £ .

A frame By, is called abasisfor L?(R) if for all f € L?(R) the linear combinatiory =
>, ce(f)¢ is unique. A family of functions i (R) that is both orthogonal and a basis is
called anorthogonal basis

The expressionﬁ—B measures the redundancy of the frame wlﬁilmeasures its tightness
[Lee, 1996]. A frame is calletightwhenB = A.

For frame boundsl = B = 1 and||¢;|| = 1, the family of functions3,, forms an orthogonal
basis ofL? (R), and any functiorf € L?(R), can be uniquely written as

10 = g5 X (Lo o (22

= Z (Cmn » F)mn(t) (2.5)
n)ES

w—i—

Even for frame bound8 < A < B < 2, By, can still be considered to be an orthogonal frame
and eq. (2.5) is fairly exact. For frame boundis= B > 1, eq. (2.5) is exact, buB,, no longer
constitutes a basis, so that the linear combination in e§) (@ay not be unique. In cases where
B, does not constitute a tight frame, i.¢.< B, we have to writef in terms of thedual frame

By = {{mp | (m.n) € S}:

f(t) = Z <1Lm,n 3 f) wm,n(t)

(m,n)eS

= D (mns L) D) - (2.6)

(m,n)eS

The two families of function$3, and B,, are called dual when for eagh € B, and+; € B,
we have

1, ifi=y

0, ifi#j.

For (infinitely) large sets$, the dual wavelets in eq. (2.6) can be computed only apprabeiy
[Daubechies, 1990].

(Wi, Y2 = 0ij = { (2.7)
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It should be kept in mind that with a frame we can reconstamtfunction f € 1?(R).

In this thesis, we are not interested in finding a waveletaggntation foeveryfunction f €
L*(R). Instead, we will deal with only a small subsetlof(R), so that we will not actually
have to deal with wavelet families that constitute framast &). (2.6) still holds for non-frame
wavelet families and allows to approximately reconstrutetrection f with minimal error with
respect to théd.? Norm (i.e. in the mean square sense). We will return to thisoirrant issue
later.

It may be mentioned that for the discrete wavelet transfemsfunctionf and the wavelep
arecontinuoudunctions. It is the phase space that is discrete here. Bugrbes clearer when
we look at egs. (2.2) and (2.5). In eq. (2.2) the integral iemdiscrete because the wavelet
coefficient is calculated by integration over ttantinuougunction parameterat discretephase
space coordinates. Consequently, in egs. (2.5) and (Béjuhctionf is written as a sum over
all the discrete phase space coordindtesn) € S.

In multi-resolution signal analysisr multi-frequency channel decompositi@s discussed
in [Mallat, 1989b; Mallat, 1989a; Grossmann and Morlet, 498ee, 1996; Michaelis, 1997],
one exploits the properties of the discrete wavelet transfto analyze signals in a scale-
pyramid like fashion. For this, the phase space is usualtyp$ad with a “wavelet-like” grid,
where the support af is essentially proportional tg (see Fig. 2.1):

S = {(nbay',ay"ko) | m,n € Z} C R\ {0} xR (2.8)
B = {4 (x) = ay™*(ag™x — nbo) | m,n € Z} (2.9)

whereag > 1, b0 > 0 andky = [, . 1h(k)|*9. The choice ofay and b, is directly
related to the choice of the mother waveletFor multi-resolution signal analysis, the dilation
stepay and translation step widthy are usually chosen to lizand1, respectively, while the
wavelety is often chosen such thatis well localized in both the spatial and the Fourier domain
[Kronland-Matrtinetet al., 1987; Meyer, 1992] and such thatconstitutes an orthonormal basis.
What is exploited here is essentially the fact that the sttpyda),, ,, is proportional tazg’. As

a consequence, high-frequency wavelets,, with m << 0, are greatly concentrated and
involve a very small time translation stégu;* which is also proportional ta{*. This means
that the wavelet transform is able to “zoom in” on the signatiadby using more and more
concentrated wavelets,, ,,.

In contrast tdirst choosinga, andb, andthenthe mother wavelet, as above, one might be
interested in choosing the mother waveldirst andthenfinding the parameteks, andb,. This
allows one to investigate, as done by [Lee, 1996], how the@lspace should be sampled in
order to achieve a frame.
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kA
kgag (LD, |
(_17 )(_172)

Figure 2.1. Phase space sampling scheme corresponding to the (discrete) wavelet transform.
The constant £ is given by kg = fooc | (k) \2%; 1) was chosen to be even and we have chosen
ay = 2 [Daubechies, 1990].

2.1.3 The 2-D Continuous Wavelet Transform

It is possible to extend th&-D continuous wavelet transform to 2-D. For this, we need
to introduce rotatior® in addition to dilationa and2-D translationb. Foriy € L?(R?), the
admissibility condition (2.1) becomes [Daubechies, 1992]

oo 2T |7, 9 : 0 2
0<Cpy= 471'2/ / Pl cos |U;”8m IE 9 dw < 0o (2.10)
0 0

Vab,0(x) = 21& <Re <X ; b)) )

R, — cosf@ —sinf |
sinf@ cos@

the resolution of identity (2.3) then becomes

With

wherea > 0, b € R? and

1 o0 o0 27 1
fe & /0 /0 /0 (L) 0,10,6) ~5tbar,0 9 da db (2.11)
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Note that the dilation parameteris the same for both dimensions. This, however, can be
relaxed for functiong € 1.? (R?) that are separable in every coordinate [Zhang and Beneenist
1992]:

f(x) = filw1) x fa(ws) .

For such functions each component is handled separateheimtegral, so that for any such
function f € 1.?(R?) the continuoug-D wavelet transform is given by

(Lf)(c: S, 0) = - f(X)”(/)(SR(X - C))dX
= <f: wc,ﬂ,s>
= (f,¢¥n) , (2.12)

with the rotation matriXR, the dilation matrixS, and the translation vecter

R - (COSG —sinﬁ)
sinfl  cosf

S = diag(s,,sy)

c = (cpey)”

Heref denotes the rotation angle of the wavel€ik), s,, s, the scalings in the: andy
directions, and,, c, the translations in the andy directions. In this sense, the wavelets
Y, are dilated, rotated and translated versions of the mothgelet:). The five-dimensional
parameter vectai is given by these parameters:

n = (cg, ¢y, 0,54, 8,) .

The functionf can always be reconstructed by integration over all waysEetmeters:

dn
‘3x3y|
dn

|3x3y‘ '

R KR
e / (F. o) n
2.1.4 The 2-D Discrete Wavelet Transform

A natural way to define the discrete wavelet transform is semditize the phase space and
to assign discrete values to the wavelet parameters asvi[loee, 1996]:s, = (s4)™, sy =
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(Syo)™, Cx = NS0(Sz0)™, ¢y = kso(sy,)™, 0 = 0, = 16y, with m,n, k, 1 € Z. The discrete
wavelet transform is then given by

(Lg/;f)(man:kal) = <f:wmnkl>- (213)

Equation (2.13) can be interpreted as an abstract repeggenof / by its wavelet coeffi-
cients. To represent uniquely (if it is possible at all), huge numbers of waveleéfficients
are generally needed. How wdllis represented by its coefficier(tsif)(m, n, k,l) and how
many are needed depends on the chosen wavelet and on thesglug,, s, andfy.

The 2-D discrete wavelet transform is also used in the burablgapproach [Wiskott al.,
1997], where, however, only a few prominent feature poinésrapresented by their wavelet
coefficients. Of course, only a limited reconstruction @ tithage is possible in this case. The
equation

f = Zwmnklwmnkl . (214)

mnkl

allows two interpretations:

1. Given the wavelets,,,r;, an imagef can berepresentedy the set of weights,,,,,x;.
Understanding each wavelet,,.,; as a feature of , the weightsw,,,,,x; give the “impor-
tance” ofi,,,x; In the description off .

2. The functionf is approximatedy a linear combination of weighted wavelets. Eq. (2.14)
therefore defines a template 6y with approximation quality as an additional degree of
freedom.

In [Wiskottet al,, 1997], theepresentationahspect of eq. (2.14) is emphasized in the sense that
the goal was to represent individual properties of face§Zihang and Benveniste, 1992] and
[Szuet al,, 1992], the main interest was in function approximatiord eq. (2.14) is interpreted

as amapproximation

2.1.5 Wavelet Networks

Wavelet Networks were first introduced by [Zhang and Berstenil992] as a combina-
tion of feed-forward neural networks, namely the multidagigmoid network and the wavelet
decomposition. Multi-layer networks allow representatad non-linear functional mappings
between the input and output variables. This is done by septeng a multivariate non-linear
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function in terms of a composition of non-linear functiorfsacsingle variable, calledctiva-
tion functions[Bishop, 1995]. Sigmoids () are often applied as activation functions. The
corresponding mapping functions then look like

M
g(x) = Z wio(a] x +b;) + wy . (2.15)
=1
Here w, is called a bias and refers to a constant offset. The parasngteand b; apply a
linear projection to the input vectar. These projections are then transformed by the non-linear
activation functiongr which in turn are combined linearly to form the outputlt was shown
[Poggio and Girosi, 1990] that finite sums of the form (2. 28)ibit theuniversal approximation
property, i.e. they are dense in the space of continuougitunrsc
[Zhang and Benveniste, 1992] replace the sigmoid in (2.¢2badmissible wavelet (see

Fig. 2.2), and argue that the resulting wavelet networks

e preserve theiniversal approximatiomroperty, i.e. provide the same approximation ca-
pability as feed-forward neural networks,

¢ provide an explicit link between the network coefficientan (2.15) and the coefficients

C1
%
g delg)

Cn

Figure 2.2. This figure shows the structure of a wavelet network. This structure establishes a

one-to-one map with eq. (2.15); however, the function o has been replaced by a 2-D admissible
wavelet function 1. The 1-D translation b has been replaced by the 2-D translation vector C,
and rotation and scaling matrices R and S are introduced. wj is the DC value of the function

g that has to be added (if necessary).
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of the wavelet transform and the reconstruction (2.5).

e achieve good approximation quality even with a reduced odtwize.
2.1.6 Gabor Filters

Complex Gabor functions were first introduced by Gabor [@ah846]. They are com-
plex exponentials with a Gaussian envelope, or Gaussiarghvaine modulated by complex
harmonics. In one dimension, their impulse response isidiye

2ro 20

Gowo(T) = ! exp <_1x_> exp (jwox) . (2.16)

In two dimensions the mathematical expression of the fidsponse looks like

Jouwp(X) = ! exp (—1 <x2 + g-i)) exp (jwolz + 7)) . (2.17)

)
2o ,0y 2 \ oz ;

In the above 2-D equation, the rotation and translationrmpatars are omitted. The parameters
o andf are chosen beforehand as constants. Dilation, rotatiotranslation are done through
the wavelet parameters in egs. (2.10) - (2.12).

Eqg. (2.17) can be splitinto an even paftand an odd parg’:

. 1 1 (2% 92
Jowo(X) = exp | —= | 5+ =] ) cos (wo(z +y)) (2.18)
w0 2mo,0y 2 \ o2 05
0 1 Lz )\ .
) = e (53 (G4 ) )t @9

In Fig. 2.3 plots of a 1-D and a 2-D odd Gabor function are shown

Gabor functions offer the best localization in both frequeand image space, and they are
known to be good feature detectors [du Buf, 1993; Manjunath@hellappa, 1993; Mehrotra
et al, 1992; Michaelis, 1997]. In this thesis we will use odd Galomictions only, as they have
proven to give the best results for the purposes we will usmtfor. We will discuss this topic
in more detail in Section 3.1.

2.2 Introduction to Gabor Wavelet Networks

In this section we propose, as a major contribution of thiskwthe GWN for image rep-
resentation. The idea of the wavelet network is inspireddiahg and Benveniste, 1992] (see
above).
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Figure 2.3. Both the odd 1-D (left) and the 2-D (right) Gabor function are shown. The

frequency wy is set to 1.

One degree of freedom of wavelet networks results from tloécetof the mother wavelet.
After several experiments [Pelc, 1997] we chose to use odidFanctions for several reasons:
The use of Gabor functions in general is inspired by the faat they provide the best possible
tradeoff between spatial resolution and frequency reswiubh both 1-D [Gabor, 1946] and 2-
D [Daugman, 1985]. Furthermore, the use of Gabor filters iagenanalysis is biologically
motivated, as they model the responses of the receptive tiélthe orientation-selective simple
cells in the human visual cortex [Daugman, 1985; Jones ahddPal987]. In fact, it has
been suggested [Daugman, 1988; Porat and Zeevi, 1988hhaeteptive field responses of
simple cells can be described by the family of 2-D Gabor weteelln addition, Gabor filters are
recognized as good feature detectors [du Buf, 1993; Mattjusrad Chellappa, 1993; Mehrotra
et al, 1992; Michaelis, 1997]. Especially fotw, < 2, they are often used for edge detection
[Michaelis, 1997]. Specific uses of the odd Gabor functiomehgarticular advantages, which
will be discussed in Chapter 3.

An image representation using GWNs has the advantage af bparser than the Gabor jet
representation [Wiskott al,, 1997], but it allows encoding of almost all the image infatman
and leads to good reconstruction.

To define a GWN, we start out, generally speaking, by takingnailfy of N odd Gabor
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wavelet functionsl = {¢,,, ... ,¥n, } Of the form
(1) = 22 exp (= B (s (0 o) eos - (y — ) sin) )
Un; (7,Yy) = 2m{exp 52 | (Ser (7= cay cos; + (y — ¢,) sin 0

+ <syi (—(x — ¢g;) sinb; + (y — ¢,) cos b;) )1)
sin <w03xi ((z — ¢q;) cosb; — (y — ¢,,) sin 92)> : (2.20)

with the parameter vectar; = (c,, ¢y, 0;, 54., Sy;)" . Heree,,, ¢,, denote the translation of the

Gabor wavelets,,, s,, denote the dilations an) denotes the orientation. The parameter

gives the radial frequency in radians per unit length, amnla constant that relates the standard

deviationo to the radial frequency,: o = *-. According to [Daugman, 1985; Lee, 1996], we
0

define the following constraint:

Constraint 1
The half-amplitude bandwidth of the frequency responsetisl1l; octaves.

This means that the relationship betweeandwy is

3
o= Whel‘e,"<;:\/2ln2<2 +1> (2.21)

Wo 26 — 1

with ¢ the bandwidth in octaves. F@r = 1 octave,c ~ m/wy, and for¢ = 1.5 octaves,
o &~ 2.5/wy. This constraint was also used in [Pelc, 1997].

We have set, = 1, according to [Daugman, 1985; Michaelis, 1997], and =, according
to [Daugman, 1985]. With this, eq. (2.20) gives

T

o (1.1) = §p<—2i[( (0= ) 050+ (y = ) nfy) )

+ (syi (—(x — ¢g;) sin0; + (y — ¢y,) cos ;) )2])
sin (sxi ((z — ¢g;) cosb; — (y — ¢,,) sin 92)> : (2.22)

The normalization factor is defined so tHat /) = 1, i.e. ¢ is normalized with respect to the
L% (R?) norm.

The parameters; (translation, orientation and dilation) of the wavelets ba chosen arbi-
trarily at the beginning. According to [Zhang and Benvesidt992], any functiorf € 1% (R?)
can be represented by a wavelet network. We are therefong ¢miinterpret the imag¢ as a
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function of the spac&? (R?) and assume further, without loss of generality, tha DC-free.
In order to find the GWN for imag¢ we minimize the energy function

2 (2.23)

B iy N = D v
with respect to the weights; and the wavelet parametais Equation (2.23) says that the
andn; are optimized (i.e. the translation, dilation and orientabf each wavelet are chosen)
so that the imagé¢ is optimally approximated by the weighted sum of the Gaborehtsi),,, .

To prevent the wavelets from degenerating during mininopate.g. to prevent them from
stretching out too much, the following important consttarformulated according to the find-
ings of [Daugman, 1985]:

Constraint 2
The aspect rati@i of the elliptical Gaussian envelope is at mpstl.

We define a Gabor wavelet network as follows:

Definition 2
Lety,,i = 1,...,N be a set of Gabor waveletg,a DC-free image, and let, andn; be
chosen according to the energy function (2.23). The twoorsct

U = (Yn,,....0n)" and
w o= (wi,...,wy)"

then define th&abor Wavelet Network¥, w) for imagef .

It should be mentioned that it was proposed earlier [Daulescii990; Daugman, 1988;
Lee, 1996] to use an energy function (2.23) in order to findojhggmal set of weights; for a
fixedset of non-orthogonal wavelets,,. We modify this approach by also finding the optimal
parameters; for each wavelet,,. The parameters; are chosen fromontinuougphase space
and the Gabor wavelets are positioned with sub-pixel acguikhis is the main advantage over
the discrete approach [Daubechies, 1990; Lee, 1996]. Vinitee case of a discrete phase
space, local image structure has to be approximated by ainatidn of wavelets, aingle
wavelet can be chosen in the continuous case to precisedctrédical image structure. This
assures that a maximum amount of image information is entotlealso leads to an almost
symbolic abstraction [Granlund, 1997] of the image datayasvill see later.

Using the optimal waveleté and weightsyv of the GWN of an imagg, the GWN allows
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Figure 2.4. The left image shows an original face image /, and the right image shows its
reconstruction | using formula (2.24) with an optimal wavelet network W of just N = 52 odd

Gabor wavelets, distributed over the inner face region.

an accurate reconstructigiof the functionf by a linear combination of the weighted wavelets:

N
f="> wi, (2.24)
i—=1
= U'w .

The structure of eq. (2.24) is shown graphically in Fig. 2Qf course, the quality of the
image representation and the reconstruction depends amuthber N of wavelets used. An
example reconstruction can be seen in Fig. 2M.= 52 wavelets are distributed over the
inner face region of the left imagé by the minimization formula (2.23). The reconstructibn
using formula (2.24) is shown in the right image. Note that@abor wavelets are continuous
functions that interpolate the discrete image they aradchion. This fact will be of great
importance later when we need to defofraffinely.

*We will generally use the notatiofi g, . .. to refer to band-limited, continuous 1-D or 2-D functionshel
dimensionality should be clear from the context. We will tleeenotatiory, J, . .. when we want to refer explicitly
to discrete gray-value images as used in our experiments.
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2.3 Optimization of Gabor Wavelet Networks

Minimizing eq. (2.23) is crucial, because finding a globahimum is an inefficient task. In
order to find an optimal wavelet familyy for the GWN(¥, w) for a discrete gray-value imade
we use the Levenberg-Marquardt (LM) method, which is the keswn method for non-linear
optimization. The LM method allows smooth variations bedwéehe inverse Hessian method
and the steepest gradient descent method. Far from the ommithe gradient descent method
is used. As the minimum is approached, the Levenberg-Madtjnaethod smoothly switches
to the inverse Hessian method [Pressl., 1986]. The Levenberg-Marquardt method may get
stuck in local minima, and a careful selection of the inipafameters is therefore important.
This, however, also has the advantage that we can use powiédge about significant image
features to allow task-oriented optimization.

The initialization and optimization scheme we developesingilar to a Laplacian pyramid
scheme. First we positiohx 4 coarse wavelets equidistantly within the prominent imaggan
(in the case of face representation this is the inner facemggFig. 2.5, bottom left). These
16 wavelets define the first pyramid layer. They are then apéichwith respect to the energy
function (2.23). The optimization result, is shown in Fig. 2.5, top left. In a second step we
calculate the difference between the original image an@ésnstruction] — I;4, which is then
approximated by x 6 finer wavelets (Fig. 2.5, center, bottom). These waveleta tbe second
pyramid layer. The result is shown in the top center. Addimg tivo images together yields
imagels, (Fig. 2.5, top right). The positions of the 16 first-layer whts after optimization are
sketched in Fig. 2.5 bottom right. For comparison refer eodhginal imagel in Fig. 2.4, left.
This procedure can be repeated for further pyramid layéshduld be mentioned that at each
indicated wavelet position in Fig. 2.5, just a single wavédocated. The initial orientations
are random and the initial scales are constant in each lagdrtheir values are chosen with
respect to the distances to the neighboring wavelets. tivitly, a coarse-to-fine strategy for
optimization makes sense because the energy function)(@a23be minimized efficiently by
first using coarse and then fine wavelets.

In detail, a difference image D is defined as the compones&\pixel-wise) difference
between the original imagkand its reconstructiof:

D = I-1. (2.25)

At the beginning of the optimization, where no wavelets hatbeen found] = 0 andD = I.
Weightw is then initially set tal and a Gabor wavelet,, is selected that minimizes the energy
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Figure 2.5. The images demonstrate the idea of the Laplace-pyramid-like initialization and
optimization scheme. The wavelet net is first initialized with the wavelets sketched in the
bottom left image. The optimization result f16 is shown in the top left image. The difference
between that image and the original image is then approximated by the wavelets that are
initialized according to the bottom center image. The optimization result is shown in the top
center image. Finally, the top right image f52 shows the sum of the top left and top center
image. The bottom right image shows the final positions of the 16 wavelets of image flg (left

image).

best. In the next step, the weight is recalculated by orthogonally projecting the imdgato
the vector space ¢,,, > spanned by the single wavelgf, . In the next section we will go into
greater detail about orthogonally projecting an imag®&o a vector space ¢y, ,... ,¥n,_, >
spanned by a family of Gabor wavelets.

