
Wavelet Networks for Face Processing

V. Krueger

Center for Automation Research

University of Maryland

4456 A.V. Williams Building

College Park, MD 20742

vok@cfar.umd.edu

http://www.cfar.umd.edu/ vok

G. Sommer

Inst. für Informatik und Prakt. Mathematik

University of Kiel

Preusser Str 1-9

24105 Kiel, Germany

gs@ks.informatik.uni-kiel.de

1



Wavelet networks (WNs) were introduced in 1992 as a combination of artificial

neural radial basis function (RBF) networks and wavelet decomposition. Since then,

however, WNs have received only little attention. We believe, that the potential

of WNs has been generally underestimated. WNs have the advantage, that the

wavelet coefficients are directly related to the image data through the wavelet

transform. In addition, the parameters of the wavelets in the WNs are subject to

optimization, which results in a direct relation between the represented function

and the optimized wavelets, leading to considerable data reduction (thus making

subsequent algorithms much more efficient) as well as to wavelets that can be used

as an optimized filter bank. In this paper, we analyze some of their properties and

hightlight their advantages for object representation purposes. We then present a

series of experimental results where we have used WNs for face tracking in which

we exploit the efficiency due to data reduction, for face recognition and face-pose

estimation where we exploit the optimized filter bank principle of the WNs. c©2002

Optical Society of America

OCIS codes: 100.7410,100.5010

1. Introduction

Wavelets networks were first mentioned by Zhang and Benveniste1 in the context of non-parametric

regression of functions in L2(R2). In wavelet networks, the radial basis functions of RBF-networks

are replaced by wavelets. During the training phase, the network weights as well as the degrees of

freedom (position, scale, orientation) of the wavelet functions are optimized. Zhang and Benveniste

realized that wavelet networks inherit the properties of wavelet decomposition and mention espe-
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cially their universal approximation property, the availability of convergence rates and the explicit

link between the network coefficients and the wavelet transform.

However, since their introduction in 1992, wavelet networks (WN) have received little attention

in recent publications. Szu et. al.2,3 have used WNs for signal representation and classification. They

have explained how a WN template, a superwavelet, can be generated and showed how they can

be used for pattern matching. In addition, they mention the large data compression achieved by

such a WN representation. Zhang4 showed that WNs are able to handle nonlinear regression of

moderately large input dimension with sparse training data. Holmes and Mallick5 analyzed WNs in

the context of a Bayesian framework. Reyneri6has recently analyzed the relations between artificial

neural networks (ANNs), fuzzy systems and WNs have been discussed.

It appears, that in the cited works, WNs have only been applied to certain problems but that

their properties have not been investigated. Starting from a wavelet representation as described by

Zhang4 we have analyzed the properties such a representation has. Zhang and Benveniste1 have

mentioned, e.g., that there is an explicit link between the weights (wavelet coefficients) and some

appropriate transform. This link is established through wavelet theory. We have further investigated

the following properties of wavelet networks:

• that the explicit link mentioned above can be exploited to find optimized filter banks.

• that there exists an additional explicit link between the parameters of the optimized wavelet

network functions and the represented function; and that the chosen mother wavelet in-

troduces model information for image features that the optimized wavelets in a WN will

represent.

• that the optimized wavelets are linearly independent, when the optimization scheme presented

here, which is similar to the one proposed by Zhang and Benveniste,1 is followed.
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• that the wavelets of the network form a low-dimensional subspace in the L2(R2) space and

that its dual is a vector space over R, the wavelet subspace of the vectors of wavelet coefficients.

We will exploit the above properties for object representation. In particular we will show that

tracking and recognition is facilitated by the above properties: Both can be carried out efficiently

in the low-dimensional wavelet subspace while the mapping of an input image into the wavelet

subspace can be established with a small number of local image projections. We have carried out a

small set of experiments, affine face tracking and face recognition, in order to support our claims.

