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Abstract

In this paper we first introduce the Gabor Wavelet Network (GWN) as a model-based ap-
proach for effective and efficient object representation. GWNs combine the advantages of
the continuous wavelet transform with RBF networks. They have additional advantages
such as invariance to some degree with respect to affine deformations. The use of Gabor fil-
ters enables the coding of geometrical and textural object features. Gabor filters as a model
for local object features ensure considerable data reduction while at the same time allowing
any desired precision of the object representation ranging from sparse to photo-realistic
representation. As an application we present an approach for the estimation of head pose
based on the Gabor Wavelet Networks. Feature information is encoded in the wavelet coef-
ficients. An artificial neural network is then used to compute the head pose from the wavelet
coefficients.
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1 Introduction

Recently, model-based approaches for object representation and recognition, such
as the bunch graph approach, principal component analysis (PCA), eigenfaces and
active appearance models, have received considerable interest [1; 2; 3; 4]. In these
approaches, the term “model-based” is understood in the sense that a set of training
objects is given in the form of grey value pixel images while the model “learns”
the variances of the grey values (PCA, eigenfaces) or, respectively, the Gabor filter
responses (bunch graph). With this, model knowledge is given by the variances of
pixel grey values, which means that the actual knowledge representation is given on
a pixel basis; this is a representation that is independent of the object itself.

In this paper we introduce an object representation that is based on Gabor Wavelet
Networks [5] and show its advantages for the pose estimation problem. Gabor
Wavelet Networks (GWNs) combine the advantages of Radial Basis Function (RBF)
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networks and Gabor wavelets: GWNs represent an object as a linear combination of
Gabor wavelets and the parameters of each single Gabor functions (such as orien-
tation, position and scale) are individually optimized to reflect the particular local
image structure. Gabor Wavelet Networks have several advantages:

(1) GWN allow an efficient and sparse coding while coding is adaptive to the task
at hand.

(2) Gabor filters are good feature detectors [6] and the optimized parameters of
each of the Gabor wavelets are directly related to the underlying image struc-
ture.

(3) The wavelet coefficients (or weights) of each of the Gabor wavelets are linearly
related to the filter responses and with that they are also directly related to the
underlying local image structure.

(4) The precision of the representation can be varied toanydesired degree ranging
from a coarse representation to an almost photo-realistic one by simply varying
the number of used wavelets.

(5) By their very nature, GWNs are invariant to affine deformations without shear
and homogeneous illumination changes[7; 8].

Each single point is extensively discussed in [7] and will be addressed shortly in
Section 2.

The use of Gabor filters implies a model for the actual representation of the ob-
ject information. In fact, as we will see, the GWN represents object information
as a set of local image features, which leads to a higher level of abstraction and to
considerable data reduction.

The variability in precision and data reduction are important advantages for the pose
estimation application that we discuss here. Reasons are as follows:

(1) Because the parameters of the Gabor wavelets and the weights of the network
are directly related to the structure of the training image and the Gabor filter
responses, a GWN can be seen as a task oriented optimized filter bank: given
the number of filters, a GWN defines the set of filters that extracts the maximal
possible image information.

(2) For real-time applications, one wants to keep the number of filterings low to
save computational resources and it makes sense in this context to relate the
number of filterings to the amount of image information really needed for a
specific task: In this sense, it is possible to relate the precision in representation
to the specific task and to increment the number of filters if more information
is needed. This, we callprogressive attention.

(3) The variability affects the training speed of neural networks, that correlates
with the dimensionality of the input vector.

The termprogressive attentionwas first used in the context of image encoding[9].
It refers to the fact that an object is considered as a collection of image features and
as more information about the object is needed to fulfill a task, more features are
extracted from the image.
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This paper contains two parts. In the first part (Section 2), we will give a short
introduction to our GWNs and their features that are relevant for the pose estima-
tion application. We discuss each point mentioned above, including the invariance
properties, the abstraction properties and specificity of the wavelet parameters and
weights for object representation and task oriented image filtering.

In the second part (Section 3), we present in detail our pose estimation approach
and the results of our experiments. For this, we exploit the optimality of the filter
bank and theprogressive attentionproperty to speed up the response time of the
system and to optimize the training of the neural network. Also, we discuss how
pose estimation results depend on the number of filters used.

The last Section concludes with some final remarks.