Assuming now that we already have a family of wavelets, then

n—1
D=T-) wiy, . (2.27)
i=1
The weights are found through orthogonal projection of thage! into the vector space
Ynys- .- ¥n,_, >. The difference imagé is then in the complement of the span of these
wavelets:

DeE (< tYn,eo  n,_, >)" (2.28)
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in the spacéd.? (R?). We then select a new wavelgt, such that, witho,, = 1,
1D = watbn, II2 (2.29)

is again minimized. This means in particular that

n—1
<D: wnn> = <I - Z wﬂ/}ni: wnn> 7£ 0. (230)
i=1
I is then again projected orthogonally into the new vectocspa ¢, , ... ,v¢,, > in order
to calculate the weights,, ... ,w,. This may be repeated unfN wavelets and weights have

been found. How this projection is done will be describechmnext section.

In the remainder of this section, we want to show that theltiegtfamily of Gabor wavelets
¥ constitutes a basis, i.e. that all € ¥ are linearly independent. This will be shown
by induction. Clearly this holds for one wavelet. If we ablgehave a family of wavelets
(¢n,, ... ,¥n, ) that constitutes a basis, we have to show that the newlytsdleavelet),,
is linearly independent of the otherg;, ¢< ¢, ... ,¢n, , >. Assuming that

wnn e< wnu"' 777/}1171—1 >

we have

<wn17"' :wnn_l >=< 1/)n1:--- 7wnn >

and in particular
(< 77/}1'117 et ’wnn—l >)L = (< 77/}1'11’ tt e 777/}1'177, >)l *
This again means that
n—1
I— Zwﬂ/}ni € (< wnla--- :wnn >)L )
i=1
which implies
n—1
(I = witn,. tn,) =0.
=1

This, however, contradicts the choicewaf, in the optimization step, wherg,, was selected
such that

n—1
<[ - Zwiwni:wnn> 7& 0.
i=1
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Therefore the),,, are all linearly independent and the Gabor wavelet famibyg {¢y,, ..., ¥n,}
constitutes a basis.

The above discussion has been in terms of discrete imades it evidently holds also for
continuous functiong € L% (R?).

2.4 Direct Calculation of Weights

Gabor wavelet functions are non-orthogonal. For a givenljafh of Gabor wavelets it is
not possible to calculate a weight directly by simple projection of the Gabor wavelgt onto
the image. In this section we explain how simple computatidine weights is still possible.

In [Daubechies, 1990; Daugman, 1988] it was proposed toqs@e23) to find the optimal
weightw; for each fixed wavelet through optimization. Because o#tion is a slow process,
however, we want to introduce two approaches to directlgutating the weights. The first
approach is derived from wavelet theory and employs biemtimal and dual wavelets. The
second approach is derived from linear algebra. As we wal] Beth approaches are equivalent,
but the approach( or better, the interpretation of the goblbased on the dual wavelets leads
to a better and more stable solution.

As already mentioned, Gabor wavelets are non-orthogonatlets. This problem can be
solved by considering the bi-orthogonal family of wavel@gChui, 1992; Feichtinger and
Strohmer, 1998; Mallat, 1998] (see also eq. (2.7)):

Definition 3
Two families of wavelets® = {¢;} and® = {q?i} are callecbi-orthogonaliff for all i, j they
satisfy the bi-orthogonality condition:

($i.0;) = 0. (2.31)
The wavelet) is called thedual wavelet ofp.

Of course, wheHd ¢;} constitutes an orthogonal family, we haye= ¢; for all 4.

If not stated otherwise, we will use the symldaivhen we want to refer to general wavelets,
and will use the symbaol when we want to refer explicitly to Gabor wavelets.

The use of bi-orthogonal wavelets allows direct calcutatid weights: Letf € 1L?(R?),
and let® = {4;} be a family of wavelets that constitutes a frame. et {¢;} be the family

tNon-orthogonality of waveleis understood in the sense that the wavelet coefficientsrendi¢ights of the
superposition are different in a non-orthogonal frame. @akavelets can be considered to be approximately
orthogonal only when their overlap is small. However, irstt@se no reconstruction is possible, so this case is of
no interest to us.
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of dual wavelets. Then there exist weighits;} such that

f= Z w;P; - (2.32)
A weightw,, can then be calculated by using the dual wavéjet

(. de) = / F(2)d()da

= wy. (2.33)

When the family of wavelet§;} does not constitute a frame, (2.32) holds only approxingatel
A dual wavelet family{ql-} constitutes an orthogonal projection of the functipronto the
subspace< {¢;} > which results in an optimal approximation ¢fby the{¢;} in the mean
square sense. Fig. 2.4 shows a geometrical interpretatian orthogonal projection of a
function f onto the wavelet familgp = { ¢, ¢; }. Applying the above discussion to our problem

Figure 2.6. Geometrical interpretation of the least squares
solution, illustrated for the case of a function [ and two
wavelets ¢ and ¢;. The corresponding wavelet network
output is represented as a linear combination of the two

wavelets ¢y and ¢;. The least-squares solution for W is

given by the orthogonal projection of f onto < & >.

of finding the right weightsv; for a family of Gabor wavelet¥ = {vy,,... , ¢, } of some

GWN, thew; can be found by projecting theual WaveletSz/N)ni. The Gabor wavelet family
{¢n,} is thedual family to the Gabor wavelet familyqy, } iff it fulfills for each i, j the bi-

orthogonality condition

<1/)l’li7 'L;nj> — (51,] . (234)
With & = (¢, , ... ,¥n, )7, we can write

[(xif, \IJ>} — . (2.35)
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In other words, the family of dual waveledscan be used to find the optimal set of weights

w; = <1;ni:g>
w = Uy (2.36)

¥ and ¥ are vectors of Gabor functions and their dual functiongyeesively. The notation in
eg. (2.36) refers to the continuous scalar products of e{ati’tedunction&ﬁm with ¢.

In the following, the same symboig and ¥ will refer to matrices. The functions,, are
assumed to be discretized and tkth rows in the matrice¥ and¥ contain the discrete values
of ¢y, andiﬁni. The productl g of the matrix¥ and the vectoy is then just the discrete version
of the scalar products in eq. (2.36). It will be clear from tdomtext whether the continuous or
the discrete case is being considered. In the notation of{286), the discrete version of eq.
(2.35) says that the matrix produgtl = 1I.

We find that

N

Ui = D (Wij) "ty (2.37)
7j=1
whereV; ; = (1n,, ¥n,) is the matrix of the pairwise scalar products. In order tosstiwat the
&ni in eq. (2.37) are indeed dual to bg,, we have to verify the bi-orthogonality condition
(2.34):

=Y (W) [ / Y (5) (x)dx}

=1
N
= Z (\Ijk,j)_l <77/}ni’ wn]‘>
=1
]N
= 2 () (¥5)
j=1
— b (2.38)

In the second to last row, thieth column of matrix(\; ;) is multiplied by thek-th row of
its inverse, which evaluates toif : = k, and to0 otherwise. Equation (2.37) is not specific
to Gabor wavelets, as one can see in the proof, but holdarfgifunction family of finite
dimensionality.
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Equation (2.36) allows us to define the operator
To : L?(R?) — L?(R?) (2.39)

as follows: Given a familyl of wavelets of a GWN, the operatd, realizes an orthogonal
projection ofL? (R?) onto< {¢y,} >C L?(R?) (the closed linear span ¢f),, }):

Nal

N
= Tu(g) = Vg =) withy, = Iw'
=1

with w' = Ty . (2.40)

Equation (2.40) can be interpreted as follows: Given a foncy, we search for the vector
w € RY such thaty = Iw?, which is optimally solved in a mean square sense, as exguain
above, by the duali: w! = Wg. In this sense, the functio maps a functiory into the
vector spac®”. The re-mapping ofv from the vector spacB” onto< {¢y,,} >C L?(R?) is
established by eq. (2.24), i.e = Iw'. These relations are sketched in Fig. 2.7.

Figure 2.7. A function g € IL?(R?) is mapped by the linear

mapping U into the vector W of the vector space RN,
The mapping of W into < {¢,,} >C L*(R?) is achieved
by the linear mapping W. U can be identified with the

pseudo-inverse of ¥ and the mapping of L? (R?) onto R”,

WUg = w, is an orthogonal projection.

The above interpretation of eq. (2.40) suggests that onlel ebso find the weight vectox
by considering the pseudo-inverselofas proposed in e.g.[Bishop, 1995]:

wl=Utyg. (2.41)
The pseudo-inversé™ is defined as
Ut = (T~ (2.42)

A close look at this definition reveals a close relation to &37): In fact, eq. (2.42) is
nothing else than eq. (2.37) written in matrix notation, ikee discrete version of the continuous
eq. (2.37).
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It is interesting to mention that the two mappingsand® do not commute. This can also
be seen in Fig. 2.7®® constitutes a mapping froii? (R?) onto < {¢y,} > L2(R?), while
&P = 1l is a mapping fronRY ontoRY .

It was mentioned above that the interpretation through da&klets leads to a more stable
solution. This can be seen by substituting eq. (2.37) into(@¢36). Eachw; is calculated
by first determining the inner product between the funcyoand each of the wavelets,,:
(¥n,, g). Then, in order to compute the weights, the vector of theripneducts is multiplied
by the matrix(¥; ;)" (see eq. (2.37)). It is easy to show that the matdig;) " is, except
for a factor, invariant with respect to the affine deformasi@f the GWN. It can therefore be
computed off-line. Furthermore, to compute the weightgs gufficient to calculate the inner
product of each of the wavelets with the image, and the nuiaultiplications and additions
needed for the product with the matrix is given by the numBeof wavelets. On the other
hand, using the interpretation based on the pseudo-invifisenatrix¥* is multiplied by g.
For discretey, the matrixU* has to have the same dimensionalityyaélso, U is not invariant
with respect to the affine deformations of the GWN.

Clearly, both methods are equivalent; the difference islgah the interpretation, which
implies a different order of the computational steps thatha be carried out.

2.5 Distance Measures for Gabor Wavelet Networks

It is of interest to determine how similar two Gabor wavelgpnesentations are. In this
section we introduce and discuss various distance measatsm

1. Adistance measurement between two specific G\WNsw, ) and(¥,, w,). This allows
us to compare two (possibly different) objects that aregsgnted using different GWNSs.

2. A distance measurement between two weight vecigrand w, of a specific wavelet
family ¥, i.e., comparison of the two GWNgV, w,) and (¥, w,). This measurement
allows us to compare two objects that are represented usenggime wavelet famihp.

3. A distance measurement between two wavelet familiesind ¥,. This measurement
allows direct comparison of the two GWNs without considgitine weight vectors.

These three distance measurements will be introduced iioflba/iing sections.
2.5.1 Direct Calculation of Distances between two Gabor Wavelet Networks

It was mentioned in Section 2.3 that optimization is a cruprablem. Finding a global
optimum for the free wavelet parameters is very time-consgnso that determining a local
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minimum seems to be the only feasible solution. However, axetound in various experi-
ments that the local minimum that is found using the Levegb&arquardt method of Section
2.3 is extremely unrobust with respect to the initial valugsslight variation in the initial val-
ues may result in a completely different GWN. It is therefogasonable to ask whether it is
possible to compare two different GWNSs in order to find ouhéyt represent the same function
f. This question can be reformulated using a basis transtawma

Given a functionf € 1.?(R?), let f be represented by two different wavelet netwdks, v)
and(®?, w) with the wavelet familie§¢}|i = 1... N} and{¢?|i = 1... M}:

. N

fi = Z Uz‘¢z‘1
j=1

. M
j=1

To compare the two wavelet networks, we have to transfornvéittorv € RY of wavelet
network®' into a vectorv’ € R that is given with respect to the wavelet netwdk. To do
this, we use the technique of the dual wavelets: In ordemteeentf; with the wavelets of?,
we apply the dual wavele®d’ of &2 to f1 (see Fig. 2.7):

v’ =& fl = i) <I>1v . (244)

With this projection,v’ now represents with respect to the other wavelet netwoB. This
procedure is sketched in Fig. 2.8. The same can be done iR :

Figure 2.8. This figure sketches the basis transforma-
tion from one wavelet network onto another. A func-
tion f; € ?(IR?) is projected into RY and re-mapped
into fl in the subspace < ®' >C L2(R?). fl is then

mapped into RV .

w=58f=&&w. (2.45)

The intermediate mapping fromto f; in Fig. 2.8 is for visualization purposes, and can be
omitted by understanding eq. (2.44) as

vi= <i>2f1 = (‘i)2<131> V.
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Using these two equations, we can compareith w’ andw with v':

dgr(v, V') = |[[v—wg

dg>(w, w') = [lw =g

These difference measures will be discussed in the nexestibs. Now that we have two
GWNs that are possibly optimized on different functiongsth difference measures allow us
to calculate the distance between the representationgr@ndhis, the difference between the
represented functions.

Clearly, the distance that can be calculatedasgiven by the difference between the orig-
inal functions, but rather by the difference between thaagbnal projections of the functions
onto the respective wavelet spaces. The above discus&wefahe provides information only
about the similarity of the two GWNSs, but not about the simijeof the two possibly different
functions.

The above two distance measures are specific for each wéaedldy ®'. Calculating the
difference between two GWNgP', v) and (®2, w) is therefore reduced to calculating the
distances between corresponding vecteraifdw’ or w andv’) with respect to each wavelet
space using the distance measutgsandds:.

In the next subsection we will investigate the differencasweds (- , ).

2.5.2 Measuring Distances in Gabor Wavelet Space

In the previous section we used the notatilagr{v, w) in calculating the distance between
two wavelet vectors andw with respect to the wavelet basis However, it is not yet clear
how this distance measure should be calculated. As doneiskpt¥et al, 1997], one could
calculate the Euclidean distance between these two weegttiors, which corresponds to the
angle between the two vectors. But such a distance lacksustifigation or geometrical in-
terpretation, because it is not clear what the angle betwreetwo vectors tells us about the
difference between the images they represent.

In this section we therefore propose a different distancasmement and a different norm.
They are derived from the Euclidean norm and Euclidean nligtan the image space. The
differenceds is defined to be the Euclidean distance between the two recoted images:

de(v,w) = [v-wls

N N
= 1) vigi = > widl- - (2.46)
i=1 j=1
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Various transformations lead to

da(v,w) = [v-wla

N N
= (1) vt — > wiglla
i=1 =1

= Zéiéj@i,qﬁj)] : (2.47)

We therefore define the norfn ||& as

1

[wle := [Zwiwj<¢i,¢j>r
2,7
_ <wt (@) wf (2.48)
and the differencés (-, ) as
de(v,w) := [Z 0;0; (i, @)] : whered; = (v; — w;)
ij

= (6" (®ij) 6 )% with § = <51 : --5N>t : (2.49)

The productg¢;, ¢;) have already appeared in eq. (2.37), whighg;) = (¢;, ¢;) consti-
tutes the matrix of the pairwise scalar products. This madra measure of the “overlap” of the
wavelets.



36 CHAPTER 2. INTRODUCTION TO GABOR WAVELET NETWORKS

If the wavelets{¢,} are orthogonal, the products are

1, ifi=j
(Di, 0j) = o (2.50)
0, ifi#£y.
This means that - || = | - ||o holds for the Euclidean norm.

As mentioned above, the matniik is, up to a scalar factor, invariant with respect to affine
transformations of the wavelet network. It can thereforedmputed off-line beforehand.

2.5.3 Direct Comparison between two Gabor Wavelet Families

In the previous section we discussed how two wavelet netsvoatk be compared. However,
a generalization of the above results would allow the comparto be independent of the
weight vector. We will now discuss this.

A direct calculation of the distance between two familiesvaivelets, and ®, is estab-
lished by applying the above method to each of the wavelets ®:

To(d) = > [(65.00)] i (2.51)
In Eq. (2.51) each wavelé; is projected orthogonally onto the subspacé;} >C L?(R?).
Eachg; is represented as a linear combination of the wavelgtso that

Z [p; — Tw(9;)ll2 (2.52)
16512
can be considered as a measure of how well the vector spage> can be approximated by
the vector space i; >
Similarly, the reverse combination

1, - To @)l s
Z e (2:33)

measures how well the vector space); > can be approximated by the vector space; >
By combining egs. (2.52) and (2.53), the distance betwieand® can be determined by

||¢J Ty ¢J ||2 ||77/}] Ts %)HQ
d = E E 2.54
o [ 16512 ] [ [5]2 ] ’ (2:54)

where|| - || is the Euclidean norm. Using this distance measure, thardistbetween two object
representations can be calculated very efficiently. Glead. (2.54) can also be computed by
applying the distance measurggsandds.
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2.6 Reparameterizing Gabor Wavelet Networks

We illustrated above that a GWN that is optimized on a palicobject is very specific to
that object. In order to ensure meaningful calculation efureights and meaningful filtration
of the image with the Gabor filter, the wavelets have to paséd precisely on the features they
are supposed to represent. Compare, e.g., the two imagég.i2.B. We see that in the left

+ +
+ +* +
+ + + -+
+ +*
+ =k ¥
+
+ oot
+
+ ]
* +

Figure 2.9. The left image shows a GWN that is positioned incorrectly on the facial image:
features are not positioned on the features they should represent. The right image shows the

correct positions.

image the wavelet positions are not correct. Computing ttez fiesponses and the weights on
the basis of these positions cannot lead to satisfactomjtse©n the other hand, calculating the
filter responses and the weights on the basis of the corrsttigoeg ensures a correct relation
between the filter parameters and the object that the filtersjaplied to. Consequently, the
filter responses will be meaningful in the sense that theigkts will be appropriately related
to the object features. The task of finding the position, ttedesand the orientation of a GWN
in a new image is therefore very important, and will be dedlhww this section.

As another example, consider an imaf¢hat shows the person of Fig. 2.4 left, possibly
distorted affinely. Given the corresponding GWN, we arerggted (for example, in a track-
ing application) in finding the correct position, orientetiand scale of the GWN so that the
wavelets are positioned on the same facial features as writjeal image. The parameters of
the reparameterized GWN allow conclusions about the 3-Brpaters of the tracked head.

IThe term “correct positions” refers to the positions orajin taken by the wavelets after the optimization
procedure.
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Another example can be seen in Fig. 2.5, where the originsitipas of the wavelets
are marked in the bottom right image, and in Fig. 2.11, wheeswavelet positions of the
reparameterizedvavelet network are marked in new images.

Parameterization of a wavelet net is established by ussuparwavelefSzuet al, 1992].

Definition 4
Let (¥, w) be a GWN With¥ = (¢, ... ,Yny)’, W = (wy,... ,wy)". Asuperwavelet,, is
defined to be a linear combination of the wavelgts such that

Un(x) = D witn (SR(x—c)). (2.55)

where the parameters of the vector (c,, ¢, 0, s., s,) Of the superwavele¥ are the dilation
matrixS = diags., s,), the rotation matriR, and the translation vector= (c,,c,)".

A superwaveletl, is a wavelet [Szet al,, 1992], and in particular a continuous function
that has the wavelet parameters dilation, translation atadion (see Section 2). Therefore, we
can handle it in the same way as we handled each individuatiefin the previous section.
For a new image we can arbitrarily deform the superwavelet by optimizirgggarametera
with respect to the energy function&t

E = minllg— T3 (2.56)
Equation (2.56) defines the operator

Py : L*(R?) — R (2.57)

g — n= (C:mcyaeasxasy) )

wheren minimizes the energy functional of eq. (2.56). In egs. (2.56) and (2.5¥)is derived
from the GWN of imagef. For optimization of the superwavelet parameters, we canhus
same optimization procedure that we used to find the GWNs.xamele of the optimization
process can be seen in Fig. 2.10: Sketched as white rectarigpdes are the initial values of
n, the values oh after 2 and 4 optimization cycles, and the final valuen after 8 cycles. The
box indicates the image region in which the wavelets wetelify homogeneously distributed,
as shown in Fig. 2.5. Its center position marks the centeitipnof the corresponding super-
wavelet. The superwavelet used in Fig. 2.10,jsof Fig. 2.5, i.e. it is derived from the person
in Fig. 2.4. Another example can be seen in Fig. 2.11. Thenwges should be compared
with the bottom right image in Fig. 2.5: It can be seen thattheelets are positioned correctly
on the correct facial features. The images at the bottom offifyl show the reconstructions
using the reparameterized GWNSs.
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Figure 2.10. These images show the 1st, 2nd(top), 4th, and 8th (final) step (bottom) of the
Levenberg-Marquardt method of optimizing the parameters of a superwavelet. In the top left
image the initial values are shifted by 10 px. off the true position, rotated by 10° and scaled
by 20%. The bottom right image shows the final result. flg of Fig. 2.4 was used as the

superwavelet.

