
Gabor Wavelet Networks for ObjetRepresentationVolker Krueger and Gerald SommerComputer Siene Institute, Christian-Albrehts University KielPreu�erstr. 1-9, 24105 Kiel, GermanyTel: ++49-431-560496, FAX: ++49-431-560481email: vok�ks.informatik.uni-kiel.deAbstrat. In this artile we want to introdue the Gabor wavelet net-work as a model based approah for an e�etive and eÆient objet repre-sentation. The Gabor wavelet network has several advantages: invarianeto some degree with respet to translation, rotation and dilation, the useof Gabor �lters ensured that geometrial and textural objet features areenoded, the representation preision ranges from photorealisti to oarseand an be adapted as needed for a spei� tast. The feasibility of theGabor �lters as a model for loal objet features ensures a onsiderabledata redution while at the same time allowing any desired preision ofthe objet representation ranging from a sparse to a photo-realisti rep-resentation. The feasibility of the objet representation is veri�ed by apose estimation experiment.1 IntrodutionReently, model-based approahes for the reognition and the interpretation ofimages of variable objets, like the bunh graph approah, PCA, eigenfaes andative appearane models, have reeived onsiderable interest [12; 8; 2℄. Theseapproahes ahieve good results beause solutions are onstrained to be validinstanes of a model. In these approahes, the term \model-based" is under-stood in the sense that a set of training objets is given in form of gray valuepixel images while the model \learns" the varianes of the gray values (PCA,eigenfaes) or, respetively, the Gabor �lter responses (bunh graph).In this work we want to introdue a novel approah for objet representationthat is based on Gabor Wavelet Networks. Gabor Wavelet Networks (GWN)are ombining the advantages of RBF networks with the advantages of Gaborwavelets: GWNs represent an objet as a linear ombination of Gabor waveletswhere the parameters of eah of the Gabor funtions (suh as orientation andposition and sale) are optimized to reet the partiular loal image struture.Gabor wavelet networks have several advantages:1. By their very nature, Gabor wavelet networks are invariant to some degreeto aÆne deformations and homogenous illumination hanges,2. Gabor �lters are good feature detetors [7℄ and the optimized parametersof eah of the Gabor wavelets are diretly related to the underlying imagestruture,



3. the weights of eah of the Gabor wavelet are diretly related to their �lterresponses and with that they are also diretly related to the underlying loalimage struture,4. the preision of the representation an be varied to any desired degree rang-ing from a oarse representation to an almost photo-realisti one by simplyvarying the number of used wavelets.We will disuss eah single point in setion 2.A further point should be mentioned: The use of Gabor �lters implies amodel for the atual representation of the objet information: GWN representsobjet information as a set of loal image primitive, whih leads to a higherlevel of abstration and to a onsiderable data redution. Both, textural andgeometrial information is enoded at the same time, but an be split to somedegree. Most other approahes, espeially those based on PCA and eigenimages,do not apply any model for the atual knowledge representation. Instead, therepresentation is done on a pixel level. The Gabor-model based representationleads to a onsiderabel data-redution. Furthermore, a GWN an be seen as atask oriented optimal �lter bank: given number of �lters, a GWN de�nes thatset of �lters that extrats the maximal possible image information. This is animportant aspet for several reasons: E.g. for real-time appliations one wants tokeep the number of �ltrations low to save omputational resoures and it makessense in this ontext to relate the number of �ltrations to the amount of imageinformation needed for a spei� task.In the following setion we will give a short introdution to GWNs. Also, wewill disuss eah single point mentioned above, inluding the invariane prop-erties, the abstration properties and spei�ity of the wavelet parameters forthe objet representation and a task oriented image �ltration. In setion 3 wewill present results on a pose estimation experiment where we will exploit theoptimality of the �lter bank to speed up the response time of the system and tooptimize the training of the neural network. In the last setion we will onludewith some �nal remarks.1.1 Related WorkThere are other models for image interpretation and objet representation. Mostof them are based on PCA, suh as the eigenfae approah [11℄. The eigenfaeapproah has shown its advantages expeially in the ontext of fae reogni-tion. Its major drawbaks are its sensitivity to perspetive deformations and toillumination hanges. PCA enodes textural information only, while geometri-al information is disarded. Furthermore, the alignment of fae images into aommon oordinate system is still a problem.Another PCA based approah is the ative appearane model (AAM)[2℄. Thisapproah enhanes the eigenfae approah onsiderably by inluding geometrialinformation. This allows an alignment of image data into a ommon oordinatesystem while the formulation of the alignment tehnique an be elegantly donewith tehniques of the AAM framework. Also, reognition and traking applia-tions are presented within this framework. An advantage of this approah was