2 Introduction to Gabor Wavelet Networks

Wavelet Networks were first introduced by [10], and the use of Gabor functions is
inspired by the fact that they are recognized to be good feature detectors [6].

To define a GWN, we start by taking a set ofN odd, real-valued Gabor wavelet
functionsΨ = {ψn1 , . . . , ψnN

} of the form

ψn

(
x, y

)
= exp

(
− 1

2

[
sx ((x− cx) cos θ − (y − cy) sin θ)

]2

+
[
sy ((x− cx) sin θ + (y − cy) cos θ)

]2
)

· sin
(
sx ((x− cx) cos θ − (y − cy) sin θ)

)
, (1)

with n = (cx, cy, θ, sx, sy)
T . Here,cx, cy denote the translation of the Gabor wavelet,

sx, sy denote the dilation andθ the orientation. The choice ofN is arbitrary and is
related to the maximal representation precision of the network. The parameter vec-
torn (translation, orientation and dilation) of the wavelets may be arbitrarily chosen
at this point. In order to find the GWN for imageI, the energy functional

E = min
ni,wi for all i

‖I −∑

i

wiψni
‖2

2 (2)

is minimized with respect to the weightswi and the wavelet parameter vectorni.
We therefore define a Gabor Wavelet Network as follows:

Definition: Letψni
, i = 1, . . . , N be a set of Gabor wavelets, and letI be a DC-free

image andwi andni chosen according to the energy functional (2). The vector of
Gabor waveletsΨ = (ψn1 , . . . , ψnN

)T and the weight vectorw = (w1, . . . , wN)T

then define theGabor Wavelet Network(Ψ,w) for imageI.
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Number of Wavelets

116 216 original16 52

Fig. 1. The top images indicate the variability in pre-
cision with a varying number of filters. The images to
the left show a Gabor Wavelet Network withN = 16
wavelets after optimization (left) and the indicated po-
sitions of each single wavelet (right).

Fig. 2. The figure shows images of a wooden toy block
on which a GWN was trained. The black line segments
sketch the positions, sizes and orientations of all the
wavelets of the GWN (left), and of some automatically
selected wavelets (right).

The parameter vectorsni are chosen fromcontinuousphase spaceR5 [8] and the
Gabor wavelets, being continuous functions, are positioned with sub-pixel accuracy.
This is precisely the main advantage over the discrete approach [8; 11]. While in
the case of a discrete phase space, local image structure has to be approximated
by a combination of wavelets, asingle wavelet can be selectively chosen in the
continuous case to reflectpreciselythe local image structure. This assures that a
maximum of the image information is encoded.

Using the optimized waveletsΨ and weightsw of the Gabor wavelet network of an
imageI, I can be (closely) reconstructed by a linear combination of the weighted
wavelets:

Î =
N∑

i=1

wiψni
= ΨTw . (3)

Of course, the quality of the image representation and reconstruction depends on
the numberN of wavelets used and can be varied to reach almost any desired pre-
cision. An example is in Fig. 1, top, where reconstructionsÎ with variableN =
16, 52, 116, 216 wavelets are shown. An additional example is in Fig. 1, bottom
row. The image to the left shows a reconstruction with 16 wavelets and the right
image indicates the corresponding wavelet positions. It should be pointed out that
at each indicated wavelet position, justonesingle wavelet is located.

2.1 Feature Representation with Gabor Wavelets

It was mentioned in the introduction that the Gabor wavelets are recognized to be
good feature [6] detectors, that are directly related to the local image features by eq.
(2). This means that an optimized wavelet has e.g. ideally the exact position and ori-
entation of a local image feature. An example is given in Fig. 2. The figure shows the
image of a little wooden toy block, on which a Gabor Wavelet Network was trained.
The left image shows the positions, scales and orientations of the wavelets as little
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black line segments. By thresholding the weights, the more “important” wavelets
may be selected, which leads to the right image. Ideally, each Gabor wavelet should
be positionedexactlyon the image line after optimization[7]. Furthermore, since a
large weight indicates that the corresponding wavelet represents an edge segment
(see Section 2.2), the wavelets encode local geometrical object information. In real-
ity, however, interactions with other wavelets of the network have to be considered
so that most wavelet parameters reflect the position, scale, and orientation of the
image line closely, but not precisely. This fact is clearly visible in Fig. 2, right.