The image distortion of a planar object that is viewed undtragraphic projection is de-
scribed by six parameters: translation c,, rotation#, dilation s,, s,, and sheas,,. The
degrees of freedom of a wavelet only allow translation,tailmand rotation. However, it is
straightforward to include shear, and thus to allow any affieformation ofl,,. For this, we
enhance the parameter vectoto a six-dimensional vector

T
n= (Cma Cy, 9’ Sz, Sy, S:cy)

By rewriting the scaling matri$ as
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Figure 2.11. These images show the positions of each of the 16 wavelets after reparameterizing
the wavelet net (top), and the corresponding reconstruction (bottom). The reconstructed faces

have the same orientation, position and size that they were reparameterized on.

we are now able to deform the superwavdigtaffinely.

The reparametrization of the superwavelet can be undersi®warping, where the original
face, represented by the GWN, w), is warped into the new face. This idea is shown in Fig.
2.12.

The reparametrization (warping) works quite robustly. Agsihe superwaveleftm or I,
we have found in several experiments that the initializabbn, may vary from the correct
parameters by approximately-10 pixels in thez- andy- direction, by approximatel0%
in scale, and by approximatehz10° in rotation (see Fig. 2.10). Of course, these are only
approximate values since they depend on the number of wavweded, on the template face,
and on the scale of the wavelets. In our case, 10 pixels. sjporels tox 1/3 of the width of
the white box in Fig. 2.10 that marks the inner face region.
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Figure 2.12. These two images show the wavelet network f52, repositioned onto the two test
images of Fig. 2.11. This demonstrates that the repositioning process can be understood as

warping the superwavelet onto the new test faces.

2.7 The Relation between Bunch Graphs and GWNs

Another approach to object representation that is alsodbas&abor wavelets is the well-
knownelastic bunch graplapproach [Krugeet al,, 1996; Maurer and von der Malsburg, 1995;
Wiskott et al, 1997]. The underlying idea is that a face (or, more gengralh object) is
represented by a set of specific, meaningful feature poit®ach of these feature points in
the image, 40 complex Gabor filters are applied. This givesatiplex coefficients for each
feature point, a so-callegt. A collection of such jets together with information aboleit
relative locations constituteskainch graph A single jet describes the gray value in a small
local neighborhood around a feature point. The filter sekexdfiand contains Gabor filters that
are parameterized for eight different orientations anddifferent frequencies.

The elastic bunch graph approach is inspired by the diseratelet transform, where, in
contrast to the continuous wavelet transform, the phaseesisadiscretized. How to sample
the phase space is a major problem in this context and haswidely studied [Daubechies,
1988; Daubechies, 1990; Daugman, 1988; Grossmann and tMb9ig4; Lee, 1996; Mallat,
1989a; Mallat, 1989b]. In general, the discretization sthelepends on the selected wavelet
function. Lee [Lee, 1996] studied how closely the phase s to be sampled in order to
achieve a lossless wavelet representation of an image when-arthonormal Gabor function
is used as wavelet. He found that one needs at least eiglttistaquit orientation samples and
five equidistant scale samples for each discrete positians&® that this justifies the choice of
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40 Gabor filters in [Wiskotet al,, 1997]. However, we also see that an image representation
using 40 wavelets per pixel is highly redundant and is onécpeal if it is reduced to a small
set of feature points in the image. A bunch graph repredentasually contains about 20 jets
with 800 complex coefficients.

The reason for this highly redundant representation is It image structure such as
edges, lines or junctions needs todpproximatedy a weighted sum of these 40 Gabor filters
in the discretephase space. Alternatively, one can model the local imagetate directly by
selecting the correct wavelet parameters indbetinuousphase space. This is the underlying
idea of GWNs. As shown above, 52 Gabor wavelets were suffitdergood representation of
a facial image (compared, e.g., with the bunch graph approglcere a comparable represen-
tation needs many more wavelets).

2.8 Conclusion

In this chapter we have introduced GWNs. We have explaingidiiese networks are opti-
mized on the objects they are supposed to represent. Fumdherwe have observed, that two
GWNs that are optimized on the same object usually appea thiferent. We have therefore
introduced distance measurements that allow us to caécalatilarities between GWNs. We
have also introduced a measure that allows us to calculatsithlarity between two vectors
of wavelet coefficients that are computed with respect tostimae wavelet family. A further
topic that was discussed is the reparametrization of a GWheWWve wish to calculate wavelet
coefficients using the wavelet family of a certain GWN, on Bjeot that is similar to the object
on which the GWN was optimized, a good reparameterizatiagheGWN on the new object is
very important.

Several important properties have not yet been discusset,as the interpretation of the
weightsw;, the role of the number of wavelef§ in a GWN, and the relation between the
wavelet parameters and their weights and filter respondesseltopics will be discussed in the
next chapter.



Chapter 3
Properties of Gabor Wavelet Networks

In the previous chapter we gave an extensive introductic8WNs. In this chapter we will
discuss properties of GWNSs that have not yet been treatelddimg

¢ the relation between the parameterization of a waveletenrttage and its weight and
filter response, as well as the interpretation of the weiglitts respect to the image,

¢ the role of the number of waveleié of a GWN,
¢ how GWNs can be used for optimal filtering of an image.

These important properties of GWNs will be discussed indiewing three sections. In the
next three chapters the advantages of these three prapeitide systematically investigated
and exploited in real applications.

3.1 Feature Representation with Gabor Wavelets

Gabor wavelets are recognized to be good feature deteditasjfinath and Chellappa,
1993; Mehrotreet al, 1992], and especially farw, < 2, they are well-known filters for edge
detection [Michaelis, 1997]. We would like to ask whethes firoperty can be exploited for our
needs and whether it has consequences and advantagesreprdgentation of an object with
these filters. Consider, e.g., the images in Fig. 3.1. Onseathat the wavelets with the largest
weights are positioned along the object edges, i.e. atipositwhere their filter responses
are large. In this section we will investigate whether thHiservation can be generalized. In
particular, we want to analyze how the final optimized paranseof wavelets and their weights
are linked to their filter responses and how this is relatethéoproperty that Gabor functions
are good edge detectors.
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3.1.1 Relation between Filter Responses and Weights

The results of the optimization of a GWN depends partly onntfmeher wavelet function
that is used and partly on the optimization procedure itsEfiferefore, in order to understand
what the optimization results express, we have to considdr the mother wavelet and the
optimization procedure. In the following we will use thertenology of discrete images without
loss of generality. If not stated otherwise, the discuss@nbe adapted for continuous functions
as well.

Recall from Section 2.3 that the difference imdge= 7 — I is given as the pixel-wise differ-
ence between a DC-free imagi@nd its reconstructioh. Assume now that all the weights;
of the reconstruction are zera; = 0, from which follows = 0, so that the difference image
D equals the original imageé This is the case at the beginning of the optimization praoed
As optimization progresses, one wavelet after anothemsidered. Each wavelet is optimized
so that it approximates a local regioniiras well as possible. Afterwards, it is subtracted from
I. The difference imag® shows the parts of the image that remain to be approximated. T
values of the imag® are small in local regions that are already approximated.

The optimization procedure parameterizes a wavelet, dalteaenergy of the difference
image,|| D||3, is minimized. This is the case if

1. the local structure in the difference functibhthat adds the largest portion to the energy
|| D||3 is approximated,

2. the wavelet approximates the local structure in the iiffee imageD optimally.

Referring to point 2, it can be shown that the inner produatr@ation) of a Gabor wavelet
with the difference imagé® at a positiony is maximal iff the local structure there is approxi-
mated optimally by the wavelet,(x), i.e. the energy is minimized:

Y (Wa(x)D(y +x)) = max

X

iff > (Ya(x) = D(y +x))* = min .

X

This shows that the parameter vedaiothat leads to a maximal filter responselins the same
as the one that leads to an optimal approximation.

When the optimization start$) and/ are very similar, and the above holds for both. This
is the reason why the first wavelets fit well to edges in the enafsee Fig. 3.1, bottom left).
As the optimization proceed$) and I become more and more different and the wavelets no
longer fit the image edges &f(top right).
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It is a property of the odd Gabor function as an edge detebtirthe filter has a clear re-
sponse peak when it shows the precise location and orientaftian edge, and that the response
decreases quickly with increasing distance from the edgef§, 1986]. Accordingly, the en-
ergy || D||3 is minimized when the Gabor wavelet shows the precise locatnd orientation of
the edge it has to approximate. The enéf|3 increases as the distance to the edge increases.

Concerning point 1, the filter response of an odd Gabor fangs strong at “strong” edges.
The stronger the edge, the larger must be the weighthich weights the wavelet,, that is
supposed to approximate the edge. The relation betweentdreréisponses and the weights
is given by the linear eq. (2.36): A maximal filter responsadke (without loss of generality)
to a maximal weight. Clearly, the optimization procedurbéeést able to minimize the energy
||D||32 when a strong edge is approximated by a wavelet. Therefbeewavelets with the
largest weights minimize the energy best. It is possiblesfing anorder of importancdor the
reconstruction. According to the above discussion, oneusarthe weights, but they should be
normalized with respect to the scale of the wavelets (seedBe?.2).

An example of this can be seen in Fig. 3.1. This figure showsntlage of a toy wooden
block (top left) on which a GWN was trained. The top right ireaiows the positions, scales
and orientations of the wavelets as short black line segendrite first wavelets that are posi-
tioned in the image are, according to our discussion, postl along the edges (see bottom left
image). Since the edges are already approximated, thalmatitig gray values of the wooden
block get smaller in the difference image. The newly apmeggeidges in the difference image
again have to be approximated by a new set of wavelets. Thiseaeen clearly in the top right
image, where many wavelets are positioned parallel to tigesdIt can also be seen that the
energy of the difference imagéD||3, becomes smaller as the number of wavelets increases.
This results in smaller filter responses.

By thresholding the weights, the more “important” wavelss be selected, which leads to
the bottom left image. Since large weights indicate thatctbreesponding wavelets represent
edge segments (high filter responses), these waveletsefazal geometrical object informa-
tion.

Because of the direct relation between the filter resporisesyeights and the optimization
results, different mother wavelet functions result in giéint wavelet networks. The choice of
the odd Gabor function as the mother wavelet induces a modé¢hé representation of local
image primitives; here, edge segments locally model olgéges. In fact, the odd Gabor
wavelets introduce the only prior knowledge into this reprgation. The introduction of a
model for local image primitives is the reason for the coesathle data reduction that can be
achieved with GWNSs. In fact, representation of “subjectQdée Fig. 2.4) with 52 wavelets
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Figure 3.1. This figure shows images of a wooden toy block (top, left) on which a GWN was

trained. The black line segments sketch the positions, sizes and orientations of all the wavelets
of the GWN (right) and of some automatically selected wavelets (bottom left). The bottom
right image shows the difference image ) between the original image and the approximation

by the wavelets in the bottom left image.

need$2 x 6 x 4 bytes= 1248 bytes. Since the original image he&&/84 bytes, this corresponds
to a data reduction of8.4%

The sparseness is a property that will be exploited in Ch&pker the recognition of faces.
We will also discuss this property in more detail there.

Other mother wavelet functions (models for local image ftruas) have been tested, such
as the Gaussian and its derivatives [Pelc, 1997]. Theseifunscare often used as radial basis
functions in RBF networks [Bishop, 1995]. It is interestimpwever, that these models have
proven to be much less effective.
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Figure 3.2. These images show (from left to right) images jlﬁ, f52, f116 and f216, which

represent image [ with 16, 52, 116 and 216 Gabor wavelets, respectively.

3.2 Variation in Precision

One important property of GWNSs is their ability to vary thegision with which an image
can be represented: The more Gabor wavelets are used, tleepmemise the representation
becomes. An example is shown in Fig. 3.2. There, a GWNw) with N = 216 wavelets has
been optimized on the rightmost image. Using

M
I: E wid)ni,
i=1

the precision of the representation varies with= 16, 52, 116, 216. It can be seen that for
M = 116 wavelets a good representation of the image can alreadyhievad. The order of
the wavelets in this example corresponds to the order intwihiey were optimized. In Section
2.3, a pyramid scheme for the optimization of several waysteamid layers was introduced.
The example images in Fig. 3.2 correspond to these pyrampgidaThe first image (from the
left) shows only the first pyramid layer, the second imagenshite first two pyramid layers,
etc.

In Fig. 3.3 the wavelets are used according to the sizes ofilegghts in decreasing order.
The weights are normalized with respect to the wavelet scale

Fig. 3.4 shows a graph that quantitatively represents foenmation in Fig. 3.2 and Fig. 3.3:
It can be seen that the energy decreases much faster wheavbiets are chosen according to
their normalized weights.

For anye > 0 one can find anV such that

N
1= w3 < e
1
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Figure 3.3. These images show (from left to right) the reconstructions of Fig. 3.2 with 16, 52,

84, 116 and 180 wavelets. The wavelets are chosen according to the sizes of their weights,

starting with the largest one.

4,50E+006

4,00E+006

3,50E+006

3,00E+006

2,50E+006

— Sorted by Order
—— Sorted by Weights

Energy

2,00E+006

1,50E+006

1,00E+006

5,00E+005

0,00E+000
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Number of Wavelets

Figure 3.4. In this graph, the decrease in energy is plotted as the number of wavelets is increased

in the order in which they were optimized (top) or in order of the sizes of their weights (bottom).

is satisfied. This property is a major property of the disewavelet transform [Mallat, 1989b;
Mallat, 1989a], exploited especially for multi-resolutianalysis. GWNSs inherit this property
from the discrete wavelet transform.
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In the same manner, assuming that for a certain0 a GWN (¥, w) of a sufficiently large
sizeN is given, i.e.dim(¥) = N, we can findV/ wavelets,] < M < N, such that

M
If - szwzH% < €p foranyey, > e.
1

Given a GWN, we can decide how much information we want to ysedsying M. This
property of variable precision will be discussed in grealetail in the next chapter, where we
will introduce the ternprogressive attentioto refer to this property.

3.3 Gabor Wavelet Networks for Optimized Image Filtering.

The weights of GWNSs are linearly related to the filter resgens the wavelets. This means
that the weights can be computed solely from the filter respenFurthermore, this means that
in the filter responses, all the data that is needed to reprrasd reconstruct the image is already
encoded.

The fact that the filter responses already contain all thgemaformation is due to the filter
scheme, given by the GWN, that is being used. This can beiegplas follows: The wavelet
family & of a GWN defines the basis for the sub-spacé& > . An imagel of the image space
can be approximately represented by a vector from this vepace. How lossy the mapping
is from the image space into the sub-space depends on tlelbaSiven an optimized GWN,
the loss is minimized for a certain image. The correspondigor of the vector space is
calculated through the filter responses of the wavelet fanst It can clearly happen that if
another wavelet basis is used, the loss for that image ishighy

Consider, e.g., a family of Gabor wavelets (which does noesgarily define a basis) that
contains four differently oriented filters at each positidia homogeneousx 4 grid. Mapping
the well known “subject01” into the sub-spaee¥ > through eq. (2.39) allows us to visually
verify the loss of image data that occurs (see Fig. 3.5).

The mapping through eq. (2.39) is an orthogonal projectibleads to the optimal vector
for the given wavelet family. Therefore, the mapping is agdjas it can get. The quality of the
mapping is limited by the given wavelet famill, and consequently by the filtering scheme.

The same experiment can be repeated with up to 8 differestations and with a grid of
up to8 x 8 homogeneously distributed positions. The results can &e iseFig. 3.5. One can
see that the loss of image data is very high, taking into agcthat 64, 128, 256 and 512 (!)
filter responses were used. This loss appears especiaflyesetien one compares these images
with the images in Fig. 3.2, where only 16, 52, 116 and 216 Galawelets were used.
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Figure 3.5. These images show, qualitatively, what image information is contained in a set of

Gabor filter responses, when the filtering is done with (from left, top to right, bottom) 4 x 4
homogeneously distributed Gabor filters with 4 and 8 orientations, or with 8 X 8 homogeneously

distributed filters with 4 and 8 orientations.

These experiments show very clearly that the amount of tiatacan be extracted from an
image through filtering depends heavily on the filtering secle In particular, an optimized
filtering scheme is able to encode more image data than a pibmined filtering scheme. Fur-
thermore, our experiments show that a GWN offers an optidhiitering scheme that allows a
maximal amount of information to be extracted from the image

The linear relation between the optimal weights and ther fiksponses and the optimized
filtering property of GWNSs will be discussed and exploitedrenprecisely in Chapter 6.
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3.4 Conclusions and Comments

In this chapter we have discussed three important and fuedtproperties of GWNSs.
First, we discussed the relation between the parametersvaivalet, its weight, and its filter
response. Furthermore, we argued that Gabor functionsoége@model local features in an
image. In fact, the correlation between the filter and thiegdhce image is maximized where
the energy of the difference image is minimized. This shdved there is a precise relation
between the original image and the parameters of the optniavelets.

Gabor functions are good edge detectors that show strongmaaxhen they are correctly
parameterized; their filter response decreases quicklheapdrameterization changes. This
means that the ability to model local image structure alswadeses quickly when the parame-
terization is different from the optimal one. Therefore, WS that is optimized for one image
is not likely to be good for another image. In Chapter 5 we imlestigate how individual this
representation really is. There we will study, in a face ggation experiment, whether each
representation has enough individuality to be able tortfistish between various persons.

Second, we have discussed the possibility of varying theigiom of a GWN by changing
the number of wavelets used. The variation can be done,witt). respect to a given task,
which allows control of evaluation speed, representati@tigion, etc. In Chapter 4, we will
exploit this variability for tracking. There we will invagate how this variability allows us to
control the tracking speed as well as the tracking precjsadnch degrades when the number
of wavelets is decreased.

Third, the linear relationship between weight and filtepasse is most important in order
to understand that the wavelets of the network, when usedtess fiprovide a “handle” on
the image data. This means that for the same task, the setiofipgd filters may be much
smaller than the set of non-optimized filters. This increasf@iciency. In Chapter 6, we will
exploit the optimized filtering scheme for a gaze detectjgoliaation. We will compare a non-
optimized filtering scheme with an optimized one and ingzggé how performance, stability
and computation speed increase.






Chapter 4

Progressive Attention for Real-Time
Tracking

The fundamental idea of active vision systems [Aloimon@&93t Sommer, 1995] is that they
are autonomous systems that take part in their environriéig.means that they have to keep
track of surrounding events while remaining focused oneghg their task. This implies two
things:

1. selective perception, in order to

(a) achieve a given task,

(b) keep track of possible distractors that might distusb\lsion system in achieving
the task.

2. taking actions that are dependent on the task and on theiped visual information.

According to [Aloimonos, 1994]perceptionhas to be related taction An active vision
systems an active observer which has control over the image aitiquiprocess and which
perceives (image) information that is relevant to whatténas to do [Aloimonos, 1994Per-
ceptionhere means the information acquisition and selection goaad the control strategies
that are applied to it [Bajcsy, 1992Actionis anything that changes the state of the system or
the environment. Both perception and action are dynamicgases that depend on the current
state of the data interpretation and the goal or task of thiewisystem.

Consider the following example: A robot that is supposedttmv another robot through
a group of people has to “concentrate” on the leading robbtlewit has to “keep an eye” on
people that may get in its way. The robot that is following t@%concentrate” its attention on
the leading robot:
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¢ It has to recognize the leading robot so that it does notfioomeone/something else by
mistake;

e It has to determine the position and heading direction ofléagling robot precisely
enough so that it can follow on a direct path.

In other words, precise information about the leading raboeeded.

At the same time, our robot has to attend to other personsdistractors) that are about
to move in its way by detecting their approximate positiond @ossibly their approximate
heading directions so it can navigate around them. Depgrahirthe distance and motion of
each destructor relative to the intended path of our robotenapproximate information may
be sufficient or more precise information may be needed.

In other words: “Concentration” on the leading robot is resagy, but a “quick glance”
at the distractors is sufficient. The amount of informatibattneeds to be extracted from the
camera images should correlate with the needed degreeasipre

Active vision systems [Aloimonos, 1994] have, among othirs following properties:

e purposive: they use resources purposively to solve a pmable

e selective: they use a minimal amount of information, i.eeytlseparate relevant from
irrelevant information and use only the information thatgkevant to solve the problem.

This was previously pointed out by [Bajcsy, 1992], who menéd that the problem of active
sensing “can be stated as a problem of control strategidedp the data acquisition process
which depends on the current state of the data interpratatid the goal or task of the process”.