Some of the presented ideas such as the use of WN template (superwavelets) enhance the ideas

mentioned in Szu et. al..2,3 In addition as mentioned above, WNs can be used to optimize image

filtering. We have used the optimized wavelets as filters in a face-pose estimation experiment. Having

reached an estimation error of 0.65◦ using non-optimized filters, the error decreased to 0.21◦ using

the optimized wavelets.

2. Introduction to Wavelet Networks

To define a WN, we begin by taking a family of N wavelet functions Ψ = {ψn1 , . . . , ψnN } with

parameter vectors n = (cx, cy, θ, sx, sy)T of some mother wavelet ψ:

ψn(x) = ψ(SR(x− t)) . (1)

The cx, cy defines the translation t of the wavelet, sx, sy defines the dilation S and θ defines the

orientation R. The parameters vector n (translation, orientation and dilation) of the wavelets may

be chosen arbitrarily at this point. According to wavelet theory, any function f ∈ L2(R2) can be

losslessly represented by their continuous wavelet transform and thus, with arbitrary precision, by

a wavelet network. We therefore interpret the image f to be a function of the space L2(R2) and

assume further, without loss of generality that f is DC-free. In order to find the WN for image f
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we minimize the energy functional

E = min
ni,wi for all i

‖f −
N∑

i=1

wiψni‖2
2 (2)

with respect to the weights wi and the wavelet parameter vectors ni. Equation (2) says that the wi

and ni are optimized, i.e. translation, dilation and orientation of each wavelet are chosen such that

the image f is optimally approximated by the weighted sum of wavelets ψni . We therefore define a

wavelet network as follows:

Definition: Let ψni , i = 1, . . . , N be a set of wavelets, f a DC-free image and wi and ni chosen

according to the energy functional (2). The two vectors

Ψ = (ψn1 , . . . , ψnN )T and w = (w1, . . . , wN )T

define then the wavelet network (Ψ,w) for image f .

It should be mentioned that it was proposed before7–9 to use an energy functional (2) in order

to find the optimal set of weights wi for a fixed set of non-orthogonal wavelets ψni . The WN con-

cept enhances these approaches by finding also the optimal parameters ni for each (not-necessarily

orthonormal) wavelet ψni . WNs also appear to enhance the RBF neural network approach consid-

erably. This was pointed out recently,6 even though a considerably simplified version of WNs with

radial wavelets, which considerably limits the potentials of the WNs, was investigated.

The parameters ni are chosen from continuous phase space and the wavelets are positioned

with sub-pixel accuracy. This is precisely the main advantage over the discrete approach.7,9 While

in the case of a discrete phase space local image structure has to be approximated by a combination

of wavelets, only a single wavelet needs to be chosen in the continuous case to precise reflect the

local image structure. This assures that a maximum of the image information can be encoded with

only a small number of wavelets.
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In order to find a WN (Ψ, w) for a function f , we use the Levenberg-Marquardt method.10 As

initialization, we distribute the wavelets homogeneously over the region of interest. The orientations

are initialized randomly, the scales are initialized to a constant value that is related to the density

with which the wavelets are distributed. We constrain the wavelet parameters to prevent degener-

ated wavelet shapes. For the two wavelet types in this paper (odd Gabor, difference-of-Gaussian)

we have used constrains11 to prevent the wavelets parameter from diverging. In several experiments

we have found that this rough initialization is sufficient. Also, we apply a coarse-to-fine strategy by

first optimizing a set of wavelets initialized to coarse scale, followed by the optimization of a set of

wavelets, initialized to a finer scale. Within each set of wavelets, we optimized one wavelet after an-

other. The order in which the wavelets are optimized introduces a bias. We have done experiments

to optimize all wavelets at once; but even though the convergence is much slower simultanious

optimization does not lead to a considerable decrease of the minimal energy (2). In general, the

effect of the bias seems to be very little.

Intuitively, a coarse-to-fine strategy for optimization makes sense because this minimizes the

energy functional (2) more efficiently. To optimize a WN with 16 wavelets it takes about 30s on a

750 MHz Pentium processor.

Using the optimal wavelets Ψ and weights w of the wavelet network of an image f , f can be

(closely) reconstructed by a linear combination of the weighted wavelets:

f̂ =
N∑

i=1

wiψni = ΨTw . (3)

The quality of image representation and reconstruction depends on the number N of wavelets used

(see Fig. 1). The quality may be varied from a coarse representation to an almost photo-realistic

one.