As it can be seen in Fig. 1 an object can be represented very well with a relatively
small set of wavelets. This considerable data reduction is achieved by the introduc-
tion of the model for local image primitives, i.e. the Gabor wavelets.

2.2 Direct Calculation of Weights

Gabor wavelet functions are not orthogonal. For a given familyΨ of Gabor wavelets
it is therefore not possible to calculate a weightwi by a simple projection of the
Gabor waveletψni

onto the image (as it is being done for orthogonal wavelets).
Instead one has to consider the family ofdual waveletsΨ̃ = {ψ̃n1 . . . ψ̃nN

}. The
waveletψ̃nj

is thedualwavelet to the waveletψni
iff

〈ψni
, ψ̃nj

〉 =
∫

ψi(x)ψ̃k(x)dx = δi,j =





1 if i = j

0 if i 6= k
. (4)

With Ψ̃ = (ψ̃n1 , . . . , ψ̃nN
)T , andΨ = (ψn1 , . . . , ψnN

)T we can write

ΨT Ψ̃ =
(
〈ψni

, ψ̃nj
〉
)

i,j
= 1I . (5)

In other words thedualwavelets compensate for the non-orthogonality of the Gabor
wavelets; the wavelet coefficients (weights) can now be computed from the image
I by the projection of theirdualwavelets ontoI:

wi = 〈I, ψ̃ni
〉 . (6)

We findψ̃ni
to be

ψ̃ni
=

∑

j

(Ψi,j)
−1 ψnj

, where Ψi,j = 〈ψni
, ψnj

〉 . (7)

See Appendix A for a proof. Given a vector,Ψ, of optimized wavelets of a GWN,
the dual vector,̃Ψ, therefore allows an orthogonal projection of an imageJ onto
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Fig. 3. The images show the positions of each of the 16 wavelets after reparameterizing the
wavelet net and the corresponding reconstruction. The reconstructed faces show the same
orientation, position and size as the ones they were reparameterized on.

the closed linear span ofΨ, i.e.

Ĵ =
(
JΨ̃

)
Ψ =

N∑

i=1

wiψni
, with w = JΨ̃ (8)

2.3 Reparameterization of Gabor Wavelet Networks

The task of finding the optimal position, scale and the orientation of a given GWN
for a new image is important. Here, PCA, bunch graphs and GWN have similar
properties: In the case of PCA and bunch graph representations, it is important
to ensure that corresponding pixels are aligned into a common coordinate system,
while in case of the GWN, local image primitives are aligned. Given a correspond-
ing GWN, we are interested in finding the correct position, orientation and scaling
of the GWN so that the wavelets are positioned as precisely as possible on the same
facial features as in the original image. For this we assume the GWN to be rigid
in the sense that the small Gabor wavelets are not allowed to move relative to each
other; the entire GWN may be deformed geometrically so that it is aligned with
the coordinate system of the object in the new image. An example for a success-
ful deformation can be seen in Fig. 1, where in the bottom right image the wavelet
positions of theoriginal wavelet network are marked and in Fig. 3, left, where in
new images the wavelet positions of the same GNW are marked, but deformed and
reparameterizedaccordingly to fit the new faces. The right images in Fig. 3 show
the reconstruction of the deformed GWN of Fig. 1, now showing the same position,
rotation and scale of the new faces (left).

To formalize the idea, the reparameterization of a GWN is established by using a
superwavelet[12]:

Definition: Let (Ψ,w) be a Gabor Wavelet Network withΨ = (ψn1 , . . . , ψnN
)T ,

w = (w1, . . . , wN)T . A superwaveletΨn is defined to be a linear combination of
the waveletsψni

such that

Ψn(x) =
∑

i

wiψni
(SR(x− c)), (9)

where the parameters of vectorn of superwaveletΨ define the dilation matrix
S = diag(sx, sy), the rotation matrixR, and the translation vectorc = (cx, cy)

T .
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A superwaveletΨn is again a wavelet that has the same wavelet parameter set (dila-
tion, translation and rotation) as the Gabor wavelets used above. This means that the
parameter vectorn affects the superwaveletΨ as a whole and the small wavelets
ψ are not affected invididually. This also means that we can also handle and opti-
mize the superwavelet in the same way as we did it with each of the small Gabor
wavelets in eq.(2): For a new imageJ we deform the superwavelet by optimizing
its parametersn with respect to the energy functionalE:

E = min
n
‖J −Ψn‖2

2 (10)

The above functional allows us to define the operator

PΨ : L2(R2) 7−→R5

J −→n = (cx, cy, θ, sx, sy) , (11)

wheren minimizes the energy functionalE of the above equation. In eq. (11)Ψ
is defined to be a superwavelet. The reparameterization works quite robust and has
also been successfully applied for a wavelet based affine real-time face tracking
[13]. See [7] for a thorough discussion.