It is agreed that (image) information representation is afjanimportance in active vision
systems [Aloimonos, 1993; Aloimonos, 1994; Bajcsy, 199&vit, 1994; Jain, 1994]. The
Marr paradigm [Marr, 1982] uses general representaticatsabuld allow it to solveanyprob-
lem. The Marr paradigm implies a bottom-up representatiost the information, then the
algorithms and solutions. This means that the image adiuiss independent of the algo-
rithms, and the algorithms are not able to acquire more mn&ion later. Selective sensing, as
proposed e.g. by Sandini and Brown [Aloimonos, 1993; Bro®894], implies, on the other
hand, a top-down approach, in which information selectopurposive: first the solutions,
then the information. Systems may retrieve information girgle, general purpose form, and
leave it to cognitive modules to transform the informati@e@ding to their needs. In [Aloi-
monos, 1994] it was pointed out, however, that visual systehould directly produce forms
of information that suit specific cognitive processes. Taisforms exactly with the selectivity
property, and it is also important in order to assure highmatation speed.
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Returning to our example, we may ask whether our robot ndezlsame type of repre-
sentation of the leading robot (which it is interested injl @f the distractors (which it is not
particularly interested in) in order to define its next actids the active vision paradigm sug-
gests, the perception should be related to the action. Whemobot has to concentrate on
the leading robot, a precise representation should be gegltecause the related action is to
recognize the leading robot and to follow it on a direct pdtbr the surrounding distractors,
only an approximate representation is needed, becausalghtask is to avoid them.

Two important questions arise here:

1. Afundamental problem is to determine what image reptasen an active vision system
should use. This problem has to be solved by the programmeadsys, using prior
knowledge about the set of tasks the system will have to parfdn our example, the
task of the system is to track and calculate the precise apthemate states of the
leading robot and the distractors.

2. Another fundamental question is what information from itmnage should be used. This
depends on the task the system has to carry out and on theosthie system and the
environment. The question is how information should beesgnted so as to allow the
robot to relate the representation to the task and to déademuchandwhatinformation
should be used.

The ability of the system to relate action to perception, i.e
e to decidewhatimage information,

e how muchmage information is needed, and

e how precisehis image information has to be,

will be calledprogressive attentianThis term was adapted from [Zabrodsky and Peleg, 1990],
who used it in the context of image coding.

In this chapter we will use the properties of the active \nggaradigm and the progressive
attention scheme as guidelines in constructing a systenmsthhle to track efficiently and with
variable precision. The tracking system is designed as @epgon-action cycle. It relies on
its internal state, which reflects its present situationh@ $cene, and on the images that are
recorded by a camera. Tracking is considered here as a l@kthlesk of a higher-level vision
system. The higher-level system is assumed to define thiedlgmescision for the tracking task.
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4.1 Related Work

Progressive attentiois related tancremental focus of attention (IFAQr tracking [Toyama
and Hager, 1996] and to the attentive processing stratedy Ky for face feature detection
[Herperset al, 1995]. Both of these were inspired by [Tsotsos, 1990] atatedeatures to
scales by using a coarse-to-fine image resolution stratemgressive attentigron the other
hand, should not relate features to scales but to the olfjatthe features describe. In this
sense, as stated above, the object is considered as aioolletimage features, and the more
information about the object is needed to estimate its dfademore features are extracted from
the image. To realizprogressive attentiowe will use GWNs for object representation.

4.2 Foundations and Definitions

The paradigmatic starting point of the tracking algorithregented in this chapter is the
perception-action cycléPAC). Intuitively, this cycle is a fusion of perception aadtion; no
precise definition has yet been given for it. In our definitreawill follow [Sommer, 1997]:

Definition 5
A vision system is realized aspgerception-action cyclevhen it is able to fulfill its task based
solely on a sequence of live camera images and the task ingrewted for.

In order to defineactive vision-based object trackingie will follow the definition of the
perception action cycle.

Definition 6

Given a visually perceivable target object together wighintitial states,, theactive vision-
based object tracking taskis to estimate the statg of the object at each time stepgiven a
live imagel, of the object and the previous state; .

A targetis a visually observable, not necessarily physical or regitlty. A states of the target
object is given as a finite vector that quantifies certainitjaalof the target object, such as the
object’s projected position in the image, its position ia&, its projected size in the image, its
orientation in space, and its projected orientation in thage. Shape parameters, velocity etc.
may also be included [Toyama, 1997]. One may differentiatevben the projected true state of
the object in the 3-D scene, which is referred to astthe states, and the observed/estimated
state of the object, which is called by tbbserved state. The true state should ideally equal
the observed state.

The definition ofactive vision-based object trackimgplies several things:
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¢ When tracking starts, the true initial state= 3, is given.

e Using the live imagd; and the previous observed state, implies that the state,_; is
“updated” to the new observed stateso that the expected squared error betwgemd
s¢ IS @ minimum:

E[(s; — 8)" (s, — 4;)] = minimum .

e The difference between two successive live imafjes and;, and therefore the differ-
ence between two successive states ands;, depends on the tracking speed. A higher
tracking speed results in smaller state differences. Ssoceestates are therefore more
more accurately recovered, the closer they are in time.Brand Terzopoulos, 1994,
Leondes, 1966].

The last point is clear from a statistical point of view: trerelation between two successive
true statess; ; and s, decreases with increasing separation in time. This facktsnsively
discussed (among others) in [Brown and Terzopoulos, 198dntes, 1966]; further discussion
is beyond the scope of this thesis.

4.3 Tracking with Gabor Wavelet Networks

In this section we will give details about the tracking systd his system is strictly appearance-
based and is realized as described in Definition 6.

Recall for a moment Section 2.6: There, a GWN w) was interpreted as a superwavelet
U,:

Un(x) = > withn, (SR(x = c)). (4.1)

whereNN is the number of wavelets used ands the parameter vector of the superwavelet.

The introduction of the terrauperwavelehad the advantage that the GWM, w) could be
understood as a single wavelet and could consequently loended accordingly by optimiza-
tion of the superwavelet parametars

E = min|g— ®,3 . (4.2)
The operatorP as introduced in in Section 2.6 was defined as

P L*(R*) — R (4.3)

g — n= (CI,Cy,e,SI,Sy),
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and computed the vectar that minimizes the energy functional of the above equation be-
tween the input image and the superwavel@t,,.

This technique can be enhanced for gray-value image segsigndn this case, (4.2) can
be rewritten as

E = min|J; — ¥,,]|3. (4.4)
In other words,
n; = P(Jt) s (45)

so that for frameJ, at time steg the superwavele? ,, is optimized with respect to the energy
functional (4.4). As explained above, good initializatiemeeded, and the better the initializa-
tion, the faster the convergence. In this tracking approagch is taken to be the initial value
for n,. Therefore, as argued abovg, ; can be considered as good initial values if the temporal
sampling rate is high enough.

In other words, the superwavelgt, is used as a template, and the minimization procedure
finds the best “fit” of this template to the input image. In e4.1], the paif¥, w) was inter-
preted as a superwavelet. The numbeof wavelets is given here by the size of the wavelet
family . However, one can replace théin eq. (4.1) by any// with 1 < M < N. As shown
in Section 3.2, this allows variation in the precision of teeplate that is used for tracking.
DecreasingV/ results into a speedup of the minimization process, as vgeith @n error sur-
face that has fewer, broader, and more shallow minima. Weeesthe progressive attention
scheme by controlling the numbf of wavelets used.

The progressive attention principle assumes that for eantber of filtersi/, the M most
important wavelets are selected from the sef\ofvavelets in the wavelet family. The order
of importance clearly depends on the given task. In this @rathe task is appearance-based
visual tracking on the basis of a given template. The ordémpbrtance is therefore given in
this case by the ability of the wavelets to minimize the endugction (4.4). This was already
explained in Section 3.2. We have found that the waveletsrtiamize the energy function
(4.4) best also minimize the energy function (2.23) best. thiéezefore define their order of
appearance by their ability to minimize the energy func{@23).

It should be pointed out that the minimization in eq. (4.4alde to converge stably only
when all face features are visible. Otherwise, backgrouag easily cause failure of the mini-
mization process.
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4.4 Experimental Results

In this section we will present and discuss experiments fimeaface tracking with GWNSs.
This will accomplish three things:

1. It will show that the proposed tracking method works impiple.

2. It will allow us to discuss the progressive attention pihe, and will show how tracking
precision varies with a change in the numBbérof filters.

3. It will allow us to discuss how stable our proposed tragkim when we use the active
vision approach. As explained above, the active vision @ggr implies the ability to
use, at each time stépa novel camera imagk and a present statg ; to estimate the
new states;. A stable algorithm has to be able to cope with large staferdifices.

4.4.1 Testing Tracking on Various Image Sequences

In this subsection we test the proposed approach on vaestistage sequences. All these
test sequences show a person in motion. The face of the peradmays visible and always
more or less frontal to the camera so that the facial featneealways visible. The experiments
were carried out on off-line standard encoder test seqeesieeh as “salesman”, “claire” or
“miss_america”’, and also on on-line image sequences. To recororthi@e image sequences,
our active face tracker [Kruget al., 1999] was used.

For tracking in the off-line sequences, the GWA\ of Fig. 2.4 was used as a superwavelet.
This GWN contains 16 Gabor wavelets.

For the on-line tests we used networks with 14 wavelets tleaewrained on a face image
of the tracked person.

Example frames from the tracking results on the salesmameseg are shown in Fig. 4.1.
The white boxes in the images denote the detected positicemtation and scale. Ideally, the
white box should always frame the inner region of the faceait be seen in some examples in
Fig. 4.1 that the white box is too large, which indicates timrect” estimated state parameters. It
can also be seen that “incorrect” estimated states did nustecthe tracking to fail; the tracking
was successful throughout the entire test sequence. thutdrstate estimation occurs here
because the set of wavelets used is small and because thetsawere optimized on a different
face. The term “incorrect” is used here in quotation marksprecise” is the term that should
have been used instead. What is observed here is the parafipfogressive attentianThe



60 CHAPTER 4. PROGRESSIVE ATTENTION FOR REAL-TIME TRACKING

Figure 4.1. These images show (top left to bottom right) frame 11, frame 50, frame 120 and

frame 137 of the salesman sequence.

algorithm converged toward the correct minimum, but stojoe early, as the minimum was
too shallow.

The experimental results on the other off-line test segee@ee similar and are omitted
here. The images in Fig. 4.2 show tracking results on anrendequence. It can be seen that
the white box, again marking the inner face region, is poséd very precisely in this example.
The reason is that the GWN was trained on the face of the tdapkeson. In this example a
GWN with 14 wavelets was used.
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Figure 4.2. These images show snapshots of an on-line experiment.

4.4.2 Evaluation of Tracking Precision

In this subsection we discuss how the tracking precisioreddp on the numbek/ of
wavelets used, so that we can quantify the progressivetiatteprinciple. For this purpose
we recorded an image sequence of a person who is sitting i &foa computer. The video
camera that is used for recording the images is positionédeocomputer monitor. Sample im-
ages are shown in Fig. 4.3. The image sequence has a len@rsetands, i.e., 450 images. A
GWN with 116 Gabor wavelets was trained on the face of thatgrerin order to investigate the
progressive attention principle of our tracking approd@WNs were used that contained only
the largest 8, 9, 12, 14, 24 and 33 wavelets, sorted accotdidgcreasing normalized weight.
Remaps of these GWNs are shown in Fig. 4.4. In the experinpeasented here, we wanted
to find out how precisely the parameters of the superwavatebe found when the number of
wavelets in the superwavelet is varied. To do this we usesktbex GWNs as superwavelets
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Figure 4.3. These figures show sample images from the test sequence used in this subsection.
This sequence was used to investigate the progressive attention principle of our tracking ap-

proach. Shown (left to right, top to bottom) are images 10, 64, 175, 219, 254, 307, 335, 356

and 382.

Figure 4.4. The figures show remaps of the GWNs used in this experiment. These GWNs
contain, from the left, 116, 33, 24, 14, 12, 9 and 8 wavelets.
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and showed how precisely the superwavelet parameters danie with each of the six small
GWNs. For clarity we reduce our presentation to the estonaif the superwavelet parameters
x-position,y- position, and orientatiof.

First, we used the large GWN with all 116 Gabor wavelets torede a “ground truth”, i.e.
the best possible parameter estimation. For the estimatittns “ground truth” full-resolution
images were used. The estimation is consequently retathlalv and runs at approximately 1
Hz. The “ground truth” will be denoted in the graphs in Figae5 through 4.10 by the dashed
line. In these figures it can be seen thatthgosition of the face in the sequence images varied
from~ 100 to =~ 300 (in pixel coordinates), thg-position varied fromx 135 to ~ 160, and the
angled varied from~ —20° to =~ 30°. In all the graphs, the-axis indicates the frame number
and they-axis indicates the estimation results for they-, or f-parameter. The frame numbers
indicated in the caption of Fig. 4.3 are related to the franmalnering of ther-axis. An upright
head is indicated b§ = 0. The head is positioned initially (frame number 1) at imagsifon
x =233 andy = 137.

We used six GWNSs with varying numbers of Gabor wavelets tonegé the superwavelet
parameters-position,y-position and anglé. The estimation results are shown in the graphs
in Figures 4.5 through 4.10 as a solid line. In the graphsgufés 4.5 and 4.6, the estimates of
the z-position are shown for the six GWNSs. In the graphs in Figur&sand 4.8, the estimates
of they-position are shown for the six GWNSs. Finally, the graphsiguFes 4.9 and 4.10 show
the six estimates of the angleln all the graphs it can clearly be seen that the more wasalet
used the less noisy the estimated parameters are. For gieeGaVN with 33 Gabor wavelets,
the estimation results are close to the “ground truth”. atibp graph in Figures 4.5, 4.7,4.9,
tracking results with just 8 Gabor wavelets are shown. Ataxmately frame 330, the tracking
failed, as can be clearly noticed in the graphs.

4.4.3 Robustness of the Tracking Approach with Respect to Object Speed

In order to calculate the robustness of the approach witheso speed variations, we
calculated the visible speed of the head from the estimagealhd truth” from the previous
subsection. The displacement of the tracked object bettweeisuccessive frames (speed) is
given here as the sum of squared differences (SSD) betweeestimated head positions in
the two frames: If pdt, ©) and paft, y) denote the estimated andy-position parameters for
framet then the SSI¥) for framet, is given by

SSOt) = /(par(t, z) — pant — 1,z))2 + (pant,y) — part — 1,y))? . (4.6)
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Figure 4.5. These figures show the change in the = direction. The solid line is the ground truth.
The dotted lines are the estimated results with 8 (top), 9 (center), and 12 (bottom) wavelets.

The x-axis indicates the frame number, the y-axis the estimated x coordinate.
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Figure 4.6. These figures show the change in the = direction. The solid line is the ground
truth. The dotted lines are the estimated results with 14 (top), 24 (center), and 33 (bottom)

wavelets. The z-axis indicates the frame number, the y-axis the estimated ¥ coordinate.
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Figure 4.7. These figures show the change in the y direction. The solid line is the ground truth.
The dotted lines are the estimated results with 8 (top), 9 (center), and 12 (bottom) wavelets.

The x-axis indicates the frame number, the y-axis the estimated ¥ coordinate.
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Figure 4.8. These figures show the change in the y direction. The dashed line is the ground
truth. The solid lines are the estimated results with 14 (top), 24 (center), and 33 (bottom)

wavelets. The z-axis indicates the frame number, the y-axis the estimated y coordinate.
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Figure 4.9. These figures show the change in the ) direction. The dashed line is the ground
truth. The solid lines are the estimated results with 8 (top), 9 (center), and 12 (bottom)

wavelets. The z-axis indicates the frame number, the y-axis the estimated angle 6.
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Figure 4.10. These figures show the change in the 6 direction. The dashed line is the ground

truth. The solid lines are the estimated results with 14 (top), 24 (center), and 33 (bottom)

wavelets. The z-axis indicates the frame number, the y-axis the estimated angle 6.
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The object displacements for each frame of our test sequerqaotted in the top graph in Fig.
4.11. In the plot one can see how much time the tracker needaszhtpute each new state. As
mentioned above, we use the same Levenberg-Marquardt (L&¢had for the computation of
each state, as we used for finding optimal wavelets. The number of evalnateps of the LM
method depends on the distances of the initial value fronfotte minimum. The bottom graph
indicates that the LM method needed only two cycles most eftilne. Of course, a higher
number of cycles indicates a slower tracking speed. Theotwograph in Table 4.11 shows
the number of cycles for GWN,,4, but the results were similar for all other tested GWNSs. In
order to relate the number of cycles to a “real” speed, givemiiliseconds, the reader should
refer to Fig. 4.12. In this graph, the approximate compataspeed per LM cycle, given in
milliseconds, is plotted with respect to a variable numideGabor wavelets. The speed was
computed on a 450 MHz Linux Pentium.

Clearly, this plot should increase monotonically. Intérmacro-processor architecture,
cache, and compiler optimization, however, resulted intsstrectly monotonic curve.

4.5 Discussion and Conclusions

In this chapter we have shown how GWNs can be used for affinginea face tracking.
For this we exploited several principal advantages of GWNSs:

1. GWNs have the advantage that they can be arbitrarily latet rotated, scaled and
sheared. This is because GWNs are given by a discrete liosalbination of contin-
uous Gabor wavelets. By following the active vision prirtejdor tracking at each time
step we used solely the actual state of the system and a ma@hlage to compute the
new system state. We have shown using various test imagerseggithat this approach
works satisfactorily.

2. By following the progressive attention principle we ‘eatithe number of wavelets that
were used to describe the face. When fewer wavelets are tisediacking becomes
imprecise; when more are used, the tracking becomes monmarelprecise.

3. Finally, we have discussed how the tracking speed chamigleshe number of wavelets
used. We have argued that the evaluation time increasesheitiumber of wavelets that
have to be computed. Also, we have investigated how manyiegradecent cycles the
tracker needed for the sample image sequence.

The results with respect to this last point are difficult togelize because
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Figure 4.11. The top figure indicates the speed of the head as estimated by the GWN with
133 Gabor wavelets. The z-axis indicates the frame number, the y-axis the sum of squared
difference (SSD) in position between two successive frames. Higher values indicate higher
differences. The bottom graph shows the speed for detection of state s; from state s; ; and
the novel image ;. Lower values indicate higher speed. The graphs were computed with f14,

but they look similar for all other I.

1. exact timing results depend heavily on the underlyinglWvare and operating system;

2. we have presented computational results only for one eénsaguence. Even though all
the other test sequences we have used led to similar rasidtstill not possible to draw
any generally valid conclusion.

The bottom graph in Fig. 4.11 shows that the tracker usuaéded between two and four
cycles for the computation of each new parameter veator-or a wavelet network with 14
wavelets this resulted into a speed of between 10 and 20 &rperesecond on a 450 MHz Linux
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Figure 4.12. This plot indicates the speed of a single LM cycle with respect to a variable number
of Gabor wavelets. The y-axis indicates the speed in ms and the x-axis indicates the number

of Gabor wavelets used. Speed was computed on a 450 MHz Linux Pentium.

Pentium. For some frames the speed was much slower. In theagas, either the number
of wavelets in the network could have been reduced, regutia speedup, in order to assure a
frame evaluation in real time; or the tracking would havéefhi At frame-numbers 280, even
with as few as 10 wavelets, the computation time would haeeexed 280 ms, which would
have caused the tracking system to fail. How the number désyzan be controlled better, in
order to keep the probability of tracking failure low, colde subject of further research.



Chapter 5

Image Coding for Automatic Face
Recognition

As we have already explained in the introduction and in Géragpthow image and object infor-
mation should be encoded is a major question. This quediteisubject of extensive research
in computer vision and robotics, and is still notoriouslifidult to answer. How effectively the
image data is exploited by the representation in order ftidlftie given task depends on the
encoding scheme. Also, the image representation detesntirgedistance measurements and
the efficiency of successive processing steps. In othersytind image representation provides
a “handle” on the image information: The relevant imagefimfation is contained somewhere
in the image, and it is the image representation that allbeselevant information to be selec-
tively extracted from the image. The temelevantdepends on the specific task.

In this section, we will do two things:

1. We will show how Gabor Wavelet Networks can be used tordisiish between different
objects. In this connection, we will take the problemastomatic recognition of faces
as a challenge. Below we will present an introduction to &émminology used and major
problems involved in face recognition.

2. We will use this application to illustrate

(&) how image data is represented,
(b) how unique the representation is to each representedtobnd

(c) how and to what extent generalization can be achieved.
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Automatic recognition of faces is a challenge because thetyaof possible images of a
single person is huge:

¢ A face may be imaged from different viewpoints,
¢ it may be illuminated by different light sources in diffetetirections,
¢ it may appear differently because of beards, glasses amstyias, and

¢ mostimportantly, facial appearance varies consideradtabse of facial expressions and
age.