Fig. 1 goes here
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Examples of reconstructions can be seen in Fig. 1: A WN with N = 216 wavelets was optimized

on the inner-face region of image I (rightmost image) (we will generally use the notation f, g, . . .

to refer to images. We will use the notation I, J, . . . when we want to refer explicitly to gray

value images used in experiments). The odd Gabor function has been used as mother wavelet. The

reconstructions were computed using Eq. (3) for various N , and we have chosen in each case the

N wavelets according to the order they were optimized. This means that a WN, optimized with

N = 16 wavelets, results in the WN shown in the leftmost image. The quality can be further

increased by choosing the wavelets with the N largest coefficients.

The images in Fig. 2 show the relation between the optimized positions of the wavelets (right),

and their reconstructions (left) for two different mother wavelets: the odd Gabor function (top)

and an anisotropic difference-of-Gaussian (DOG) (bottom).

Fig. 2 goes here.

A. Direct Calculation of Weights

Wavelet functions are not necessarily orthogonal. For a given family Ψ of wavelets it is therefore

not generally possible to calculate a wavelet coefficient wi directly by a simple projection of the

wavelet ψni onto the considered function. It was therefore proposed7,8 to use Eq. (2) to find the

optimal coefficients wi for each fixed wavelet. Because optimization is a slow process, we suggest a

direct calculation for the case of a finite wavelet family. The correct coefficients wi are computed

by projecting the dual wavelets ψ̃ni . The wavelet ψ̃ni is the dual wavelet to the wavelet ψni if

〈ψni , ψ̃nj 〉 = δi,j . (4)
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With Ψ̃ = (ψ̃n1 , . . . , ψ̃nN )T , we can write

[〈
Ψ, Ψ̃

〉]
= 1I (5)

and we find ψ̃ni to be

ψ̃ni =
∑

j

(Ψ)−1
i,j ψnj , (6)

where (Ψ)i,j = 〈ψi, ψj〉. Given a family Ψ of optimized wavelets of a WN for the function f , we

can compute the orthogonal projection of a function g into the subspace < Ψ >⊆ L2(R2) (see (3)),

i.e.

ĝ =
N∑

i=1

wiψni with w = Ψ̃g . (7)

The method to compute the orthogonal projection of a function g into the subspace < Ψ >

is mathematically equivalent to using the pseudo-inverse of Ψ directly. However, using the dual

wavelets of Eq. (6) will prove to be computationally more efficient: For our tracking experiment we

will have to deform the entire WN affinely, which means that the pseudo-inverse has to be recom-

puted. The matrix (Ψ)i,j , on the other hand, is invariant, except for a factor, to affine deformations

of the WN, and only the projections 〈g, ψni〉 need to be recomputed.

B. Wavelet basis and Wavelet subspace

Considering the optimized family of wavelets Ψ, its closed linear span constitutes a subspace < Ψ >

in the L2(R2) space. With Eq. (7) any function can be orthogonally projected into that subspace.

It is interesting to ask whether Ψ constitutes a basis, because then the projection is unique. That

this is indeed so can be shown with induction over the number of wavelets: Consider n wavelets

(ψn1 , . . . , ψnn), that minimize the energy functional (2) and that form a basis. Let us choose a new

wavelet that approximates best the residual between the function f and its approximation with
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the first n wavelets. After optimization of the nth + 1 wavelet, the energy functional (2) is smaller

than before (for the n wavelets):

‖f −
n∑

i=1

wiψni‖ > ‖f −
n∑

i=1

wiψni − wn+1ψnn+1‖ .

Assuming now, that

< ψn1 , . . . , ψnn >=< ψn1 , . . . , ψnn+1 >

we have in particular

< ψn1 , . . . , ψnn >⊥=< ψn1 , . . . , ψnn+1 >⊥ .