demonstrated in [2℄: they showed the ability of the AAM to model, in a photo-realisti way, almost any fae gesture and gender. However, this is undoubly anexpensive task and one might ask in whih situation suh a preision is reallyneeded. In fat, a variation to di�erent preision levels in order to spare ompu-tational resoures and to restrit onsiderations to the data atually needed fora ertain appliation seems not easily possible.The bunh graph approah [12℄, on the other hand, is based on the disretewavelet transform. A set of Gabor wavelets are applied at a set of hand seletedprominent objet points, so that eah point is represented by a set of �lterresponses, alled jet. An objet is then represented by a set of jets, that enodeeah a single loal texture path of the objet. The jet topology, the so-alledimage graph, enodes geometrial objet information. A preise positioning ofthe image graph onto the test image is important for good mathing results andthe positioning is quite a slow proess. The feature detetion apabilities of theGabor �lters are not exploited sine their parameters are �xed and a variationto di�erent preision levels has not been onsidered so far.2 Introdution to Gabor Wavelet NetworksThe basi idea of the wavelet networks is �rst stated by [14℄, and the use of Ga-bor funtions is inspired by the fat that they are reognized to be good featuredetetors [7℄. To de�ne a GWN, we start out, generally speaking, by taking a fam-ily of N odd Gabor wavelet funtions	 = f n1 ; : : : ;  nNg of the form  n�x; y� =exp�� 12 hsx ((x� x) os � � (y � y) sin �) i2+hsy ((x� x) sin � + (y � y) os �) i2��sin�sx ((x� x) os � � (y � y) sin �)�, with n = (x; y; �; sx; sy)T . Here, x, ydenote the translation of the Gabor wavelet, sx, sy denote the dilation and � de-notes the orientation. The hoie of N is arbitrary and is related to the maximalrepresentation preision of the network. In order to �nd the GWN for image I ,the energy funtional E = minni;wi for all i kI �Pi wi nik22 is minimized withrespet to the weights wi and the wavelet parameter vetor ni. A Gabor waveletnetwork is de�ned as follows:De�nition: Let  ni , i = 1; : : : ; N be a set of Gabor wavelets, I a DC-free imageand wi and ni hosen aording to the energy funtional. The two vetors	 = ( n1 ; : : : ;  nN )T and w = (w1; : : : ; wN )T de�ne then the Gabor waveletnetwork (	;w) for image f .The optimization of eah wavelet with respet to the underlying image ispreisely the main advantage over the disrete approah used in[12℄. While inase of a disrete phase spae loal image struture has to be approximatedby a ombination of wavelets, a single wavelet an be hosen seletively in theontinuous ase to reet preisely the loal image struture. This assures thata maximum of the image information is enoded.Using the optimal wavelets 	 and weights w of the Gabor wavelet networkof an image f , I an be (losely) reonstruted by a linear ombination of theweighted wavelets: Î =PNi=1 wi ni =	Tw. Of ourse, the quality of the image



Fig. 1. The very right image shows the original fae image I, the other images showthe image I, represented with 16, 52, 116 and 216 Gabor wavelets (left to right). Inthe very left image, the positions of the �rst 16 wavelets are indiated.Fig. 2. The �gure shows images of a wooden toyblok on whih a GWN was trained. The blak linesegments sketh the positions, sizes and orientationsof all the wavelets of the GWN (left), and of someautomatially seleted wavelets (right).representation and of the reonstrution depends on the number N of waveletsused and an be varied to reah almost any desired preision (see �g. 1).It was mentioned above that the Gabor wavelets are reognized to be goodfeature [7℄ detetors, that are diretly related to the loal image features by theenergy funtional. This means that an optimized wavelet has e.g. ideally theexat position and orientation of a loal image feature. An example an be seenin �g. 2. The �gure shows the image of a little wooden toy blok, on whih aGabor wavelet network was trained. The left image shows the positions, salesand orientations of the wavelets as little blak line segments. By thresholdingthe weights, the more \important" wavelets may be seleted, whih leads to theright image. Ideally, eah Gabor wavelet should be positioned exatly on theimage line after optimization. Furthermore, sine