Given a facial image, an automatic face recognizer eithsrtbautput the correct iden-
tity of the individual in the image or reject the person asKwoown to the system”. A face
recognizer has a stored set of face images of different iithgials that defines itknowledge
Each stored individual is encoded according to a predefinedding scheme. When a new
face image is input to the recognizer, the image is encoddd¢ampared to each of the stored
individuals. The recognizer then identifies or rejects,edasnly on its knowledge, the per-
son in the image. The ability of the recognizer to cope wittpaksible face variations while
avoiding mis-identifications clearly depends on the imageesentation and encoding scheme.
Different face recognition approaches [Brunelli and Pog#P93; Cootest al., 1998; Edelman
et al, 1992; Moghaddam and Pentland, 1997; Turk and Pentland,; M&kottet al,, 1997;
Belhumeuret al, 1997; Zhacet al,, 1998] differ mainly in the image representation that they
use. Examples of these are various versions of principajpooent analysis (the Karhunen-
Loeve transform) [Turk and Pentland, 1991; Moghaddam amdl&ed, 1997; Edelmaaet al.,
1992; Coote®t al, 1998; Belhumeuet al, 1997; Zhacet al., 1998], the Gabor jet represen-
tation [Wiskottet al., 1997], or a feature-based representation [Brunelli arghfo 1993]. In
this chapter we will discuss the capabilities of GWNs as aagerepresentation and coding
scheme. In Chapter 2 we gave an extensive introduction to &W\W¢ gave the relevant defini-
tions and distance measurements, and we gave an exterstussion of the advantages of the
GWN representation over other object representationss& hdvantages will now be studied
for face recognition purposes, and it will be verified stepsbgp that GWNs can satisfy the
invariance requirements stated above.

We will begin in Section 5.1 with an introduction, includif@undations, preliminaries, and
important terms. We will then give an overview of related kor Section 5.2. In Section 5.3
we will investigate evaluation topics.

Existing face recognition systems [Brunelli and Poggi®3;Lootest al., 1998; Edelman
et al, 1992; Moghaddam and Pentland, 1997; Turk and Pentland,; MWWi&kottet al, 1997;
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Belhumeuret al,, 1997] propose different solutions to the problems of vieinp illumination,
expression, etc., and a natural concern is the overall padioce of these systems. Although
each researcher has reported recognition results for btersy the results depend heavily on
the chosen test set of face images, and cannot be regardedasssaor comparison of the
approaches. Indeed, the selection of the particular daleof faces on which to carry out tests
is probably the greatest source of variability, yet it isl#eest relevant one. The FERET database
[Phillips et al,, 1998] may eventually provide a standard, but is only nowobgng widely
available, and it does not claim to test recognition overrmm@hensive set of transformations.

In order to avoid these difficulties we will use the Yale Fa@dbase as a fixed face image
database for our discussion. Other databases, e.g., thehelster face database, have also been
used in our experiments and have confirmed the results thidieypresented. The images will
not be preprocessed, unless stated otherwise. This vaWalk to do several things:

1. It will allow us to investigate how images are encoded ahdtimage data is encoded.
This will allow us to avoid erroneous conclusions about thapprties of the representa-
tion.

2. It will allow us to directly compare the various image reggntation approaches and
encoding schemes, as results obtained on this databaggeotisar approaches are known
[Belhumeuret al., 1997].

5.1 Foundations and Preliminaries

In this section we will give an introduction to the foundaisy terminology and methods of
machine-based face recognition. The terminology somstivades between authors. We will
use the terminology introduced in [Philligs al.,, 1998].

In machine-based face recognition, we basically deal withdets:

1. A gallery setg is a set of known individuals. More formally, gallery G is a set of
image sets. Each image setdnis associated with a specific individual and consists of
all possible face images of that individual, including &k tvariations mentioned above
(pose, illumination, expression, etc.).

This definition implies that each setéhis very large. In practice, a small set of represen-
tative images of each individual is used, and the missing@k@s have to be interpolated.
How well the missing examples can be interpolated dependsenhoice of the image
representation.
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2. A probe set/ is a set of images of unknown persons. Tinebe imagesn the probe set
are presented to the recognition system and are to be igehtifirejected.

We say that “a probe is in the gallery” when there exists a sé¢hé gallery in which the
probe image is contained. The person in the probe imagensdieatified to be the individual
associated with that particular gallery set.

We mentioned above that ideally the gallery sets should belaege. In order to cope with
this potentially large set size, image representationsised that are invariant with respect to
the possible image variations. If we could imagine an imageasentation that waserfectly
invariant with respect to these variations, each set cauidist of a single image, encoded using
that representation. In this sense, each image set in tleyge mapped by the representation
into a single, specially coded image.

During the “optimization phase” of a face recognition systéhe gallery images are coded
using the system’s image representation. As just mentioneke ideal case the representation
would project every image of a given individual onto a singlege. Therefore, instead of
needing to encode every image in each set, a single imagesimomset may be sufficient. This
means that for each individual who is known to the systemny ardingle image would need to
be supplied.

In practice, however, the assumption of perfect invariasmes not hold. Some represen-
tations have invariance properties with respect to somestyb variation, but do not show any
invariance to other types of variation. Therefore, a larggr of images per person may be
needed. We will give some examples of this in the next seetioen discussing related work.

During the “matching phase”, a probe image is input to th@geczer. The recognizer
encodes the probe image using the same representation as&hfor the gallery images. A
distance measure, specific to the image representatiorthearbe calculated to determine the
differences between the probe image and the gallery ima@hsese differences are used to
decide on identification or rejection.

Three different types of automatic face recognition protdexist:

e the closed-universe recognition problem,
e the verification problem, and

¢ the open-universe recognition problem.

In aclosed universeevery probe is contained in the gallery, i.e. every probisgreis known
to the system/ N (|JG) = U. The closed-universe recognition problem is the problem of
identifying the individual in the probe image, assuming tha probe is in the gallery.
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For effective performance evaluation of closed-univeesmgnition, the question is not al-
ways whether the top match is the correct match. Insteadjubstion of whether the correct
match is one of the tofy matches provides an indication of how many images have tadra-e
ined in order to get the desired recognition performance dumlity of the representation and
recognition results can be measured by considering thé'tapatches. The trade-off between
the size ofV and the fraction of the times that the correct face is inaludehe top/N matches
measures the performance of the system.

The verification problemis usually considered as apen-universgroblem. In anopen
universe some probes may not be included in the gallery, i.e. somigeppersons may not be
known to the systentd N | JG # U. For verification, a probe image and an identity are given
as inputs to the system. The identity is assumed to refer tdlarg face. The system now has
to verify whether the identified individual is the same asdhe in the probe image.

The degree of similarity between the gallery image and tiobg@image is used to decide
on recognition or rejection. A threshold for the similantyeasure is usually given in advance
by hand, or can be learned during a training phase of therayséehigher threshold makes
the system more conservative. In this context, one spedidsaf negativeandfalse positives
False negativesire probe faces that do indeed correspond to the correditiddiut are still
rejected because of a threshold that is too higalse positiveson the other hand, are probe
faces that are accepted as having the supposed identitytlemegh they do not. This occurs
when the threshold is too low. Clearly, one wants to mininiése positives as well as false
negatives. In real verification systems acceptance bourdssaially set conservatively, and a
user may be asked to alter his pose or expression if the \aitficfails. If the user is indeed the
person he claims to be, the verification system will evehuddcide correctly, possibly after
several (false) rejections.

Another problem model is thepen-universe problemvhich is defined with respect to an
open universe As in the closed-universe problem, a probe image is inpati¢orecognition
system. Here, however, the probe person need not be knowe gystem. An open-universe
recognition problem can be solved by solvingexification problem The system tests, for
each face in the gallery, the hypothesis that the probe fa¢kei same as the hypothesized
gallery face. Again, careful selection of the similarityagbhold is important in keeping the
false positive and false negative rates low.
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5.2 Principles of Automatic Face Recognition and Related Wik

Various approaches to automatic face recognition existe Girently best-known ap-
proaches are based on principal component analysis (PCé)oanch graphs. Other ap-
proaches, such as ones in which recognition is based on timaegey of local face features
[Brunelli and Poggio, 1993], are recognized to be less dapdh the following two subsec-
tions we will describe the two best-known approaches.

5.2.1 Principal Component Analysis

One of the best-known image representation approachegarssgect and face recognition
in computer vision is principal component analysis (PCA)l[ffe, 1986; Turk and Pentland,
1991; Sirovitch and Kirby, 1987; Murase and Nayar, 1995]AR<also known as thKarhunen
Loeve TransfornLoeve, 1955; Kirby and Sirovich, 1990]. PCA has been patédy success-
ful in face recognition and has received considerable &ttem this context.

Formally, PCA is defined as follows: Léik;,... ,xy} be a set oh-dimensional gallery
images. We want to define a linear, orthonormal mappihg R"*™ from then-dimensional
image space into am-dimensional feature space, with < n. Using¥, a new feature vector
v, € R can be calculated for each imagg

yvi=WTx,, k=1,... ,N. (5.1)

The covariance (scatter) matrixis defined as

N

C=> (- (xe—p) (5.2)

k=1
whereN is the number of gallery images apdc R” is their mean image. From eq. (5.1) one
sees that the covariance (scatter) matrix of the new fesa®rs{y,,... ,yn}isWITCW. In
PCA the linear mappin@Vrc 4 is chosen such that the covariance matrix of the featurewect
is a diagonal matrix and that the determinantiof C1V is maximized:

Wpea = arg mV%X ‘WTCW‘
= [Wl, - ,Wm] . (5.3)
The set{w,, ... ,w,,} is the set ofr.-dimensional eigenvectors of the covariance matfix
that correspond to the largest eigenvalues. The eigenvectors have the same donahty as

the sample images; they are therefore often referred togamictures [Sirovitch and Kirby,
1987] or eigenfaces [Turk and Pentland, 1991].
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The use of PCA for automatic face recognition has been vecgessful. However, its
theoretical foundations are not really clear:

1. PCAis alinear transform. Using PCA for face recognitissuanes that the space of face
images is a linear space, i.e. it is assumed that the varg@atofacial images caused by
different expressions and different individuals form aeln space. This assumption is
empirically justified, at least to some extent, by the suscd$CA [Crawet al,, 1999].

2. PCA is known to be variant with respect to affine deformaidConsequently, the gallery
has to be normalized such that the face features are caetbaaa common coordinate
system in order to be comparable. Still, it is a major drawlthat eigenfaces not only
encode inter-class variations that are useful for recagmibut also intra-class variations
(e.g. expression), which include information that is untedrfor recognition. How to
separate inter-class from intra-class information is tedrc

3. Variations between images are often due to illuminatioanges [Mosest al, 1994].
The matrixWpc 4 then contains eigenfaces that are due to lighting variatiénconse-
guence is that the points in the projected space are not Wsteced, or even worse, the
classes are smeared. An often proposed method of reduciiagimas due to lighting
is to discard the three most significant principal compon@Mioseset al., 1994]. But
the hope that these eigenvectors capture solely variatioa$o lighting is unlikely to be
fulfilled; other important information, that is vital for slirimination, may be lost also.

As a consequence, PCA gives its best results when the gaiteryes and probe images are
aligned in a one common coordinate system, when the imagastdghow facial expressions,
and when the lighting is controlled. PCA results degradesisty when the images are not
aligned, and it degrades moderately with expression amehifiation variations [Phillipst al.,
1997; Phillipset al., 1998].

5.2.2 Elastic Bunch Graph Matching

Elastic bunch graph matching is based on Gabor waveletsgidan, 1988; Wiskotét al,,
1997; Krugeret al,, 1996; Maurer and von der Malsburg, 1995]. The underlyirgnics that
a face (or, more generally, an object) is represented by afsgiecific, meaningful feature
points. Each of these feature points is describedjey@ee Section 2.7), which is a set of filter
responses of 40 complex Gabor filters that are applied apthat. Thus a jet describes a local
neighborhood of gray-values around a feature point. Ther Bkt is fixed and usually (but this
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may vary) contains Gabor filters that have eight differergrgations and five different central
frequencies.

For gallery images, relevant feature points can be seldmtdtand; for probe images, the
corresponding feature points have to be found automaticthe highly redundant represen-
tation makes the search for these feature point inefficNfisKott et al., 1997]. On the other
hand, no normalization with respect to the facial featuseseeded, either for the encoding of
the gallery or for the matching process. Furthermore, tieeaissabor functions ensures that
the representation is somewhat invariant with respectumihation changes. The similarity
function [Wiskottet al,, 1997]

259

\/ > a? Zj a’?

is defined to be the normalized magnitude of the filter respanin the above equatiof, and
J' refer to different jets, and; anda’; to their magnitudes.

Sa(ja j,) =

(5.4)

5.3 Representing Faces with GWNs for Automatic Recognition

In the following sections we will discuss various aspectautbmatic face recognition with
GWNs. First of all, we will explain in detail how the recogoit should be done. Therefore, in
this section we will give some details about the generalguiace for automatic face recognition
with GWNSs. Then, in the following sections, we will systeigatly evaluate the properties and
dependencies of GWNSs with respect to

1. facial expression and other variations such as glasses,
2. illumination variations, and
3. affine deformations.

The idea underlying matching with GWNs is that a GWIN, w) that is optimized for a
particular persorf appears to be very specific to that individual. A differenage of the same
person can be represented by a G\MN w’), in which the family of wavelet¥ is the same,
but the weight vectow’ is recalculated. But for any other individuglit appears that the GWN
that was optimized forf is not a good representation. When trying to reconstyucsing the
wavelet family¥, a new weight vectow” can be found, but the reconstruction according to
eq. (2.24) is far from being acceptable. An example is showhRig. 5.1. The left image
shows the reconstruction of the face imagen which the GWN(¥, w) was optimized. The
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center image shows the same individual with a differentalaexpression, represented with the
wavelet familyw and the newly calculated weight vectef. The right image shows another
face imagey represented with the GWRP, w”). All weight vectorsw’ andw” were chosen
optimally according to Section 2.4. These images show trahke new image, no vectorw”

Figure 5.1. The left image shows the original face, represented with an optimized GWN. The

center image shows the same person, but with a “smile” expression. The right image shows
a different individual, represented with the same GWN used for the first two images. We see
that the new individual cannot be represented well by a GWN that was optimized for the first

individual.

can be found that gives a reconstruction as good as thosendleowhe original individualf

(left image) or for the original individual with a differeffdcial expression (“happy”) (middle
image). This shows that the wavelet family since it is optimized for an individud, is very
specific tof. Therefore, when we say below that a GWWN, w) is specific to a person, we
mean that the wavelet family is very specific to that particular person, and we ignore the
specificity ofw.

Since, as seen in Fig. 5.1, GWNs are very specific to the peitbay are optimized on, it
seems reasonable that to find out whether the probe imabews the person in gallery image
f, we can apply the GWN of the face jinto the face iry; the quality of the reconstruction will
determine whether or not the two images show the same person.

In summary, our matching strategy consists of three steps:

1. Encoding each of the gallery images with a GWN,
2. encoding a probe image with each GWN in the gallery, and

3. successive comparison of the probe image with each ofathergimages.
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5.3.1 Encoding of the Gallery

In the first step, the gallery images are encoded. Above, weduaced the terngallery
in the strict sense, as a set of image sets each of which osrddlipossible face images of
a specific individual. Let; = {F;|i = 1...n}. Each setF; contains all possible images of
individual ;. We would like to consider the mean faceBfas a representative of that set. It
has been found [Cootet al., 1998; Moghaddam and Pentland, 1997; Vetter and Blanz,]1998
that the mean face does not show any expression or illuromatifects. However, since we
cannot calculate the mean face, we simply take the imagerebpé&; that shows a “normal”
facial expression, i.e. no expression, and normalize ¢fimtihg conditions. We therefore rewrite
the above definition of as containing the set of mean facés= {f; ... f,}, wheref; now
refers to the mean face of a specific person.

For each image; € G = {fi,...,fm}, a GWNY¥, w); = (¥;,w;) is optimized and
stored. Each individual is thus represented by a specific GWhEe galleryg’: G' = {(¥q, w;)
oo (¥, W) }. Each GWN(Y,, w;) is considered to be the representation of the indivighal
The GWNs are optimized as explained in Chapter 2.

5.3.2 Encoding the Probe Image

In order to recognize the person in the probe imgglat image needs to be encoded using
each GWN in the gallery. If there is a GWN that allows a goodesentation of the probe
g, that GWN identifies the person in If there is no such GWN, the prohgis rejected as
unknown.

In order to represent a prolgeusing a Gallery GWNV;, w;), the operator$ and7 are
employed; both were introduced in Chapter 2. The opeftisrused to reparameterize (warp)
the given GWN(V, w) onto the face image in the prope The operatof/ is used to calculate
the optimal set of weights/’ for the particular family of waveletd.

First, the operatoP is applied, in order to reparameterize (warp) the GV\MN, w;) to fit
the face in probe:

n = Py,(9) (5.5)

wheren is the new affine parameter vector of the Gabor superwavg|etTo fit the net to the
unknown face, the GWN is deformed affinely. Other variatiaresnot considered.

We have argued above that before recalculating the weigititsstive operator/, a good
reparameterization of the GWN is of vital importance. If gv®@be image contains the face
of the individual f;, we can be sure that the reparameterization with the net(bylkw,;) will
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be successful. In our experiments, the optimal set of paem&as found in00% of these
cases. In situations where the images are different, it mppén occasionally that the operator
‘P converges to the wrong minimum. However, in our experimeats/ergence was correct in
85% of the cases. The optimality of the reparameterizatadunes was judged by examining
images like those in Fig. 5.5, top row, which shows differglividuals with superimposed
marked positions of the first 16 wavelets of the reparanmsgtdrGWN.

Second, the operatdf is applied, in order to calculate the new weight vectdrthat is
optimal (with respect to the reparameterized Gabor supatetl; ) for the probe image:

9="Ts.(9), (5.6)

whereg denotes the reconstruction @fvith respect to the reparameterized superwaveedf
f; and the optimal weighte'.
In summary, the steps are:

1. optimal reparameterization of the GWN using the positigroperatorPy,

2. calculation of the optimal weights for the optimally repaeterized GWN by using the
projection operatofy.

This can be written concisely as
i="Ty"(g) . (5.7)

The time required to evaluate opera‘vq}j(g) is the sum of the evaluation times of the operators
P and7T. The operatofP was already shown to be usable for tracking, i.e. its evelndime

is less than one second. The opergforequires a single matrix multiplication, which lies in
the range of milliseconds.

5.3.3 Comparing the Gallery Image with the Probe Image

Let (¥, w) be the GWN of imagef. The composite operatdf, of eq.(5.7) leads to an
image g that is very similar tog iff ¢ is well characterized by that GWN. This means that
(5.7) is approximately the identity iff ~ f or ¢ = 0* (images are assumed to be DC-free).
Assuming, without loss of generality, that# 0, we can write the following: I{¥, w) is the
GWN of imagef, then

q ~ iff g~
7ﬁ%”:{§¢§:ﬁ5¢;.' 8)

Using eq. (5.8) it is straightforward to define twimnilarity measures

*This is the trivial case where all weights are zero.
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1. Euclidean distance

&2 (f.9) = 1T (f) = Ta 9] - (5.9)

2. normalized cross correlation

Ep(g)(f) . 7:117’(9)(9) o Rp(g)(f) 7:1}7’(9) (9)

, (5.10)
\/VAR (72 “(f)) VAR(Ty “(g))

dy(f,9) =

where- denotes the pixelwise produeiienotes the mean and VAR the variance.

Let us take a closer look at the two distances. The distanesunei? (f, g) is defined to
be the sum of the pixelwise squared differences betweemah@tages. The first image is the
wavelet representation of the gallery imafjthat has been warped onto the probe imadeece
Fig. 2.11), with theoriginal weight vectormw of gallery imagef:

f=T90). (5.11)

The imagef needs to be warped onto the imageso that the face features are aligned in a
common coordinate system. This is important later for tixelpiise comparison.

The second image is the wavelet representation of the probgag with respect to the
GWN of the gallery imagg and with the new weight vecter’. This image is given by

i=T,") . (5.12)
The distancel? (-, -) is then defined as

& (f9) = IIf — 3l
= 179 - TVl - (5.13)

Clearly, the more similar the two imagg¢sandg are, the smaller is the distandg.

In Fig. 5.2, examples are shown: the imdge 7?1,7’”)(]) of eq. (5.11) (left) and the image
J =T7Y(J) of eq. (5.12) (right).¥ is the GWN optimized for imagé. The distance’, is
the sum of the squared differences between the two imagedhke lideal case where the probe
image.J is the same as the gallery imadiethe d* distance is zero. If the probe imagdeis
derived from the same person as the gallery imBde general thel> measure is small.