2.4 Related Work

There are other models for image interpretation and object representation. Most of
them are based on PCA [14], such as the eigenface approach [2]. The eigenface
approach has shown its advantages expecially in the context of face recognition. Its
major drawbacks are its sensitivity to perspective deformations and to illumination
changes. PCA encodes textural information only, while geometrical information is
discarded. Furthermore, the alignment of face images into a common coordinate
system is still a problem.

Another PCA based approach is the active appearance model (AAM)[3]. This ap-
proach enhances the eigenface approach considerably by including geometrical in-
formation. This allows an alignment of image data into a common coordinate sys-
tem while the formulation of the alignment technique can be elegantly done with
techniques of the AAM framework. Also, recognition and tracking applications are
presented within this framework [4]. An advantage of this approach was demon-
strated in [3]: the authors showed the ability of the AAM to model, in a photo-
realistic way, almost any face gesture and gender.

The bunch graph approach [1] is based, on the other hand, on the discrete wavelet
transform. A set of Gabor wavelets are applied at a set of hand selected prominent
object points, so that each point is represented by a set of filter responses, called a
jet. An object is then represented by a set of jets, that encode each a single local
texture patch of the object. The jet topology, the so-called animage graph, encodes
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geometrical object information. A precise positioning of the image graph onto the
test image is important for good matching results and the positioning is quite a slow
process. The feature detection capabilities of the Gabor filters are not exploited since
their parameters are fixed and an adaption to different precision levels has not been
considered so far.

3 Pose Estimation with GWN

In this section, we present our approach for the estimation of the pose of a head
using Gabor Wavelet Networks. There exist many different approaches for pose
estimation, including pose estimation with color blobs [15; 16], pose estimation
using a geometrical approach [17], stereo information [18] or neural networks [19],
to cite just a few. While in some approaches, such as in [16], only an approximate
pose is estimated, other approaches have the goal to be very precise so that they
could even be used as a basis for gaze detection such as in [20]. The precision of the
geometrical approach [17] was extensively tested and verified in [21]. The minimal
mean pan/tilt error that was reached was> 1.6◦. In comparison to this, the neural
network approach in [19] resulted in a minimal pan/tilt error of> 0.64◦.

The good results in [19] were achieved by first detecting the head using a color
tracking approach. Within this region of interest, 16 sets of 4 complex Gabor filters
with different orientations of0, π

4
, π

2
and3

4
π were evenly distributed on a4×4 grid.

The128 filter responses of these64 complex Gabor filters were then fed into a neural
network similar to LLM [22] which computed the values for pan and tilt. Table 1
presents a summary of the experimental results in [19]. The error measure used is
given as the Euclidean distance between the 2D groundtrouth vector containing pan
and tilt, and the 2D vector that contains the two computed values.

sampling scheme mean error max. error

3× 3× 4 0.87 2.78

4× 4× 4 0.64 1.88

6× 6× 4 0.61 1.74

8× 8× 4 0.58 1.82
Table 1
This table summarizes the experimental results for the pose estimation technique according
to

Consider Fig. 4: It shows the same person as Fig. 1, but represented by homoge-
neously distributed Gabor filters, instead of optimized ones. The very right image
in Fig. 4 is represented by 512 homogeneously distributed Gabor wavelets. While
the approach in [19] uses such a homogeneous scheme for filtering the input im-
ages, it is reasonable to assume that a proper context based choice of the Gabor
filters would lead to yet better pose estimation results. In our experiments we there-
fore trained a GWN on an imageI showing a doll’s head. The wavelets have been
constrained to be located within the inner face region to prevent distraction from the
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Fig. 4. These images show, qualitatively, what image information is contained in a set of
Gabor filter responses, when filtering is done with (from left, top to right, bottom)4 × 4
homogeneously distributed Gabor filters with 4 and 8 orientations, or with8 × 8 homoge-
neously distributed filters with 4 and 8 orientations.