large weights indiate that theorresponding wavelets represents an edge segment (see se. 2.1), these waveletsenode loal geometrial objet information.The use of Gabor �lters as a model for loal objet primitives leads to a higherlevel of abstration where objet knowledge is represented by a set of loal imageprimitives. The Gabor wavelets in a network that represent edge segments an beeasily identi�ed. How to identify wavelets, however, that enode spei� texturesis not really lear, yet, and subjet to future investigation.2.1 Diret Calulation of Weights and DistanesAs mentioned earlier, the weights wi of a GWN are diretly related to the �lterresponses of the Gabor �lters  ni on the training image.Gabor wavelet funtions are not orthogonal. For a given family 	 of Gaborwavelets it is therefore not possible to alulate a weight wi diretly by a simpleprojetion of the Gabor wavelet  ni onto the image. Instead one has to onsiderthe family of dual wavelets ~	 = f ~ n1 : : : ~ nN g. The wavelet ~ nj is the dualwavelet to the wavelet  ni i� h ni ; ~ nj i = Æi;j . With ~	 = ( ~ n1 ; : : : ; ~ nN )T , wean write hh	; ~	ii = 1I. In other words: wi = hI; ~ nii . We �nd ~ ni to be~ ni =Pj �	�1�i;j  nj , where 	i;j = h ni ;  nj i.The equation wi = hI; ~ nii allows us to de�ne the operator T	 : L2 (R2 ) 7�!<( n1 ; : : : ;  nN ) > as follows: Given a set 	 of optimal wavelets of a GWN, the



operator T	 realizes an orthogonal projetion of a funtion J onto the ve-tor subspae < 	 > (see �g. 4), i.e. Ĵ = T	(J) = J ~		 = PNi=1 wi niwith w = J ~	. The diret alulation of the distane between two familiesof Gabor wavelets, 	 and �, an also be established by applying the aboveto eah of the wavelets �i 2 �: T	(�j) = Pi hh�j ; ~ iii i, whih an be in-terpreted as the representation of eah wavelet �j as a superposition of thewavelets  i. With this, the distane between 	 and � an be given diretlyby rhPj k�i�T	(�i)kk�ik i2 + hPj k i�T�( i)kk ik i2, where k � k is the eulidian norm.With this distane measurement, the distane between two objet representa-tions an be alulated very eÆiently.2.2 Reparameterization of Gabor Wavelet NetworksThe \reverse" task of �nding the position, the sale and the orientation of aGWN in a new image is most important beause otherwise the �lter responsesare without any meaning. For example, onsider an image J that shows theperson of �g. 1, left, possibly distorted aÆnely. Given a orresponding GWNwe are interested in �nding the orret position, orientation and saling of theGWN so that the wavelets are positioned on the same faial features as in theoriginal image, or, in other words, how should the GWN be deformed (warped)so that it is aligned with the oordinate system of the new objet. An examplefor a suessful warping an be seen in �g. 1, where in the very right imagethe wavelet positions of the original wavelet network are marked and in �g. 3,where in new images the wavelet positions of the reparameterized Gabor waveletnetwork are marked. Parameterization of a GWN is established by using a
Fig. 3. The images show the positions of eah of the 16 wavelets after reparameterizingthe wavelet net and the orresponding reonstrution. The reonstruted faes showthe same orientation, position and size as the ones they were reparameterized on.superwavelet [10℄:De�nition: Let (	;w) be a Gabor wavelet network with	 = ( n1 ; : : : ;  nN )T ,w = (w1; : : : ; wN )T . A superwavelet 	n is de�ned to be a linear ombinationof the wavelets  ni suh that 	n(x) = Pi wi ni(SR(x � )) , where theparameters of vetor n of superwavelet 	 de�ne the dilation matrix S =diag(sx; sy), the rotation matrix R, and the translation vetor  = (x; y)T .A superwavelet	n is again a wavelet (beause of the linearity of the sum) and inpartiular a ontinuous funtion that has the wavelet parameters dilation, trans-lation and rotation. Therefore, we an handle it in the same way as we handled



eah single wavelet in the previous setion. For a new image J we may arbitrar-ily deform the superwavelet by optimizing its parameters n with respet to thesuperwavelet energy funtional E: E = minn kJ �	nk22. Equation de�nes theoperator P	 : L2 (R2 ) 7�! R5 , g �! n = (x; y; �; sx; sy) , where n minimizesthe superwavelet energy funtional E; 	 is de�ned to be a superwavelet. Foroptimization of the superwavelet parameters, the same optimization proedureas for the energy funtional may be used.The reparameterization (warping) works quite robust: Using the superwaveletof �g. 1 we have found in several experiments on the various subjets with� 60 pixels in width that the initialization of n0 may vary from the orretparameters by approx. �10 px. in x and y diretion, by approx. 