The distance measuié ( f, g) is defined to be theormalized cross correlatiobetween the
two images/ and g, normalized with respect to the means and the variancestbfibmges:
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Figure 5.2. These two images show the original image /, warped onto the image ./, 7:1,1)“)([)
(left), and the result of the operator applying 7:1,73(‘]) (J) to the image .J. The distance d% (I, .J)
between images [/ and .J is defined to be the sum of squared differences between these two
images and the distance d, (I, J) is defined to be their normalized cross correlation. The GWN

U is optimized on image I.

The mean is discarded and the variance is normalized to 1.n®fmalized cross correlation
has the property

—1<dy(f,9) <1

for all imagesf,g. The closerds (f, g)| is to1, the more similar the images are.

The two distance measurésandd’ in the above equations calculate the differences based
on the pixel values of the remap. This is inefficient, as theNGWsults in a data reduction
that allows us to represent each image by a small set of weevghtt is possible to calculate
the difference measures based solely on the weight vectarglw. As mentioned above, the
operatorP has the effect that the two imaggsndg are aligned. This means that both images
can be represented using ttemewavelet family, only the weights are different. Startingrfr
the GWN (U, v) of image f, we end up with the two GWNEY, v), and (', w) that represent
f andg; a new weight vectow is derived with the operatof. This means that eq. (5.13) can
be rewritten:

dy(f.9) = IIf =l
N

N
= D vt =Y witssl (5.14)
i=1 =1
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Comparing this withig in eq. (2.49), one sees th# can be simplified for the specific wavelet
family ¥ so thatd? can be calculated directly with the weightsandv, usingdy:

di(f,9) = (v—w)" (V) (v—w), (5.15)

with (\p”) = (¢, 1;), as above. This allows us to calculate the distaffcsolely from the
weights, and it avoids the need for explicit reconstructiad a pixelwise comparison.
Like d? , the measurd® can be calculated on the basis of the weights only:
v! (Tiy) w
\/Vt (Vs;) V\/Wt (Vij) w
As we will see in the next section, these two distance measli@v face recognition rates
of up t096%.

(5.16)

dy(f.9) =

5.4 Recognizing Faces Independently of Expression Vari&ins

In the previous section we presented a general proceduredognizing faces with GWNs
As mentioned there, each GWN is used as a representatioa sétlof all possible face images
of a specific individual. The ability of the GWN to represefitthe images in that particular
set, in addition to itsinability to represent any image iother set, makes it feasible to use the
GWN for unique representation of image sets, and so for r@tiog of faces. In this sense, the
GWN is taken to represent an invariance property of the imagthin a specific set, such that
this invariance is not a property of any other image set. [fKB/dre taken to uniquely identify
images of a certain person, we have to verify the invariaricbke@GWN with respect to (see
also the beginning of Chapter 5):

¢ facial expression,
e illumination, and
e pose.

Pose variations can be compensated if the variation in appea can be modeled by an affine
deformation, as discussed above. lllumination variatiwitisbe discussed in the next section.

In this section will verify the invariance of the GWNSs withsgeect to facial expressions. The
following section will give an overview of different apprdaes to image coding that have been
successfully used for face recognition and will discus# tingariance properties with respect

to facial expressions. We will conclude this section witbenmental results.
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5.4.1 Background and Related Work

Two general approaches exist for face expression invafidaetrecognition. We call them
here explicit and implicit approaches.

Explicit approaches try to explicitly model e.g. facial egpsions or illumination effects.
In [Edwardset al., 1998; Vetter and Blanz, 1998] the system tries to syntledsie probe face,
and the synthesis parameters allow it to identify the irtiial as well as the expression. In
[Edwardset al., 1998] PCA and special eigenfaces are used to model theéeatal geometry
of faces. PCA is used to find valid instances of the synthemigrpeters (eigenvectors) and to
separate the parameters for identification and for the vamxpressions. Using this approach,
[Edwardset al., 1998] were able to synthesize almost any face and any esipredn [Vetter
and Blanz, 1998] no such general representation is usetkabhsa separate model is used for
each person from which every expression of that person cagritbesized. In contrast to this
approach, which is a 2-D-approach, [Vetter and Blanz, 1988]full 3-D information which is
then back-projected onto 2-D. In both approaches, the dusgtmared difference (SSD) is used
as a criterion for the quality of the synthesis.

Implicit approaches ignore expression variations to soxtene. For example, most com-
mon eigenface approaches [Moghaddam and Pentland, 198%;etral, 1999] ignore what
[Edwardset al, 1998] try to explicitly model. The resulting variations time eigenvalue pa-
rameters are compensated using a statistical model of\@lyenvariations in parameter space.
Since PCA is a “global” representation, this is relativebpust because local variations are
canceled out. In [Wiskottt al., 1997], expressions are automatically compensated byattie v
ability of the jets. The graph itself is rather static andn$yallowed to deform affinely.

Expression-invariant face recognition with GWNs can besagred to be an implicit ap-
proach. We assume that variations in face appearance cayskfterent facial expressions are
only of a small scale. Large-scale information, which iglds geometric properties and holistic
face information, is assumed to remain mostly unchanged.

Many publications deal with facial expressions in genetdbwever, only the few cited
above attempt to recognize individuals. Many other apgreaattempt to recognize the ex-
pression, independent of the individual. Here, the mostroonly used approach is to track
muscle actions over time (Facial Action Coding System (FAQIShikawaet al, 1998; Hong
et al, 1998; Lienet al., 1998].

In most experiments, standard facial expressions arelysuaisidered, including

e normat a normal facial expression, i.e. no particular expression
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happy a happy facial expression, ranging from a smile (closedthjdo a laugh, (open
mouth). Most variations are in the mouth region; minor vigoigzs are found around the
eyes

sad a sad facial expression. Again, most variations are artldnouth, and there are
minor changes around the eyes.

surprised a surprised facial expression. There are major changesidrnbe mouth and
eyes; the eyes are wide open and the eyebrows are lifted.

sleepy a sleepy facial expression. The eyes are shut, i.e. themaiaor local changes in
the eye region; the face looks very much like the normal esgom.

wink a wink facial expression. One eye is closed, the other opapending on how
easily the individual is able to wink, there are more or léssng local variations around
the closed eye.

Examples of the various facial expression are shown in Fig.. Bhese images are derived

from the Yale Face Database.

Figure 5.3. The Yale database contains images showing six different facial expressions of each

individual in the database: normal, happy, sad, surprised, sleegd wink

Facial expressions likeurprised, happgndsadshow very strong variations in face appear-

ance. For face recognition approaches, which deal withesgoons implicitly, these expres-
sions are difficult to compensate. Approaches that are aldgrithesize expressions seem to
have fewer recognition problems. However, no precise exytal results have yet been pub-
lished. For expression recognition, on the other handgtle&pressions are clearly the easiest
to identify.

5.4.2 Experiments

Experiments were carried out on the images in the Yale Fateblase. The database con-

sists of 15 different subjects whose faces show the sixréiffieexpressionaormal, happy,
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sad, surprised, slee@ndwink, and also contains images showing the subject with and witho
glasses. The Manchester Database contains various diffexpressions, but they were not
systematically organized. It was our goal to recognize sadiect independently of the facial
expression or the eye wear. To achieve this we optimized a GWehach individual, where the
optimization was done on the image showing the normal egpes Here the normal expres-
sion is considered to be a mean expression. For more debailg the optimization procedure
see Section 5.3.1.

Optimizing a GWN for each individual leads to a gallery of 18/6s, one for each indi-
vidual, and 15 operators (see eq. (5.’]\5}(')(-), one for each individual’s normal imageand
GWN (V¥,.w;), 7 = 1,...,15. In Fig. 5.4 and 5.5, example results of applying the operato
7(1,7’1“) (J) to the different facial expressions of individual(bottom rows), and to various other
individuals/;, j # ¢ (top rows), are shown. The GWN used here is the one optimineti®
image with thenormal expression of “subject01”, which is shown in Fig. 5.4, tofi.leThe

optimized GWN is shown in the left bottom image in Fig. 5.4.

happy glasses

Figure 5.4. Various images of “subject01” (top) and the results of applying the operator
7&,7)(‘])(]). (bottom). To calculate these examples, the GWN of Fig. 2.4, f52, with 52
wavelets, was applied. The “normal” image was taken to be the image / on which the GWN

U was optimized.

The images in the top row of Fig. 5.5 show the superimposeipas of the wavelets in
the GWN after the reparameterization of the GWN of “subjgtt®y looking at the examples
in Figs. 5.4 and 5.5, we can intuitively compare the resultapplying operatoﬂ;z(‘”(t]) to
different probe imaged, with the optimal results when it is applied to the gallername, i.e.
the image that the GWN was optimized on (bottom left, Fig).5This is what is done by the
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Figure 5.5. Various subjects in the database (top) and the results of applying the operator
RP(J)(J)(bottom). To calculate these examples, the GWN of Fig. 2.4, f52 with 52 wavelets,
was applied. The “normal” image in Fig. 5.4 was taken to be the image / on which the GWN

U was optimized.

two distance measures

(1,7) = |73 - 73 ()l, and

PNy . 7P () _ 7P ) 7P
g = o DT (N=Ty (DT ") (5.17)

VAR (77 (1)) VAR (T (1))

that were introduced in Section 5.3.3. In eq. (5.17) the vefamily ¥ is understood to have
been optimized on imagke Image.J is assumed here to be the probe image.

5.4.3 Experimental Results

Tables 5.6 and 5.7 show the experimental results, whereirthiasty was computed be-
tween subject01 with a normal expression and

e images of subject01 with different facial expressions,

e images of subject02 — subject15, all showing normal express

The similarity measurements used wefeandd®. The two tables can be generalized to the
other subjects. A clear difference can be seenifdretween the probe images of the original
subject and the probe images of other subjects. The differand?> seems to be less drastic
(note that the scalings of the axes of Tables 5.6 and 5.7 #eratit), but still confirms our
expectation. We obtained a recognition rate of
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Figure 5.6. This table shows the similarity measurements 1/d2 of the images of the various
subjects in the face database to the reference image in Fig. 5.4, left. Higher values indicate
higher similarity between the images. One sees that the values in the left part of the table
(same subject) indicate much higher similarity than the values in the right part of the table

(different subjects).

e 96% with thed® measure
e 94.7% with thed? measure.

Using the distance measure introduced by [Wiskotl., 1997] (see eq. (5.4)), the recognition
results degraded %9.3%.

Recognizing the “surprised” expression failed on five imdlinals. Leaving out the “sur-
prised” expression, the recognition rates increased to

e 97.6% with thed® measure

e 96.9% with thed? measure.
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Figure 5.7. This table shows the correlation measurements d° of the images of the various
subjects in the face database to the reference image in Fig. 5.4, left. Higher values indicate
a higher similarity between the images. One sees that the values in the left part of the table
(same subject) indicate much higher similarity than the values in the right part of the table

(different subjects).

5.4.4 Analysis of and Comments on the Experimental Results

A GWN that is optimized on a normal facial expression imaga epecific individual rep-
resents a collection of local facial features. Because @fsfjarseness of this representation,
different individuals cannot be represented well with gg@rGWN. A GWN encodes the over-
all geometry of the face that the network is optimized on, @ansl assumed that this overall
geometry remains in principle the same in different images.

The optimization of a GWN on an imageensures that the positions, sizes and orientations
of each of the image features ¢fare encoded very precisely. (We mentioned this in Section
3.1). Each Gabor wavelet encodes a specific feature, anchtire &amily of Gabor wavelets
encodes the overall layout of the image features. Sinceottad image features and the global
layout are very specific to the image on which the net was apéid) the “fit” of the GWN to
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other face images is very bad, because the features aredatiéferently and the face has a dif-
ferent overall layout. Assuming, however, that the ovegathmetry of a specific person’s face
stays the same in all images, and that different expressesust only in minor local changes,
the GWN allows good reconstruction of all images of that wdlial's face, independent of
his/her expression. In fact, it is reasonable to ask to wegtek facial expressions can be com-
pensated. It seems that most variations in facial appearander varying expressions occur
locally and at large scales. The GWNSs used in our experimeorigain mainly wavelets of
these large scales, as can be observed by comparing theabiigage and its remap (see Fig.
2.4). Furthermore, the GWN representation is not a strlottal representation. Rather it can-
cels out local variations by considering entire neighbodwof pixels that are located within
the support of each filter. This is also the reason why imagegich the probe person wears
glasses are all well recognized.

On the other hand, the fit considerably degrades when a GWNiigesl onto other indi-
viduals. This clear difference in “fit” can be seen in Fig. ,5ahere the ability to represent a
different individual clearly degrades.

The assumption that only minor local changes occur undeati@ns of facial expression
is violated for the “surprised” expression. This can be deethe “surprised” image of each
person. The result is that the ability of a GWN to represenndividual with the “surprised”
expression degrades considerably, as can be seen frormtharisy measurements in Tables
5.6 and 5.7.

Variations in the overall geometry of a face that are duefio@fleformations are compen-
sated automatically during the positioning process urteoperato.

5.5 Recognizing Faces Independently of lllumination Changs

In the previous section we discussed the invariance priegest the GWN representation
with respect to facial expressions. In this section we wilkraine the invariance properties
of GWNs with respect to illumination changes. When facesilamminated by different light
sources, or from different directions, the faces can apgeanatically different. Stable recog-
nition in spite of severe lighting variations is still an opproblem, and also depends on re-
search areas like shape from shading and photometric Jtdes@akawa, 1994; Horn, 1986;
Belhumeuret al,, 1997].

As in the previous section, different approaches exist tinake it possible to cope with
illumination variationsExplicit approachesry to model the illumination situation [Belhumeur
etal, 1997; Sung and Poggio, 1994; Shashua, 1992; Nayar and &11286; A.S.Georghiades
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et al, 1999]. They are theoretically well-founded; howeverytlage unable to modedvery
lighting condition with every possible number of light soes. Implicit approachesgnore
illumination variations. No model is needed in this case amlgt minor assumptions have to be
made. This section will give an overview of different appro@s that have been successfully
used for face recognition and will discuss their invariapiagerties with respect to illumination
variations. We will conclude this section with experimeémésults.

5.5.1 Background and Related Work

Eigenface methods are expected to suffer severely undeiniggvariations because illumi-
nation variations cannot be modeled by the set of eigenf@mkumeuret al, 1997; Crawnet
al., 1999]. Furthermore, it is well known that the training oéthigenfaces on a set of gallery
images suffers from variable illumination during imagetcap [Belhumeuet al, 1997; Craw
et al, 1999]. When eigenfaces are trained on the basis of imageésviére captured under
varying illumination, the eigenfaces will retain theseiadons. As a consequence, points in
the projected space will not be well clustered; insteadssela will be smeared out. This phe-
nomenon was extensively discussed in [Moseal., 1994]. In order to cope with illumination
variations during training of the eigenfaces, [Mosésl., 1994] proposed discarding the three
most significant eigenfaces, as they appear to contain mdasé dlumination variations. The
hope was that by discarding the most significant eigenfatesclustering in feature space
would be better. However, it is unlikely, that the three ngghificant eigenvectors solely cap-
ture lighting variations. More likely, important informai for discrimination and classification
will also be lost.

In order to cope with illumination variations in some otheayvvarious suggestions have
been made. In [Sung and Poggio, 1994], for example, a bdstigittness plane is first sub-
tracted in order to reduce the strength of heavy shadowsdadusextreme lighting angles. A
best-fit brightness plane provides a linear approximatothé gray value variation in the im-
age. This is especially useful in situations where the ilhation is not frontal. The subtraction
of the best-fit brightness plane is followed by histogramadigation.

In [Shashua, 1992; Nayar and Murase, 1996], a linear subgpathod is proposed that
should allow recognition under arbitrary lighting condits. The linear subspace method ex-
ploits a well-known method from photometric stereo. It candbserved that images of a
Lambertian surface without shadows lie in a 3-D linear sabsp More precisely, lei be a
point on a Lambertian surface that is illuminated by an itdsimal light source at infinity.
Furthermore, let € R* denote the product of the light source intensity with thétigource
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orientation. Then the resulting intensity at pgines viewed by the camera, is given by

Heren(s) is the inward normal vector to the surface at the ppiranda(p) is the albedo of
the surface ap. This means that the albedo and the surface normal can beered) given
three images of a Lambertian surface from the same viewiregition but illuminated from
three linearly independent light source directions. Ireotlvords, the image of a surface that
is illuminated from an arbitrary direction can be recovebgda linear combination of these
three images [Shashua, 1992]. Assuming that faces are ltéierband that the positions of
the light sources in the original images are precisely knawen in principle, the linear sub-
space method allows us to cope with arbitrary illuminatibmegions with a single light source.
However, self-shadowing, specularities, and facial esgicss cannot be handled by the linear
subspace method. A further drawback is that the linear sudesmethod needs to store at least
three images for each person (same viewing direction, fimearly independent illumination
directions) in order to approximate the linear subspaceo Ahis method can easily deal with
situations where a face is illuminated by only a single lighirce, but in situations where it is
illuminated by a set of light sources, these approaches liaifact, the impossibility of find-
ing an illumination model that allows modeling of any siioatis the major drawback of the
explicit approach.

An alternative to modeling illumination explicitly with séefit brightness planes or linear
subspace methods is to use an implicit approach that filteigrmores” the illumination varia-
tions. As an example, [Zeng and Sommer, 1996] discussedfdutssof illumination variations
in the frequency domain. Homomorphic filtering is used asepgmcessing step to a PCA-
based recognition approach in order to improve recognitaes. As a further example, the
bunch graph approach [Wiskat al, 1997] employs Gabor wavelets for the representation
of local gray-value variations. Gabor wavelet functiorsuaed in [Wiskotet al., 1997], are
known to have a vanishing DC component. This means that ilation variations are not
perceived if they are homogeneous within the support of ttex.fiThe term “homogeneous
variation” means that the illumination may vary with a camttoffsetc for all pixels within the
support of each Gabor filter. This results in a change in themmwalue (the mean calculated
within the support of the filter) by the offsetwhile the filter response of the DC-free filter
stays the same. In other words, the bunch graph approacthdiscards the mean values and
relies only on the filter responses, can be viewed as beingstdb homogeneous illumination
variations.

The support of the Gabor filters is relatively small, so tHamination homogeneity within
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the filter support is a relatively weak assumption. This nseghat specularities and minor self-
shadowing can well be ignored by the bunch graph represemtas long as the supports of the
affected Gabor filters are small relative to the affectedyenarea.

The filter responses depend on the local contrast in the imalges contrast may change
under illumination variations. The similarity function piskott et al,, 1997], which is given
as the normalized cross correlation between two jets, naesdocal gray-value variance (con-
trast):

Zj a;a’;
b)
/ 2 2
> a; Zj a’;

where thea; refer to the responses of the Gabor wavelets. “Contrasati@ani’ is understood
here as a constant factelapplied to the image. Again, because the filter support ialJdbe
factorc has to be constant only within the support of each jet.

GWNs also use DC-free Gabor wavelet functions, and thezdfare basically the same
properties with respect to illumination changes as the bwgraph approach. Furthermore,

Sc(j, «7,) =

the distance measur&(-, -), which is based on the normalized cross correlation betwleen
weights of the gallery imag¢ and the weights of the new probe imagenormalizes the gray-
value variance (contrast) (see 5.16):

vl (\Ifm-) w .
\/Vt (\Il”) v\/wt (\Il”) w

We will see in the next subsection that face recognition déeéd robust to illumination

(5.18)

dy(f,9) =

variations, as expected.
5.5.2 Experiments

In this section we present the results of experiments onnveiance of the GWN object
representation with respect to illumination changes.

No image database is available that would allow systematituation. Therefore, in this
section we will use synthesized images. The images we usadditing are derived from the
Yale Database. They are the images showing the normal faguaession. To these images, a
brightness plane with variable orientation was added [SamtjPoggio, 1994]. The brightness
plane is defined as

hap(zr,y) = Az + By . (5.19)
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Figure 5.8. These two images show a gray-value surface for A = 3 and B = 0.15.

An example of such a plane is shown in Fig. 5.8. The brightpésse is added to the facial
image to synthesize various illumination conditions. Epéanmages can be seen in the top row
of Fig. 5.9. We consider only “global” illumination changeghich can be closely approximated
by such brightness planes. Specularities and self-shadosre not considered hered =

B = 0 refers to frontal illumination, as the surface normal isgtlat to the facial normal and
orthogonal to the image plane. The illumination directioe, the orientation of the surface
normal, can be calculated direct§0 — arctan(—1/A) gives the angle between the normal and
the z-axis, and90 — arctan(—1/B) gives the angle between the normal and gkexis. For
example, forA = 1 andB = 0, the face is illuminated from5° from the left; forA = 0 and

B = 1, the face is illuminated frord5° from the top. Examples are shown in Fig. 5.9. The
notations below the images refer to the parameters in ed9)5It can be seen in the images
and in Tables 5.10 and 5.11 that for smaller angles Wit < 3, the representation is only
marginally affected by illumination variations. For largengles, distortions increase.