Fig. 5. The left image shows the original doll face im-
age I, the right image shows its reconstruction̂I52

using the reconstruction formula with an optimized
wavelet netΨ of just N = 52 odd Gabor wavelets,
distributed over the inner face region. For optimiza-
tion, the scheme that was introduced in Section 2 was
applied.

background. Fig. 5 shows the trained GWN, in Fig. 6 the white boxes refer to the
inner face region considered by the GWN. For training the GWN we used the opti-
mization scheme presented in Section 2 withN = 52 Gabor wavelets. As we show
in the next Sections, pose estimation results improve considerably by replacing the
homogeneous scheme of [19] by a GWN.

3.1 Experimental Setup

In order to be comparable with the approach in [19] we used in our experiments
the same neural network and the same number of training examples as described
in [19]. In [19] a subspace variant of the Local Linear Map (LLM) [22] was used
for learning input - output mappings [23]. There, the LLM rests on a locally linear
(first order) approximation of the unknown functionf : Rn 7→ Rk and computes its
output as (winner-take-all-variant)y(x) = Abmu(x−cbmu)+obmu. Here,obmu ∈ Rk

is an output vector attached to the best matching unit (zero order approximation) and
Abmu ∈ Rk×n is a local estimate of the Jacobian matrix (first oder term). Centres are
distributed by a clustering algorithm. Due to the first order term, the method is very
sensitive to noise in the input. With a noisy versionx′ = x + η the output differs
by Abmuη, and the LLM largely benefits from projecting to the local subspace,
canceling the noise component ofη orthogonal to the input manifold. As basis
functions, normalized Gaussians were used.

The doll’s head was connected to a robot arm, so that the pan/tilt ground truth was
known. During the training and testing, the doll’s head was first tracked using our
wavelet based face tracker [13] for a proper positioning of the GWN. For each frame
we proceeded in two steps:

(1) optimal reparameterization of the GWN (tracking) by using the functional (10)
(2) calculating the optimal weights for the optimally repositioned GWN with eqs.
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Fig. 6. The figure show different example images of the doll’s head as captured by the
camera. The head is connected to a robot arm so that the ground truth is known. The white
square indicates how the GWN (superwavelet) was reparameterized during the tracking
step.

(7) and (8).
(3) Feeding the optimal weights into an ANN to compute estimations for pan and

tilt.

See Fig. 6 for example images for steps one and two. The training was done as it
was described in [19]: We used 400 training images, evenly distributed within the
range of±20◦ in pan and tilt direction (this is the range where all face features
appeared to be visible).

3.2 Experimental Results

With the experimental setup described above, we reached a mean pan/tilt error of
0.21◦ for a GWN with 52 real-valued wavelets and a minimal mean pan/tilt error of
0.30◦ for a GWN with 16 real-valued wavelets. The maximal errors were0.65◦ for
52 wavelets and0.72◦ for 16 wavelets, respectively (see Tab. 2 for a summary).

Since the filter responses and weights are linearly related by eq. (7), one might
hope that using the filter responses directly might lead to similar results. In fact,
the observed mean pan/tilt error was found to be0.37◦ for 16 wavelets and0.23◦

for 52 wavelets. The maximal errors were0.91◦ and0.53◦, respectively. Using fil-
ter responses instead of weights simplifies computation considerably: While Gabor
Wavelets are non-orthogonal wavelets, the weights are all correlated (see eq. (7)),
so that for each numberN of wavelets a separate neural network has to be trained.
Using the filter responses, only a single neural network needs to be trained.

weights responses

Number of Wavelets mean error max. error mean error max. error

16 0.30 0.72 0.37 0.91

52 0.21 0.65 0.23 0.53
Table 2
This table gives a summary of the estimation errors with varying numbers of Gabor
Wavelets. Shown are the mean and maximum errors for the experiments on the weights
and on the filter responses.

The reported results are averaged over several repetitions of our experiment, the
variance of the reported mean errors were≈ 1◦.
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The experiments were carried out on an experimental setup, which thus far only al-
lows off-line computation. On a 450 MHz Linux Pentium an on-line system should
reach a speed of>≈ 5 fps for the 52 wavelet network and>≈ 10 fps for the 16
wavelet network1 . It was shown in [7] that the computation time increases linearly
with increasing number of used Gabor wavelets.