This again means that

f −
n∑

i=1

wiψni ∈ (< ψn1 , . . . , ψnn+1 >)⊥ ,

which implies

〈f −
n∑

i=1

wiψni , ψnn+1〉 = 0 .

This, however, contradicts the choice of ψnn in the optimization step, where ψnn was selected such

that

〈f −
n∑

i=1

wiψni , ψnn+1〉 6= 0 .

Let us call the closed linear span of < Ψ > the L2(R2) (image) subspace. The dual wavelets

ψ̃ni are linearly independent, and the projection

w = Ψ̃g

establishes an isomorphism from L2(R2) (or the image space, respectively) into Rn which is the

space of the n-vectors containing the wavelet coefficients. This space is dual to the image subspace

and we call it the wavelet subspace.

Fig. 3 goes here.
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C. Euclidean Distance in Wavelet Sub-space

An interesting question is, how to compute the distance between two vectors of wavelet coefficients.

Let us consider two vectors v, w of some wavelet subspace, define w.r.t. WN Ψ. Computing the

Euclidean distance between the two vectors, ‖v −w‖2, fails to reflect the different influences (e.g.

due to different scales) of the wavelets in the sum (3). Instead, we suggest to compute the Euclidean

distance between the WNs of v and w as follows: Starting out from the Euclidean distance in the

(image) subspace < Ψ >

∥∥∥∥∥
N∑

i=1

viψni −
N∑

i=1

wiψni

∥∥∥∥∥
2

, (8)

algebraic transformations lead to

‖v −w‖Ψ :=


∑

i,j

(vi − wi)(vj − wj)〈ψni , ψnj 〉



1
2

= (v −w)t (Ψ)i,j (v −w) . (9)

‖ · ‖Ψ computes the Euclidean distance between the two appropriate points in < Ψ > and thus

considers the different parameters of the wavelets. For orthogonal wavelets, the matrix (Ψ)i,j =

〈ψni , ψnj 〉 is the unity matrix and no weighting is needed.

Same techniques can be used to derive additional distance or similarity measures, such as, e.g.,

the normalized cross correlation.

D. Relation Between the Filter Responses and the Optimized Parameters

The results of the optimization of a WN on an image depends largely on the choice of the mother-

wavelet. An example can be seen in Fig. 4. A WN is optimized by increasing the number of wavelets

until either a maximal wavelet number N or an energy threshold is reached. Each new wavelet is

thus optimized based on the residual between the original function f and the already optimized
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wavelets:

R = f −
∑

wiψni .

The optimization procedure parameterizes each new wavelet such that

∑
x

(R(x)− wnewψnnew(x))2 = min

is minimized which is true, where the correlation between the wavelet and the residual R is maximal:

∑
x

R(x)ψnnew(x) = max .

In case of the odd Gabor function, which is an excellent edge detector, the optimized wavelets will

end at edges (see figs. 2 and 4). The chosen mother wavelets seems to introduce a model for local

image features. While, e.g., the odd Gabor function seems to models edge segments, the anisotropic

DOF seems to favor homogeneous image regions (Fig. 4).

Fig.4 goes here.

3. Experiments on Wavelet Networks

In this section we will describe the small experiments we have carried out to illustrate the properties

that were discussed above. In detail, the experiments include face tracking, face recognition and

face-pose estimation.

A. Face Tracking

In this experiment we have verified, whether tracking can be carried out in the wavelet subspace.12

This subspace method is an enhancement of the approach by Krüger et. al.13 where tracking was

based directly on the gray-value differences considered in the energy functional in Eq. (2). First, we
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have optimized a WN (Ψ,v) on the face image I that we want to track, where Ψ = (ψn1 , . . . , ψnN )T .

This WN will serve as our face template. Using Eq. (3) and the notation of Eq. (1), we can affinely

deform the template WN:

Î(SR(x− t)) =
N∑

i=1

viψni(SR(x− t)) (10)

where S, R and t define, as in (1), dilation, rotation and translation. We call Î a superwavelet,2,3

referring to the fact that a linear combination of wavelets is again a wavelet.