5.5.3 Experimental Results

The visual impression of Fig. 5.9 is confirmed in Tables 5.40 &.11. In the first table
the inverted Euclidean distance measufd” is used. The similarity degrades quickly as the
illumination angle becomes less orthogonal to the face.méasures should also be compared
to the ones in Table 5.6; measures ab@®e2 can be considered as “recognized”. In the second
table the normalized correlatieli is used as the measure. Here the decrease in similaritysis les
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A=1;B=0 A=2;B=0 A=5; B=0 A=5; B=5 A=3; B=3

Figure 5.9. Various images of “subject01” (top) and the results of applying the operator
Rp(f)(f) (bottom). To calculate these examples, the GWN (U, V) of Fig. 2.4, I, 4, with
52 wavelets was applied. The notations below the images refer to the parameters of the
added gray-level surface according to eq. (5.19). They correspond to an illumination of
arctan(—1/A)° from the left and arctan(—1/B)° from the top. It can be seen that the
illumination variations are well compensated for smaller angles (A, B < 3). For larger angles,

the reconstruction quality degrades. This can also be seen in Tables. 5.10 and 5.11.

drastic, due to the normalization of contrast. By again canmg the results with Table 5.7, we
see that measures abadu85 can be considered as “recognized”.

The tables can be generalized to the other subjects. Mostiilation variations, e.g4 =
0 ... 4,with B = 0 for measurement‘, and4 = 0 ... 3, with B = 0 for d2, are compensated,
and recognition results on the subjects with “normal” egprens approach00%. For stronger
illumination variations, the recognition rates degradedty.

5.5.4 Analysis and Comments on the Experimental Results

The experiments in this section have confirmed our expectsitiGlobal ilumination changes
are well compensated by the Gabor wavelet representat@aube DC-free Gabor functions are
used. The reason is that the filter response of each Gabotew&wection is invariant to ho-
mogeneous illumination changes that occur within its suppbdherefore, if the illumination
change in a test image can be assumed to be locally homogenbeuglobal illumination
change can be completely compensated. Clearly, the defgtebal illumination change de-
pends on the support of each of the Gabor filters. Large-sgabmr filters with large supports
will allow smaller global variations than small-scale Gahoctions.
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Figure 5.10. This table shows the similarity measurement 1/d2 for the images of subject01 under
illumination variations applied to the reference image in Fig. 5.4, left. Higher values indicate
higher similarity between the images. We see that the similarities vary with the illumination
angle. For near-frontal illumination the similarities are best. These results should be compared

to the results in Tables 5.6 and 5.7.

It was stated in the discussion of the previous section HeaGWN that we used for our ex-
periments contained mostly large-scale wavelets. Sireedmpensation of illumination varia-
tions assumes homogeneous illumination within the supgaach filter, large-scale wavelets
have a negative effect because the homogeneity assumptidolated more easily in large
regions than in small regions.

5.6 Discussion

The major importance of this chapter was to show how imagenmétion is represented by
GWNSs. This was investigated in the context of face recogniéixperiments. Such experiments
require precise representation of individuals, but thep aéquire generality for independence
of expression. Our approach is strictly appearance-badeete the identity of a person’s face
is judged by its appearance in a probe image. We have not msegeametrical model infor-
mation about faces or their possible expressions, in omensure that the representation be
as general as possible. In order to have the possibility négdizing from faces to general
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Figure 5.11. This table shows the distance measurements ¢ for the images of subject01 under
illumination variations applied to the reference image in Fig. 5.4, left. Higher values indicate
higher similarity between the images. We see that the similarities vary with the illumination
angle. For near-frontal illumination the similarities are best. These results should be compared

to the results in Tables 5.6 and 5.7.

objects, this is very important.

Our experiments have shown that GWNs encode image infoomatt only by means of
the weightsw;. In fact, even more information is encoded in the parametetorn; of each of
the optimized Gabor wavelets. The parameter vectors, wdncbde the orientations, positions
and scales of the wavelets, are very important, as they enisat the GWN is able to model
the structure of a specific face. Just as this structurerdifte different individuals, so do the
optimized parameter vectons, and with them, the different optimized GWNSs.

Affine deformations of a face are compensated by the abifith@ GWN to adapt to such
deformations. However, arbitrary deformations that areafitne cannot be modeled, and the
GWN representation fails. This situation occurs, for exeyyghen a GWN is used to represent
a face on which it has not been optimized, because the relpgisitions of the facial features
are completely different from those in the original face.

This situation also occurs, in a more moderate manner, wiesfatial expression of a face
changes. However, when this happens, the relative positibthe facial features are not likely



5.6. DISCUSSION 101

to change much, so representation with the same GWN is stilessful. A counter-example
to this is the “surprised” expression, where the eyebrowsaised, the eyes are wide open, and
the mouth is deformed so that the representation fails.

A Gabor wavelet has to be positioned precisely on the imaggiffe it is supposed to rep-
resent. If it is not positioned there precisely, how large displacement can become before
it becomes visible in the image depends on the scale of theletav For large wavelets the
displacement can be much larger than for small waveletsll buaexperiments we have used
rather large-scale wavelets; this can be seen by examihengetmapped images. If we had
used small-scale wavelets, the GWN would have been lesstabth respect to changes in
expression.

In all our experiments we used GWNs with = 52 wavelets each. Changing the number
of wavelets caused the recognition rate to decrease. Wefbawne that a decrease iN re-
duces the precision, and in some sense the information mpmtethe representation, and the
GWNs became less descriptive. An increaséVinon the other hand, leads to the networks
becoming able to represent more than just the structureeofaite they were optimized on so
that the GWNs become less distinctive. A more precise etialuaf this observation would be
interesting, but is beyond the scope of this thesis.

In Section 5.5 it was argued that the robustness of the GWN mggpect to illumination
changes increases as the scale of the wavelets decreasése @her hand, with small-scale
wavelets, robustness with respect to facial expressioredses. The best choice of scale there-
fore depends on the situation and the task.

This chapter has also shown how GWNs can be used for the atitoe@ognition of faces.

A recognition rate 0B6% was achieved. The recognition approach presented herédsheu
regarded as a rudimentary system that could well be enhaocachieve higher recognition
rates. However, it should be admitted that this system hasnaipal drawback. For each
gallery face a GWN has to be optimized and stored, and dudoggnition a probe face has
to be processed by each GWN in the gallery. This requires mare computation time than
the other recognition approaches that were mentionedeeaflihis problem can possibly be
solved by applying the progressive attention scheme: Stargearch for the correct individual
with a small set of wavelets, and increase the number of w&seintil a unique person is
found. It should also be mentioned that only small databases used in our experiments, and
generalization of the above results to larger databasefdwat be easy. Experiments on this
and on enhancement of the system will be left for future netea






Chapter 6

Using Gabor Wavelet Networks for Pose
Estimation

In Chapter 3 we explained that filtering of a function with thavelets of a GWN, and recon-
structing a function by a weighted superposition of the Wetge are closely related. Indeed,
we have shown that the weights are linearly related to thex flisponses of the wavelets by eq.
(2.36). In other words, the responses of the filters of GWNk=aaly contain all the information
that is needed for reconstruction.

In the previous chapters we have explained that GWNs all@atgtata reduction and effi-
ciency in object representation. The relation betweerr fikeponses and weights also allows
us to exploit these advantages for image filtering. In othemds, if we use a GWN with, e.g.,
N = 52 wavelets, their 52 filter responses suffice to representslthe entire facial image.
The image need not be filtered (convolved) with each of the l&2di Instead, the filter re-
sponse refers only to the application of the filter at a sipglgtion which is determined by the
parameters of each Gabor function and the superwavelet.

In this chapter we will investigate this property and show®WNs can be used to define
optimized and efficient filtering schemes that are able toaekimuch more information from
images than, e.g., filtering schemes in which the Gabor wévale homogeneously distributed.

The application we will use in our investigations is poséneation. In order to understand
how the pose estimation will work and in what context the iméitjering must be carried out,
we will begin with a short introduction to general concepeshniques and approaches.

The detection of the head pose and gaze detection of a huniidewa major feature of fu-
turehuman-computer interactiofHCl) systems [Colombo and Bimbo, 1997; Daugman, 1997;
Gavrila, 1999; Pavloviet al., 1997]. Various kinds of cooperative gaze detection systexist,
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but they are cumbersome and require hardware to be connedteel head of the user. In this
chapter we are interested in non-cooperative gaze detextgiems that leave the user free from
wearing any hardware. Non-cooperative gaze detectioetheg with speech recognition, will
allow very natural interactions with computer systems Krand Craw, 1996; Maggioni, 1995].
Today'’s speech recognition systems are already quite ssitdebut gaze detection systems are
still under development, and it is not yet clear how the gdakbable, precise, and fast gaze
detection (real-time response of the system is a major rexpaint) can be achieved.

Most experimental systems for pose or gaze detection arecutar systems. For such sys-
tems, two major approaches exist: The first is a two-stageapp: Based on camera images of
the user’s face, the 3-D pose of the head is computed. In adetep, the eyes are examined to
compute the orientation of the eyeballs relative to the pbsiee head. The head pose, together
with the relative orientation of the pupils, allows comgida of the gaze direction. The second
approach is a direct approach that allows direct detectidheouser’s gaze: An image of the
user’s face is processed as a whole, including all the fée#lres such as eyes and mouth, in
order to estimate the gaze directly. The intermediate stbpad pose computation is omitted.

It is clear that both steps of the two-stage approach musiab@ed out as precisely as
possible. The computation of the head pose needs to be albppoecise so that the localization
of the iris and the computation of its position relative te tiead is simplified.

In the experiments presented in this chapter we will comeémbn the first step of the two-
stage approach which estimates the pose of the user’s hbadapproach that we will present
is appearance-based. The input images are filtered usingtamzed filtering scheme given by
a GWN. The filter responses are then fed into an appropri&i@iyed ANN which computes
the 3-D head pose.

In the next section we will present an introduction to impattterms and techniques. In
the following section, we will give an introduction to redatwork, describe typical approaches,
and give the necessary background. In Section 6.3 we wilridesour experiments. In these
experiments we will use GWNs for optimized filtering. We walkso introduce a progressive
attention scheme in this context, and will show how the catajpen speed and the quality of the
pose estimation results can be controlled. We will alsogneesults on the quality, robustness
and efficiency of GWNs for 3-D head pose estimation.

6.1 Foundations

In this section we will present an introduction to importgerins and techniques related to
the estimation of pose and gaze.
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By the term 3-Dposeof a head we mean the orientation of the head’s coordinatersys
relative to the camera-centered world coordinate systamgéras, 1993; Haralick and Shapiro,
1992]. For the projection process from the camera-centeetti coordinate system onto the
camera image plane, different projection models can benasdusuch aperspective projec-
tion, weak perspective projectipandorthographic projectiorfFaugeras, 1993].

Usually weak perspective projection is assumed; this iglwahen the face appears ap-
proximately flat to the camera, i.e. when the face is coplanér the camera-centered world
coordinate system and when the depth changes on the faceaiesmpared with the distance
between the face and the camera and with the focal lengthk Yéapective projection results
in significant perspective distortion when the face is vidvirem a close range with a short
focal length lens.

By thegaze directiorof a user we understand the direction in which the user isihgpk

The eye corners and mouth corners of a face define a planey{imgpthat these four points
are approximately co-planar) which we call ttaee plane The pose of the face plane in 3-D
space is given by its normal, the so-calfagial normal This normal can be uniquely deter-
mined from two angles:

¢ theslanto, the angle between the optical axisgxis) and the facial normal in 3-D space,
¢ thetilt 7, the angle between the image normal andatfeis.

In camera-centered coordinates, the facial noninialgiven by
n = (sinocos7,sinosint, —coso)’ . (6.1)

Two principal approaches exist to computing the 3-D poselwdad: themodel-based ap-
proachand theappearance-based approadBy amodel-based approackie mean a top-down
approach, in which the 3-D pose is determined using-gmiori given 3-D geometric model
of the head. This model is usually built from facial featyrasd further information is pro-
vided by their relative positions. Common landmark feaduaee, e.g., the eye corners, mouth
corners, nose tip and nostrils. These model features arehethagainst the camera image to
find their projected positions. The model is then used toutale the relationship between the
3-D model, which is aligned with the world coordinate systamd the head coordinate system,
which is aligned with the facial features in the image. Meblased approaches usually assume
a calibrated camera system.

By anappearance-based approagle mean a bottom-up approach in which the 3-D pose
is computed from the object’s appearance in the image, withsing an explicit 2-D or 3-D
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model. To compute the 3-D pose, we determine what 3-D poskl ¢@mve resulted in the
observed 2-D appearance. Ambiguities are handled by madimgle assumptions. Most
appearance-based approaches process the camera imagedaraito an neural network. The
network is trained using camera images of various poses ate together with the ground
truth of the corresponding facial normals.

In a strict sense, the model-based approach relies solelyrion knowledge while the
appearance-based approach rejects the use of prior kngsviefls we will see in the next
section, it is difficult to categorize most approaches; tteay be regarded as lying between the
two extremes, and differ in the amount of prior knowledgé thay use. We will therefore call
an approach model-based iff it uses any explicit knowledgritithe 2-D or 3-D geometrical
structure of the object. Otherwise, we will call it appeaedbased. Appearance-based ap-
proaches may use prior knowledge about local image featbwésnay not use any knowledge
about their geometric relations.

6.2 Related Work

Most pose detection approaches are model-based [Gee andaCijP©94; Horpraseréet
al., 1996; Ballard and Stockman, 1992; Petraki, 1996; Stiefgtmet al, 1997]. All of them
use explicit prior knowledge about the 3-D geometry of faddse major differences between
the various approaches are the choice of the projection hadethe face model. In [Gee
and Cipolla, 1994] a weak perspective projection modelssiaed. This model is simple and
generic, and makes use of facial features that allow r@ialstimation of facial pose across
a wide variety of subjects. Geometric model knowledge i®gity a set of four distances
between the corners of the eyes, mouth, and nostrils. Ge€igiotla argue that these cues do
not change much for different facial expressions; howetgy do not provide experimental
evidence for this statement. They present experimentgusia methods of estimating the
facial normal. Both methods allow estimation of slant ard tThe first method uses 3-D
information provided by the above-mentioned facial feasuand the nose tip. The second
method exploits planar skew-symmetry results from [D.Merideet al, 1993]. The authors
report an accuracy of up & for clean data and up % for noisy data (zero-mean Gaussian
noise with standard deviation 0.02). The implementatiothefapproach is rudimentary. A
feature tracking algorithm tracks the five feature pointise Tracking speed is reported as 100
Hz on a Sun Sparc 10, but no details are given about the trgckethod that was used. The
accuracy results are derived theoretically and were ndiegin the on-line experiments.

In [Horprasertet al,, 1996] a perspective projection model is used. The same &ugg
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are used as a face model, four points are located at the egers@nd one on the nose-tip. In
the absence of structure, five points are usually not suffider recovering orientation when
a perspective model is used. The authors therefore comivnprojective invariance of cross
ratios (from face symmetry) and statistical modeling ofefatructure (from anthropometry)
to estimate the rotation angles. The four points at the eyeers constitute a line. From the
orientation of this line, the roll angle (rotation angle abthe face normal) can be directly
recovered. To recover the slant angle, the cross ratio diotlveeye corners is used under the
assumption that they are collinear and that the eyes haa wdpth. To recover the tilt, other
assumptions about face geometry are needed, which arbleanidh respect to gender, race and
age [Chellappat al., 1995]; relevant data are taken from anthropometric talplésrpraseriet
al., 1996] report an accuracy 0f5° to 5.0°, but they do not specify whether clean or noisy data
was used to achieve these results, and the results werenf@d/ith on-line experiments.

Appearance-based approaches, which are fast but imprecesgenerally based on color
[Chenet al, 1998; Darrellet al, 1996; Schiele and Waibel, 1995].

In [Schiele and Waibel, 1995] the face is tracked as a fledtv-¢bob. The slant angle is
detected by feeding @& x 32 subsampled image of the flesh-color blob region into3the 32
input neurons of a Multilayer Perceptron (MLP). The MLP astssof 50 hidden units, 3 output
units that indicate the gaze directide#t, straightandright, and 15 output units that correspond
to possible head directions-{0, —60, ... , +60, +70) degrees. The MLP was trained with four
sets of 15 images of 7 different people. The 15 images casregd to the different directions,
ranging from—70 to +70 degrees. The experimental results sho@&d5% correct detection
of the head directionkeft, straight, right and an average error @° for the detected slant
angle. The speed was 10 Hz on an HP9000/735.

In [Chenet al, 1998] an extended color model is used to describe the fledinain color
of the tracked person. The average error is claimed @ &e(tilt), 5.7° (slant) and2.9° (roll),
but there was no investigation of stability.

An appearance-based approach similar to the one of [ScimeléVaibel, 1995] is investi-
gated in [&braham-Mumm, 1998; Brusket al, 1998]. The approach allows computation of
slant and tilt. The head is again tracked as a color blob. Asgat the detected blob position
in the image defines a region of interest (ROI). Within the R®@mplex 2-D Gabor filters (see
eq. 2.17) are homogeneously distributed. Different fittgischemes were investigated; within
the ROI, the filters were homogeneously distributed on &kattarying from4 x 4 to 8 x 8
positions. At each of these positions, between four andt eifferently oriented filters were
applied and the range, =) of possible orientations was equidistantly sampled.

The energies of the complex filter responses were fed intoNiN.AA subspace variant of
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the Local Linear Map (LLM) [Ritteret al., 1991] is used as an ANN for learning the input-
output mapping [Bruske and Sommer, 1998].

The results were very promising; the reported mean errors betweert).64° (4 x 4 filters,
4 orientations (0, 7, 2 and2)) and0.58° (8 x 8 filters, 4 orientations) (see also Table 6.1).
The errors were computed as follows: lpdbe the estimated slant,the estimated tilt and let
andy be the ground truth values. Then the error is defined as

e=\V({-p?+ G-y (6.2)
sampling schemeé mean error max. error

3x3 0.87 2.78

4x4 0.64 1.88

6 x 6 0.61 1.74

8 x 8 0.58 1.82

Table 6.1. This table shows experimental results for pose estimation based on Gabor filter

responses and an ANN.

An appearance-based approach to the estimation of gazeresenped in [Varchmiet al,,
1997]. In a first step, an adaptive color histogram segmientatethod roughly determined a
region of interest that includes the face. Within the ROtjdhafeatures such as mouth edges,
nostrils and pupils were detected. In the last stage, thare@ositions and a detailed analysis
of the eye regions were used to estimate the gaze directlmfehture positions and the images
of the eyes provide the input to an LLM network. 625 trainintages were used to train the
network. The user was required to fixaté & 5 grid on the computer screen. The minimal
errors after training for slant and tilt wede5° and2.5°, respectively, while the system speed
was 1 Hz on a SGI.

In [Klingspohret al,, 1997] an approach is presented that assumes the head [xosevis,
and computes the positions of the pupils relative to the heamtder to compute the gaze
direction. The approach detects the irises of the eyes wsidgugh transform. The circles
of the irises deform to ellipses when the eyes rotate. Theoagp performs robust parameter
estimation of the ellipses. The accuracy W&
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6.3 Head Pose Estimation with Gabor Wavelet Networks

The results reported irAﬁ)raham-Mumm, 1998; Brusket al,, 1998], were very promising.
However, the filtering scheme that was used was rather rudaneand straightforward. We
will argue that this scheme has two major drawbacks thatiderably limit the precision of the
approach:

1. In Section 2.6 we explained that for GWNSs, precise pasiig of novel images before
computing new weights is very important. This clearly alsids for the filtering in
[Abraham-Mumm, 1998; Brusket al., 1998]. In that work, however, color blob tracking,
which is a very imprecise tracking method, was used. In thetresults in Table 6.1 were
obtained only under optimal illumination conditions, anee under those conditions,
the computation was very sensitive to noise. The resultsepted in Table 6.1 can be
regarded as an experimentally evaluated upper bound onébesion that this approach
can offer.

2. One can also question the homogeneous filtering schermevéizaused and ask what
information is contained in a set of Gabor filter responsesmihe filters are homoge-
neously distributed. We have analyzed this question ini@e&3 and have found, that
the loss of image data is severe.

It is therefore reasonable to assume that accurate selaxdtibe parameters of each Gabor
filter, and precise positioning of these wavelets in novelges, would result in a much lower
mean slant/tilt error than that achieved jﬁkbiaham-Mumm, 1998; Brusket al,, 1998]. Itis
reasonable to hope that the stability with respect to ilhation and camera noise would also
increase considerably. Specifically, we argue that

e precise tracking, which assures exact positioning of tker§i) increases accuracy, and in
particular, robustness to illumination.

e precise and specific selection of the filter parameters fjposi scales and orientations)
increases the accuracy of pose estimation. This allowsietied in the number of filters
and filter applications that are needed, which has a pogffeet on computation speed.