In comparison, for thegazedetection in [20], 625 training images were used, with a
14-D input vector, to train an LLM-network. The user was advised to fixate a5× 5
grid on the computer screen. The minimal errors after training for pan and tilt were
1.5◦ and2.5◦, respectively, while the system speed was 1 Hz on a SGI (Indigo, High
Impact).

3.3 Progressive Attention Scheme for Pose Estimation

We have discussed above that the Gabor Wavelet Networks allow a variability in
precision by changing the numberN of used Gabor wavelets. This property was
calledProgressive Attention.

To use the progressive attention scheme for the pose estimation the wavelets are
sorted, with respect to their weights, in decreasing order. Therefore, wavelets with
a large weight are considered to be more important, which is in accordance with the
wavelet theory [8]. The weights that are considered here are those of the vectorw
given by the respective Gabor Wavelet Networks(Ψ,w). We have then evaluated
the above experiments for a varying wavelet numberN . The graphs in fig. 7 show
how the mean and maximal pan/tilt error changed with an increasing number of
Gabor wavelets. Fig. 7, left, shows the results where the estimation is based on the
weights, Fig. 7, right, shows the estimation results based on the filter responses, re-
spectively. The graphs indicate that the precision of the pose estimation in a certain
range correlates with the number of wavelets used, which is in accordance with the
progressive attention scheme. Above a certain number of wavelets the precision of
the estimated pose is nearly independent of the number of wavelets.

4 Conclusions

The contributions of this article is twofold: First, we introduced the concepts of
theGabor Wavelet Networkand theGabor superwaveletthat enable data reduction
and theprogressive attentionapproach. In the second Section we discussed these
various properties in detail. In [24; 13], GWNs have already been used successfully
for wavelet based affine real time face tracking and pose invariant face recognition.
Further, we exploited all the advantages of the GWN for the estimation of the head
pose. The experimental results show quite impressively that it is sensible for an
object representation to reflect the specific individual properties of the object rather

1 This is a conservative estimation, various optimizations should allow higher frame rates.
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Fig. 7. The left figure shows the decrease in pose estimation error with an increasing number
of wavelets. For these plots, weights were computed with eq. (8), which were fed into the
ANN. Shown are the plots for the mean error and the maximal error (in degrees). The right
figure shows the decrease in pose estimation error with an increasing number of wavelets.
For these plots, the filter responses were directly fed into the neural network. Shown are the
plots for the mean error and the maximal error (in degrees).

than being independent of the individual properties such as general representations
are. This can especially be seen when comparing the presented approach with the
one in [19]: While having used the same experimental setup and the same type
of neural network, the precision of the presented approach is twice as good with
only 16 coefficients (vs. 128 coeffs.), and three times as good with only 52 coeffs.
Furthermore, the experiments show, how the precision in pose estimation and the
system speed change with an increasing number of filters. A controllable variability
of precision and speed has a major advantage: The system is able to decide how
precise the estimation should be in order to minimize the probability that the given
task is not fulfilled satisfactorily. In the future we are planning to incorporate the
experimental setup into an on-line system. An enhancement for the evaluation of
the positions of the irises for a precise estimation of gaze will also be tested.
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A Appendix

In order to show that thẽψni
in eq. (7) are indeed dual to beψni

, we have to verify
the bi-orthogonality condition (4):
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〈ψni
,

N∑

j=1

(Ψk,j)
−1 ψnj

〉=
∫

ψni
(x)




N∑

j=1

(Ψk,j)
−1 ψnj

(x)


 dx

=
N∑

j=1

(Ψk,j)
−1

[∫
ψni

(x)ψnj
(x)dx

]

=
N∑

j=1

(Ψk,j)
−1 〈ψni

, ψnj
〉

=
N∑

j=1

(Ψk,j)
−1 (Ψj,i)

= δi,k . (A.1)

In the second to last row, thei-th column of matrix(Ψi,j) is multiplied by thek-th
row of its inverse, which evaluates to1 if i = k, and to0 otherwise. Equation (7)
is not specific to Gabor wavelets, as one can see in the proof, but holds forany
function family of finite dimensionality.
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