Tracking is established by finding at each time step the appropriate deformation parameters

of the superwavelet such that the sum-of-squared difference between the image at time t and the

deformed template is minimized. To do so, we project at each time step t the image Jt into the

wavelet subspace. This was done by first setting S, R and t of the superwavelet Î in Eq. (10)

to roughly appropriate values (e.g. by using the computed deformation values from the previous

time step) and by then using the deformed dual wavelets to compute the corresponding wavelet

coefficients w. The difference

‖v −w‖Ψ (11)

measures how well the deformation parameters were chosen. Based on this difference, we can min-

imize the energy functional

E = min
S,R,t

‖v −w‖Ψ (12)

to compute optimal deformation values, where v and w are given by projections of the wavelets,

parameterized by S,R and t.

Estimating the optimal deformation values can be done efficiently: Since the linear combination

of the wavelets ψni is a wavelet, Î from above is again a wavelet and the optimization scheme of

Section 2. can be applied. The employed Levenberg-Marquardt algorithm needs a number of cycles
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in which the deformation parameters are refined until a certain optimum is reached. In each cycle

w in Eq. (12) has to be recomputed. For a WN with 16 wavelets, this, however, needs just 16

projections of the filters onto the image. The matrix (Ψ)i,j in Eq. (6) is invariant (except for some

factor) to the affine changes due to S, R and t. This means it can be computed in advance, which

increases efficiency of the tracking process. Also, this means that the WN Ψ and its deformed

version remain comparable, i.e., the distance measure (12) can still be computed. This will be of

importance in the next section. With a WN with N = 16 wavelets we have reached 30 fps on a

700 MHz Linux-Pentium. Because of the high frame rate, the differences between successive images

were small and the Levenberg-Marquardt algorithm seldom exceeded 7 cycles. An example can be

seen in Fig. 5. The white box indicates the tracked inner-face region, on which our template WN

was optimized. We have also experimented with different number N of wavelets and noticed a linear

decrease in speed, but an increase in precision for larger N (N < 116).

Fig. 5 goes here.

B. Face Recognition independent of Gesture

In this section we will present the results of a face recognition experiment, using two small face

databases, the Yale face database with 15 individuals and eight images per person, and the Manch-

ester database with 30 individuals and 10 images per person. In both databases, the individuals

show different facial expressions on all of their images (happy, sad, surprised, etc.). The goal was

to recognize each subject independent of the expression. We proceeded as follows. First, a WN

(Ψi,vi) was optimized for each gallery face Ii which resulted in a set of template WNs (see Section

A.) We chose the faces with the “normal” expressions to be our gallery faces

The recognition of a probe face was then carried out by first finding optimal deformation values
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for the template WNs and by then computing the optimal wavelet coefficient vectors. This resulted

optimal coefficient vectors wi for each of the template WNs (Ψi,vi) in the gallery. The technique

of the previous Section A. was employed to accomplish this. Fig. 6 illustrates what happens when

for the same individual the optimal coefficient vectors are computed with a correct (left) and with

a wrong template WN (right). Eq. (3) was used to compute the two reconstructions shown, using

the optimal weight vectors.

Fig. 6 goes here.

Having computed an optimal coefficients vectors wi with each of the template WNs (Ψi,vi)

in the gallery, they are compared each with the vector vi of the template WNs, using ‖vi−wi‖Ψi .

The top match identifies the probe face. As mentioned above, the distance measure ‖vi − wi‖Ψi

remains invariant (except for a scaling factor) under the affine deformation of the wavelet network

Ψi so that even when the weight vector wi is computed by an affinely deformed WN (while vi is

the weight vector of the original WN), the above distance can still be computed.

Examples can be seen in figs. 7 and 8. Fig. 7 shows reconstructions of optimal coefficients

vectors of subject 01 in the Yale database, showing different expressions, but computed with the

template WN optimized for that subject, whereas Fig. 8 shows the reconstructions of optimal

coefficients vectors of subjects in the Yale database other than subject 01, but computed with the

same WN as was used in Fig. 7.