We have therefore redone the experiments that were presier{tébraham-Mumm, 1998].
We have tried to change only the tracking and the filteringtaraoid any changes in the neural
network, the training, and the experimental setup. Howekercamera used in our experiments
was different. Also, in our experiments the slant and tiljlas had to be within intervals of
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Figure 6.1. The first image shows the original doll face image /. The second and third images

show the reconstructions flGa and f52 with NV = 16 and N = 52 wavelets, respectively.

+20°. This is the interval in which all the facial features areiblis to the camera, which is a
requirement for successful tracking.

The experimental setup ilApraham-Mumm, 1998]'s and our experiments was as follows:
The head of a doll, shown in Fig. 6.1, was connected to a rabat &his setup was used so that
the ground truth values for slant and tilt were known. A marlaccamera was positioned at
a distance of approximately 100 cm and its visual axis wascthd approximately toward the
origin of the head’s coordinate system. The same ANN was imskdth experiments [Bruske
et al, 1998]. In both Abraham-Mumm, 1998]'s and our experiments, the best éxyzantal
results were obtained with 400 training samples.

In our experiments we replaced the color tracking approgahdéwavelet tracker of Chap-
ter 4. We optimized a GWN on the doll's head (Fig. 6.1). Foriroation of the GWN we
again used the optimization scheme that was introducedatidde2. We used a GWN with
N = 52 wavelets (see Fig. 6.1, right image).

For training we used 400 images that showed the doll's he#d aviferent slant and tilt
angles, each withia-20°, with 2° steps. For testing we used 200 images of the doll's head,
while the slant and tilt were randomly chosen from #h#&)° interval.

For each training and test frame we proceeded in two steps:

1. Optimal reparameterization of the GWN by using the positig operato®. This was
done automatically by the tracker.

2. Calculation of optimal weights for the optimally repasited GWN using the projection
operator7 .

Fig. 6.2 shows some example images.
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Figure 6.2. These images show different orientations of the doll's head. The head is connected

to a robot arm so that the ground truth is known. The white square indicates the detected

position, scale and orientation of the GWN.

6.3.1 Experimental Results

The weight vector that was calculated with the opergtowas then fed into the ANN
[Bruskeet al,, 1998]. We achieved a minimal mean slant/tilt errofcfl° for a GWN with 52
wavelets and a minimal mean slant/tilt erroddf0° for a GWN with 16 wavelets. The maximal
errors werd).65° for 52 wavelets and.72° for 16 wavelets, respectively. These results show
that when we use the GWN with 52 wavelets, even the maximat &ras low as the mean
error of the8 x 8 filtering scheme with four orientation$.68°). The errors were calculated
according to the error function in eq. (6.2). The experirmem¢re carried out under varying
illumination conditions, and the results were reprodwilA summary and a comparison with
the approaches that were mentioned above is given in Tahle 6.
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method minimal mean errol
geometrical approach[Gee and Cipolla, 1994; Petraki, L1996 1.6°

color, ANN [Schiele and Waibel, 1995] 12 —15°
stereo information[Xu and Akatsuka, 1998] ~ 4°

Gabor filter, ANN[Bruskeet al.,, 1998] 0.64°

GWN with 16 Gabor wavelets 0.30°

GWN with 52 Gabor wavelets 0.21°

Table 6.2. This table shows a summary of different approaches and the minimal mean errors

for slant/tilt angle estimation of the head pose that were achieved.

6.3.2 Introduction to DCS Networks

In this subsection we briefly discuss the artificial neuravoek (ANN) that was employed
in our pose estimation experiments, using the descriptait@rminology in [Bruske, 1998].

The ANN is a Dynamic Cell Structure (DCS) based network [Reuand Sommer, 1995]
which was introduced and further enhanced in [Bruske andn$emm1995; Bruske and Som-
mer, 1998]. DCS-based networks are RBF-based ANNs thateutih efficient local subspace
construction method based on optimally topology preseraiaps (OTPM).

The architectural characteristics of a DCS network arectiest in Fig. 6.3. It shows (1) a
hidden layer with RBFs with possibly variable paramete2$,a dynamic layer with a lateral
connection structure between basis functions (units),(@8he layer of output units. During
training, a competitive Hebbian learning rule is used tovatt and adapt the RBF units in the
neighborhood of the current stimulus. The neighborhoaatia is given by the simultaneously
learned topology. Using the Hebbian learning rule adapmdateral connection structure to an
OTPM.

In this chapter we use a subspace variant of Ritter’'s Loaa¢&i Map (LLM) [Ritteret al,,
1991], which is called a Subspace-DCS (SDCS) based netvigrtdske and Sommer, 1998].
The SDCS allows us to exploit the fact that images of the héadsingle person that differ
solely in slant and tilt lie on a 2-D manifold in image spacadfislse and Nayar, 1995; McKenna
et al, 1996].

The SDCS enhances the DCS by applying principal componatsia (PCA) to each local
subspace. Given a training $etC R" and anN > 0, the batch-variant proceeds in four stages:

1. AsetofN centersS = {c,,...,cy} are computed as the output of a vector quantization
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Figure 6.3. DCS networks are RBF networks (left) with an additional lateral connection struc-
ture between the nodes. The connections are formed by competitive Hebbian learning and

approximately Optimal Topology Preserving Maps (OTPMs) (right).

algorithm applied to the training sét

2. The graphG is calculated as an optimally topology-preserving map 7 Mr(S), of S
givenT'.

3. For each node € G, PCA is performed on the set of; difference vectorgc;, —
Ci,...,Cm, — C;), Where(c;, — ¢;) is the difference vector between and a directly
neighboring cente;;,.

4. The eigenvectors that correspond to the smallest eijezware discarded.

The results of this four-stage process Arsets of eigenvectors!, . . . | efi}, l; < m; that span
a local subspace with center These eigenvectors allow us to project an input stimulirgo
the relevant subspace, i.e. the subspace of the best n@atahir(pmu):

lbmu

xX* = Cpmu + Z ((x — cbmu)T efm“> efm (6.3)

=1

wherecy,,., is the center of the best matching unit.
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The advantage of the SDCS network is clear: Discarding seigéinvectors allows us to
reduce noise in the input. Furthermore, limiting the nundfezigenvectors used allows us to
reduce the complexity of the ANN so that its application braes feasible even for very high
dimensional input spaces.

6.4 Progressive Attention Scheme for Pose Estimation

If gaze detection systems are to be included in a human-ctanioterface, real-time speed
is a major requirement. At the same time, the HCI is alloweddiasume only a small portion
of the available computer power. Keeping the number of filggs low is clearly a prerequisite
to achieving this goal.

Itis possible to apply a progressive attention scheme gsihuation. Changing the numbers
of Gabor wavelets used allows control of the tracking, as axelseen in Chapter 4. Just as
the progressive attention scheme can be used to controké¢leesion of a template for visual
tracking, it can also be used to control the number of filgsiand the filtering speed. In this
section we investigate how the precision of pose estimati@nges with the numbe¥ of
Gabor wavelets used. We will also investigate how the effmrecan be further increased by
taking the responses of the Gabor filters as inputs instetiteafeights.

Taking the filter responses as inputs to the ANN has a furtbearsage over taking the
weights as inputs. Since the Gabor wavelets are non-orttadgihe weights depend on all the
wavelets that are used (see eq. 2.33). When the number ofeisve increased, the vector
input to the ANN must be completely recomputed so that nekwraining has to be completely
redone. The filter responses, on the other hand, can be usssdlyiwithout intermediate
projections, as presented above. Their values are indepenéithe number of filters used, so
that when their responses are used as inputs, only a singkerfgeds to be retrained.

In our experiments, GWNs of different sizes were used. TheNSWere all derived from
the GWN of the preceding section by choosing the waveletsderoof their normalized de-
creasing weights (see Section 3.2). When a GWN of a certaenvsas used, the computed
weights (filter responses) were fed into the neural network.

Figure 6.4 shows examples of GWNSs with 16, 20, 32, 40 and 52l\ets/derived from the
GWN of the preceding section.

We then used the GWNSs for tracking and filtering, in order tmpate for each GWN the
mean and the maximal error.
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Figure 6.4. These images show different GWNs for the puppet head, with 16, 20, 32, 40 and

52 wavelets.

6.4.1 Experimental Results

The resulting estimation errors (in degrees) for GWNs with52 wavelets are shown in
Fig. 6.5. The weight vectors were used as input to the ANN.

Fig. 6.6 shows the mean errors and the maximal errors (iredsjof the pose estimations
computed from the filter responses, for GWNs with 4 - 52 wasgele

The results are quite similar for both experiments. In Fig.tBe mean estimation errors in
Figs. 6.5 and 6.6 are plotted against each other. The ewnfGWNs with 16-52 wavelets are
shown. A summary of the results is given in Table 6.3.

weights responses
Number of Wavelets mean errorf max. error| mean errorf max. error
16 0.30 0.72 0.37 0.91
52 0.21 0.65 0.23 0.53

Table 6.3. This table gives a summary of the estimation errors with varying numbers of Gabor
Wavelets. Shown are the mean and maximum errors for the experiments on the weights and

on the filter responses.

6.5 Discussion and Conclusions

In this chapter we have demonstrated that GWNs offer an agestrscheme for the filtering
of images.

In image filtering one always wants to extract information @iuthe image. An optimized
filtering scheme allows the extraction of a maximum amounirzfge information for a given
number of applied filters.
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Figure 6.5. This figure shows the decrease in the error in pose estimation with an increasing
number of wavelets. For these plots, the weights were computed with the operator 7, and
were fed into the ANN. Shown are plots of the mean error and the maximal error (in degrees).

The wavelets were chosen according to the progressive attention scheme, in decreasing order.

This was seen in the results of our pose estimation expetirfidémen we used an optimized
filtering scheme, the mean error of the estimated poses wels smialler than when a homoge-
neous filtering scheme was used. Furthermore, a smaller ereamwas achieved with as few
as 16 filterings (in comparison with 128 filterings!).

An optimized filtering scheme also allows us to reduce theplerity of subsequent com-
putations.

So far, the ternmoptimized filteringhas been used in a rather intuitive mann@ptimized
filtering is usually related to a certain task: The task defines theaetedata, anaptimized
filtering allows the relevant data to be extracted efficiently. Pritoidedge about what data is
relevant to a certain task is therefore needed. In this ehdpe given task was estimation of the
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Figure 6.6. This figure shows the decrease in the error in pose estimation with an increasing
number of wavelets. For these plots, the filter responses were directly fed into the neural
network. Shown are plots of the mean error and the maximal error (in degrees). The wavelets

were chosen according to the progressive attention scheme, in decreasing order.

pose of a head. Precisely what the relevant data is in thitexbis difficult to answer. There
are two possibilities:

1. Finding the relevant data, i.e. finding the right filtersaheme for extracting the relevant
data, could be done by learning.

2. Alternatively, one can simply try to usdl the image data. The goal is then to find an
efficient filtering scheme that allows us to extract all thead@he filtering scheme in this
case is found beforehand and is optimized so that the nunfiliétecs used is small and
the amount of extracted data is large.

Clearly, the first possibility needs further research anestigation. The second possibility,
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Figure 6.7. This figure shows the decrease in the error in pose estimation with an increasing
number of wavelets. Shown are plots of the mean errors that were obtained from the weights
and from the filter responses. The wavelets were chosen according to the progressive attention

scheme, in decreasing order.

however, is solved by the GWNSs.

The amount of information is here measured by the sum of squdifferences (SSD) be-
tween the original image and its reconstruction. The lossfrmation is consequently given
by the error in eq. (2.23). In Chapter 4 we argued that therpssive attention scheme allows a
task-oriented representation. There the taskwissal face trackingThe tracking was done by
minimizing the SSD between an input image and a templateémBige template was given as a
GWN, and since the wavelets were chosen so that the energiydnal (2.23) was minimized,
the more wavelets were used, the smaller was the energydnaténd the more stable was the
tracking.

In this chapter, the progressive attention property of GWils been extended to image
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filtering. The more image information is needed, the moreriitg is done, and the better is the
precision of the results. This could clearly be seen in tlelts in Section 6.4: The more filter
responses were used, the smaller was the mean error of imaest pose.

In connection with the gaze detection problem, we think thatapproach presented here
can be extended to recover the gaze direction of a personthisowe propose using a large
GWN for the analysis of the head, and two smaller GWNSs for thedyssis of the eye regions.
The large GWN can be used for tracking. This would allow awtepositioning of the two
small GWN at the correct positions. An ANN can then be traiaedhe filter responses of all
three networks.

The training can even be done automatically while the useroiking on the computer:
Assuming that the user gazes at the mouse pointer when hadiskethe mouse, each mouse
click supplies a ground truth value.

As explained in Chapter 4, the tracking approach allowsetffiacking of a face. Assuming
weak perspective, it is possible to derive the pose of thel liean the affine deformation
parameters of the reparameterized superwavelet. Howbigremains to be investigated. The
stability of this approach should correlate with the siibilesults for the tracking approach
with respect to the progressive attention scheme.






Chapter 7
Conclusions and Outlook

In this thesis we have given an extensive and thorough iotitbah to Gabor Wavelet Networks.
We have shown through various experiments that GWNs candxfos an efficient and task-
specific representation of individual objects. The optatizn scheme of GWNs allows us
to find networks that reflect individual object propertiesheToptimized networks are then
individual enough to allow reliable identification. Furthere, the representation is robust with
respect to minor local changes, which means, in the case®fé@ognition, that individuals can
be recognized in spite of different facial expressions agkp. In our experiments, we achieved
recognition rates as high 86%. On the “surprised” expression, the recognition approdtgno
failed, which shows a limitation of the GWN approach. Withthis particular expression,
we would have reached recognition rates of aln#@$t. The recognition rates were reached
in our experiments straightforwardly and without the usamy heuristics. Most recognition
approaches, such as those used in the FERET test [Platlgds 1998], made extensive use of
heuristics to increase recognition rates for the specisicset. Using such heuristics, it is likely
that the recognition rate of our approach could be furthemrsased.

Apart from object representation, we have shown that GWhsatso be used as an op-
timized scheme for filtering. We have shown that there is aeclelationship between image
filtering and image representation. Consequently, it wasaeable to assume that GWNs could
also be used for optimized filtering, i.e. to extract a maxiaraount of image information
from an image. This property has been tested in a pose esimedperiment. The experiment
showed that a GWN, used as an optimized filtering scheme|eg@lbmprove pose estimation
by up to a factor of three, in comparison with an often-usechdgeneous filtering scheme:
from 0.64° with 128 homogeneously distributed filters@3° with only 16 optimized GWN
filters, and).21° with 52 filters. Moreover, these results were achieved eweeal experiments
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involving, e.g., camera noise. Also, in this experiment aorfstics were used. The results were
achieved straightforwardly by simply applying the techu@g provided by the GWN approach.

In our opinion, our results are due to the fact that GWNs comthe advantages of appearance-
based and feature-based approaches. On the one hand, Gevildeato capture and evaluate
all the pixel value informatiof) which is an appearance-based feature. On the other hand,
GWNs are representations that are, through optimizatiosety linked to the object features.
This is clearly a feature-based property that common appearbased approaches do not have.
The feature-based representation adds considerabletmelsaswvith respect to changes in illu-
mination, contrast, affine variations and local image cleand he reason for this robustness is
that Gabor filters are good feature detectors. For exampleglreparameterization, each one
of the Gabor wavelets “looks” for a local feature, i.e. itdks” for a local minimum. When
summed, this leads to a steep and deep local minimum, whideasly a great advantage for
the reparameterization procedure.

Our experiments have revealed a further property of GWNs¢wis probably even more
important than the properties mentioned above, and whicemeted by the termrogressive
attention The progressive attention property of GWNs allows us tarobithe precision and
complexity of the representation by dynamically varying ttumber of Gabor functions used.
Wavelet theory supplies the mathematical basis for thisifi2gahies, 1992; Louist al,, 1994].
Dynamic perception is an important preliminary to sucagdssinstruction of active vision sys-
tems, because it allows the cost and complexity of the ssa@somputations to be controlled
[Bajcsy, 1988; Bajcsy, 1992; Sandini and Dario, 1990; Aloimas, 1994; Sommer, 1995].

From the definition of GWNSs, their close relationship to rauretworks is obvious. In-
deed, the nam&abor Wavelet Networlerives from this fact. However, as pointed out by
[Reyneri, 1999], GWNSs, or wavelet networks in general,adtrce a completely new type of
neural network, closely related to Radial Basis Functiohadeks (RBF Networks). But dis-
tinct differences have to be pointed out. RBF Networks appede traditionally associated
with radial functions in a single-layer network [Broomheaad Loewe, 1988]. The charac-
teristic of radial functions is that their response deagsg®r increases) monotonically with
increasing distance from a central point. In contrast, tbéer wavelets, used for wavelet net-
works, are not necessarily radial functions. In partigulae odd Gabor function, which is the
mother wavelet of the GWNSs, is non-radial.

There are advantages in the fact that one can choose a fundtich particularly suits a
given problem. Odd Gabor functions, e.g., have been showe tery useful for the represen-

*The mean is discarded and the contrast is normalized.
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tation of faces. Furthermore, since they are good edgetdeseone can predict and understand
their roles and properties within the networks; this haslekgcussed in Chapter 3. This, in fact,
is a further important difference: RBF networks are regdraenon-parametrianodels since
their weights and other parameters are not meant to haveatigydar meaningful relation to
the problem they are applied to. Estimating values for thiglate and parameters is never the
primary goal. Instead, the primary goal is to approximageuhderlying function [Orr, 1999].
On the other hand, for GWNSs (or wavelet networks in geneealjmating weights and param-
eters and approximating the underlying functions are twedlly related tasks. While the radial
basis functions of RBF networks are generally complatedgpendenof the data they are sup-
posed to represent, the basis functions of (Gabor) Wavaedevdtks are particularlyntended
(and chosen) to reflect the properties of the underlyingtfans.

Wavelet networks have received little attention in recartiligations. Lately, in [Reyneri,
1999], the relations between artificial neural networksyelet networks and fuzzy systems
have been discussed, but wavelet networks were considahgahoa very simplified fashion:
Only radial wavelets were considered, which limits the po#e of wavelet networks consider-
ably.

We would like to argue that, because of the close relatiowéen the data and the ba-
sis functions, (Gabor) Wavelet Networks offer new potdiliat goes, beyond the potential of
RBF Networks. At least for 2-D functions and the shapes ofdwufaces, this has been partially
shown in this thesis. We think that this can be generalizesther N-D functions. The appli-
cation of (Gabor) Wavelet Networks in classification probdealso needs closer investigation.






Notation

Overview of the mathematical symbols and notation, in oodéneir use.

S

N

Wi

s G
v,w,v , w
v, P
(W, w)

Scalar product ifi?(R"): (f,g) = [° f(z)g(z) dx

DC of functionf: DC(f) = [~ f(z) d=

Transposed matrix and vector, respectively

Diagonal matrix

Space of square integrable functighsR — R

Space of square integrable functiohsR? — R

1-D or 2-D mother wavelet

1-D wavelety) with 1-D dilation parametet and 1-D translation parameter
Translation vectot = (c¢,c, )"

Dilation parameter

Shear parameter of superwavelet

Rotation parameter

Parameter vector of wavelat= (c,, ¢,, 0, s;, s,)7
Parameter vector of superwavelet (c,, ¢,, 0, s, Sy, Szy)"
Rotation matrix

Dilation matrix

Number of wavelets within a wavelet network

i-th weight of weight vectow

i-th wavelet of a family of wavelet§, ®, with parameter vectai;
Weight vectorsw = (wy, ... ,wy)’, etc...

Family of waveletsl = (¢n,, ... . 9ny)"

Gabor Wavelet Network
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f,g Continuous functions
f.q Remaps of functiong, g, represented with a Gabor Wavelet Network
1,7 Discrete gray value images
I,J Remaps of images, J, represented with a Gabor Wavelet Network
0 Difference vector between two weight vectdrs- (v — w)
0; t-th component ob
_ _ 1, ifi=y
dij Dirac functiond; ; =
0, ifi#j.
(Vi) Gram's matrix(¥;;) = ((¢s, ;)
U, Superwavelet
d% (-, ) Euclidean distance measurement, defined with respect
to the wavelet familyl.
dsg (-, ) Normalized cross-correlation between two images, defindunaspect
to the wavelet familyl.
g Gallery: set of gallery images
U Probe image
VAR () Variance
SsO(, ) Sum of squared differences between two images
b, Function that is dual (biorthogonal) &0 1
&, 0 Family of functions that is dual t®
To(f) Operator to compute optimal weight vector for imggeith respect
to wavelet familyw
Pu(9) Reparameterization operator: reparameterized supeletave

on functiong, such thatt' is minimized
E Energy functional
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