20% in saleand by approx. �10Æ in rotation. Compared to the AAM, these �ndings indiatea muh better robustness [2℄. Furthermore, we found that the warping algorithmonverged in 100% of the ases to the orret values when applied on the sameindividual, independently of pose and gesture. The tests were done on the imagesof the Yale fae database and on our own images. The poses were varied withinthe range of � �20Æ in pan and tilt where all fae features were still visible.The various gestures inluded normal, happy, sad, surprised, sleepy, glasses,wink. The warping on other faes depended ertainly on the similarity betweenthe training person and the test person and on the number of used wavelets.We found that the warping algorithm always onverged orretly on � 80% ofthe test persons (inluding the training person) of the Yale fae database. Thewarping algorithm has also been suessfully applied for an wavelet based aÆnereal-time fae traking appliation [6℄.3 Experiments: Pose EstimationIn this setion we will present results of our experiments for estimating the poseof a fae. There exist many di�erent approahes for pose estimation, inludingpose estimation with olor blobs [3℄, pose estimation applying a geometrial ap-proah [4℄, stereo information [13℄ or neural networks [1℄, to ite just a few. Colorblob approahes give only approximate orientation information. The preision ofthe geometrial approah [4℄ was extensively tested and veri�ed in [9℄. The mini-mal mean pan/tilt error that was reahed was > 1:6Æ. In omparison to this, theneural network approah in [1℄ reahed a minimal pan/tilt error of > 0:58Æ. Thegood result in [1℄ was reahed by �rst deteting the head using a olor trakingapproah. Within the deteted olor blob region, 4� 4 sets of 4 omplex Gabor�lters with the di�erent orientations of 0, �4 , �2 and 34� were evenly distributed.The 128 omplex projetions of these �lters were then fed into a neural RBFnetwork. At this point, it is reasonable to assume that a preise positioning ofthe Gabor �lters would result into an even lower mean pan/tilt error. In ourexperiments we therefore trained a GWN on an image I showing a doll's head.For the training of the GWN we used again the optimization sheme introduedin setion 2 with N = 52 Gabor wavelets.In order to be omparable we used in our experiments exatly the sameneural network and the same number of training examples as desribed in [1℄.The doll's head was onneted to a robot arm, so that the pan/tilt ground truth



was known. During the training and testing, the doll's head was �rst trakedusing our wavelet based fae traker [6℄. For eah frame we proeeded in twosteps:1. optimal repositioning of the GWN by using the positioning operator P2. alulating the optimal weights for the optimally repositioned GWN by usingthe projetion operator T .See �g. 4 for example images. The weight vetor that was alulated with the
Fig. 4. The images show di�erent orientations of the doll's head. The head is onnetedto a robot arm so that the ground truth is known. The white square indiates thedeteted position, sale and orientation of the GWN.operator T was then fed into the same neural RBF network that was used in [1℄.The training was done exatly as it was desribed in [1℄: We used 400 trainingimages, evenly distributed within the range of �20Æ in pan and tilt diretion(this is the range where all fae features appeared to be visible). With this, wereahed a minimal mean pan/tilt error of 0:19Æ for a GWN with 52 waveletsand a minimal mean pan/tilt error of 0:29Æ for a GWN with 16 wavelets. Thetheoretial speed of the system on a 450 MHz Linux Pentium should reah >� 5fps for the 52 wavelet network and >� 10 fps for the 16 wavelet network. Theexperiments were arried out on an experimental setup, that has not yet beenintegrated into a omplete, single system.4 ConlusionsThe ontribution of this artile is twofold: First, we introdued the oneptsof the Gabor wavelet network and the Gabor superwavelet that allow a dataabstration, a data redution and a seletive �ltering:{ The representation of an objet with variable degree of preision, from aoarse representation to an almost photo-realisti one,{ the de�nition of an optimal set of �lters for a seletive �ltering{ the representation of objet information on a basis of loal image primitivesand{ the possibility for aÆne deformations to ope with perspetive deformations.In the seond setion we disussed these various properties in detail. In [5; 6℄,GWNs have already been used suessfully for wavelet based aÆne real time faetraking and pose invariant fae reognition. It is future work, to fully exploit theadvantages of the data redution by reduing onsiderations to the vetor spaeover the set of Gabor wavelet networks. We exploited all these advantages ofthe GWN for the estimation of the head pose. Seond, the experimental resultsshowed quite impressively that it is sensible for an objet representation to reetthe spei� individual properties of the objet rather than being independent of
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