Fig. 7 goes here.
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Fig. 8 goes here.

Fig. 9 goes here.

The visual impression of figs. 7 and 8 were reflected when we computed the distance between

the vectors wi and vi, ‖vi −wi‖Ψi
. Table 9 show a clear difference between the probe images that

show different gestures of the original subject and the probe images that show different subjects.

All gallery WNs used N = 52 wavelets. As mother wavelet, we chose the odd Gabor function.

In case of the Yale Face Database 96% of the top matches were the correct matches, while in case

for the Manchester Database 93.3% of the top matches were correct. For all subjects in the Yale

database, the “surprised” expression was the expression with the lowest similarity (see table 9).

Without this expression, 97.8 % of the top matches were correct.

It should be mentioned that a direct comparison with other face recognition approaches is

difficult, as the employed face databases are too small.14

C. Pose Estimation

In this section we present the results of two face-pose estimation experiments that were carried out

to verify the “optimal filter bank” principle of the WNs.15

For both experiments we connected a doll’s head to a robot arm and let the robot move the

doll’s head in front of a fixed camera. With this the correct pose was always known. In the first

experiment we tracked the doll’s head with a color blob tracker and distributed 4 × 4 sets of 4

complex Gabor filters with the different orientations of 0, π
4 , π

2 and 3
4π over the tracked inner face

region. The resulting 128 complex projections of these filters were then fed into an artificial neural
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LLM network (ANN).16,17 This was done so for training as well for testing. A precise description of

this experiment can be found in.18 The mean pan/tilt error that we reached was ≈ 0.58◦, computed

as
√

(δp)2 + (δt)2.

It is reasonable to assume that the choice of better Gabor filters would result an even lower

mean pan/tilt error. In our second experiment, we therefore optimized a template WN for the doll’s

face with N = 52 wavelets (see Fig. 10). As mother wavelet, the odd Gabor function was used, Fig.

10 shows the reconstruction based on the optimized WN.

Fig. 10 goes here.

As in the first experiment, the doll’s head was connected to a robot arm, so that the pan/tilt

ground truth was known. During the training of the ANN and testing, the doll’s head was first

tracked using our face tracking method of Section A. and then the optimal wavelet coefficient

vectors w were computed. Fig. 11 shows example images of the tracked doll’s head. Fig. 11 goes

here.

The optimal coefficients vectors w were then fed into the ANN. The employed ANN was of

the same type in both experiments. In this second experiment the dimensionality of the feature

vectors was smaller: instead of the 128 complex values coefficients of the first experiment, we used

in the second experiment only 52 real valued coefficients. We used 400 training images in both

experiments. With this, we reached a mean pan/tilt error of ≈ 0.23◦ with a processing speed of

≈ 10 fps on a 450 MHz Linux Pentium. The experiments have been repeated several times, and

the variations of the estimated mean pan/tilt error over several experiments were small (0.02◦ for
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the WN experiment).

4. Conclusions

In this paper we have discussed some properties of wavelet networks used for object representation.

Wavelet networks are a combination of RBF networks and wavelet decomposition, where radial

basis functions are replaced by wavelets. We have shown, that

• the optimized parameters as well as the wavelet coefficients are directly related to the under-

lying image structure,

• the coefficients can be computed from the projections of the wavelets onto the considered

function and

• the optimized wavelets are linearly independent.

The first point is in our opinion very important: While, e.g., the radial basis functions in RBF

networks do not reflect any properties of the represented functions, the wavelets of an optimized

WN on the other hand do closely resemble properties of the represented function. Of course, as we

have shown, it depends on the used mother-wavelet, what properties are reflected. In addition to

the above properties, we have shown, that, apart from certain constrains taken from Daugman,8 it

is fairly straight forward, to optimize WNs (definition of a region of interest is needed, of course)

and that the optimization time with under a minute for a mid-sized network is acceptable.

The above properties have been used in three small experiments, in which we have made

extensive use of the wavelet subspace and the fact, that the wavelets form a basis. The wavelet

subspace is isomorphic to the subspace of the L2(R2), spanned by the optimized wavelets. It is low

dimensional and invariant to affine deformations of a template WN which makes computations in

our tracking experiments more efficient. The pose estimation experiment showed that by carefully
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selecting the filters (e.g. by using a WN) both the error and the filtering effort can be minimized.

All experiments would not have been successful, if the mapping from the L2(R2) into the subspace

hadn’t been unique. Our experiments have mainly dealt with faces, but we think that the properties

of WNs are general enough to be applied to general objects.

Recently, the relations between ANNs, WNs and fuzzy systems have been discussed,6 but WNs

were considered only in a very simplified fashion: Only radial wavelets were considered, which limits

the potential of wavelet networks considerably. We would like to argue that, because of the close

relation between the data and the basis functions, WNs offer new potential that goes beyond the

potential of RBF Networks. At least for 2-D functions and the shapes of human faces, this has been

partially shown here. We think that this can be generalized to other N -D functions.
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15. V. Krüger, S. Bruns, and G. Sommer. Efficient head pose estimation with gabor wavelet networks. In

Proc. British Machine Vision Conference, Bristol, UK, Sept. 12-14, 2000. BMVC.

16. J. Bruske and G. Sommer. Dynamic cell structure learns perfectly topology preserving map. Neural

Computation, 7:845–865, 1995.

17. H. Ritter, T. Martinez, and K. Schulten. Neuronale Netze. Addison-Wesley, 1991.
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Number of Wavelets

116 216 original16 52

Fig. 1. The images indicate the variability in precision with a varying number of wavelets.

The wavelets were chosen in the order they were optimized.
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Fig. 2. These images show examples for two different mother wavelets, the odd gabor func-

tion (two left images), and the non-isotropic difference-of-Gaussian (two right images). The

images show the reconstruction with 16 wavelets, and their superimposed optimized wavelet

positions.

23



< Ψ >

g
ĝ
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Fig. 3. A function g ∈ L2(R2) is mapped by the linear mapping Ψ̃ onto the vector w ∈ RN

in the wavelet subspace. The mapping of w into L2(R2) is achieved with the linear mapping

Ψ. Both mappings constitute an orthogonal projection of a function g ∈ L2(R2) into the

(image) subspace < Ψ >⊂ L2(R2).
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Fig. 4. This figure shows images of a wooden toy block on which a WN was trained. The

black line segments sketch the positions, sizes and orientations of all the wavelets of the

WN. The third image (from left) shows the residual image R between the original image

and the approximation by the wavelets. The right image sketches the parameters of the

largest optimized anisotropic DOG wavelets.
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Fig. 5. Sample frames of our wavelet subspace tracking experiment. Note that the tracking

method is robust to facial expressions variations as well as affine deformations of the face

image.
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Fig. 6. These images show what happens when for the same individual the optimal coef-

ficients vector is computed with a correct (left) and with a wrong (right) template WN.

27



normal happy sad

Fig. 7. Various images of “subject01” (top) and their projections into the image subspace.

The applied WN was optimized on the “normal” expression of “subject01”.
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subject05 subject06 subject11

Fig. 8. Various images of subjects other than “subject01” (top) and their projections into

the image subspace. The applied WN was optimized on the “normal” expression of “subject

01”.
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Fig. 9. The table shows the distance measurements 1/‖ · ‖Ψ of the images of the various

subjects in the face database to the gallery WN (Ψ01,v01) of subject 01. Higher values

indicate a smaller difference between the two compared wavelet coefficient vectors. One sees

that the values in the left part of the tables (subject 01) indicate a much smaller difference

than the values in the right part of the table (different subjects).
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Fig. 10. The left image shows the original doll face image I, the right image shows its

reconstruction Î52 using formula (3) with an optimized WN Ψ of just N = 52 odd Gabor

wavelets, distributed over the inner face region.
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Fig. 11. The images show different orientations of the doll’s head. The head is connected

to a robot arm so that the ground truth is known. The white square indicates the detected

position, scale and orientation of the WN.
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