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t. In this arti
le we want to introdu
e the Gabor wavelet net-work as a model based approa
h for an e�e
tive and eÆ
ient obje
t repre-sentation. The Gabor wavelet network has several advantages: invarian
eto some degree with respe
t to translation, rotation and dilation, the useof Gabor �lters ensured that geometri
al and textural obje
t features areen
oded, the representation pre
ision ranges from photorealisti
 to 
oarseand 
an be adapted as needed for a spe
i�
 tast. The feasibility of theGabor �lters as a model for lo
al obje
t features ensures a 
onsiderabledata redu
tion while at the same time allowing any desired pre
ision ofthe obje
t representation ranging from a sparse to a photo-realisti
 rep-resentation. The feasibility of the obje
t representation is veri�ed by apose estimation experiment.1 Introdu
tionRe
ently, model-based approa
hes for the re
ognition and the interpretation ofimages of variable obje
ts, like the bun
h graph approa
h, PCA, eigenfa
es anda
tive appearan
e models, have re
eived 
onsiderable interest [12; 8; 2℄. Theseapproa
hes a
hieve good results be
ause solutions are 
onstrained to be validinstan
es of a model. In these approa
hes, the term \model-based" is under-stood in the sense that a set of training obje
ts is given in form of gray valuepixel images while the model \learns" the varian
es of the gray values (PCA,eigenfa
es) or, respe
tively, the Gabor �lter responses (bun
h graph).In this work we want to introdu
e a novel approa
h for obje
t representationthat is based on Gabor Wavelet Networks. Gabor Wavelet Networks (GWN)are 
ombining the advantages of RBF networks with the advantages of Gaborwavelets: GWNs represent an obje
t as a linear 
ombination of Gabor waveletswhere the parameters of ea
h of the Gabor fun
tions (su
h as orientation andposition and s
ale) are optimized to re
e
t the parti
ular lo
al image stru
ture.Gabor wavelet networks have several advantages:1. By their very nature, Gabor wavelet networks are invariant to some degreeto aÆne deformations and homogenous illumination 
hanges,2. Gabor �lters are good feature dete
tors [7℄ and the optimized parametersof ea
h of the Gabor wavelets are dire
tly related to the underlying imagestru
ture,



3. the weights of ea
h of the Gabor wavelet are dire
tly related to their �lterresponses and with that they are also dire
tly related to the underlying lo
alimage stru
ture,4. the pre
ision of the representation 
an be varied to any desired degree rang-ing from a 
oarse representation to an almost photo-realisti
 one by simplyvarying the number of used wavelets.We will dis
uss ea
h single point in se
tion 2.A further point should be mentioned: The use of Gabor �lters implies amodel for the a
tual representation of the obje
t information: GWN representsobje
t information as a set of lo
al image primitive, whi
h leads to a higherlevel of abstra
tion and to a 
onsiderable data redu
tion. Both, textural andgeometri
al information is en
oded at the same time, but 
an be split to somedegree. Most other approa
hes, espe
ially those based on PCA and eigenimages,do not apply any model for the a
tual knowledge representation. Instead, therepresentation is done on a pixel level. The Gabor-model based representationleads to a 
onsiderabel data-redu
tion. Furthermore, a GWN 
an be seen as atask oriented optimal �lter bank: given number of �lters, a GWN de�nes thatset of �lters that extra
ts the maximal possible image information. This is animportant aspe
t for several reasons: E.g. for real-time appli
ations one wants tokeep the number of �ltrations low to save 
omputational resour
es and it makessense in this 
ontext to relate the number of �ltrations to the amount of imageinformation needed for a spe
i�
 task.In the following se
tion we will give a short introdu
tion to GWNs. Also, wewill dis
uss ea
h single point mentioned above, in
luding the invarian
e prop-erties, the abstra
tion properties and spe
i�
ity of the wavelet parameters forthe obje
t representation and a task oriented image �ltration. In se
tion 3 wewill present results on a pose estimation experiment where we will exploit theoptimality of the �lter bank to speed up the response time of the system and tooptimize the training of the neural network. In the last se
tion we will 
on
ludewith some �nal remarks.1.1 Related WorkThere are other models for image interpretation and obje
t representation. Mostof them are based on PCA, su
h as the eigenfa
e approa
h [11℄. The eigenfa
eapproa
h has shown its advantages expe
ially in the 
ontext of fa
e re
ogni-tion. Its major drawba
ks are its sensitivity to perspe
tive deformations and toillumination 
hanges. PCA en
odes textural information only, while geometri-
al information is dis
arded. Furthermore, the alignment of fa
e images into a
ommon 
oordinate system is still a problem.Another PCA based approa
h is the a
tive appearan
e model (AAM)[2℄. Thisapproa
h enhan
es the eigenfa
e approa
h 
onsiderably by in
luding geometri
alinformation. This allows an alignment of image data into a 
ommon 
oordinatesystem while the formulation of the alignment te
hnique 
an be elegantly donewith te
hniques of the AAM framework. Also, re
ognition and tra
king appli
a-tions are presented within this framework. An advantage of this approa
h was



demonstrated in [2℄: they showed the ability of the AAM to model, in a photo-realisti
 way, almost any fa
e gesture and gender. However, this is undoubly anexpensive task and one might ask in whi
h situation su
h a pre
ision is reallyneeded. In fa
t, a variation to di�erent pre
ision levels in order to spare 
ompu-tational resour
es and to restri
t 
onsiderations to the data a
tually needed fora 
ertain appli
ation seems not easily possible.The bun
h graph approa
h [12℄, on the other hand, is based on the dis
retewavelet transform. A set of Gabor wavelets are applied at a set of hand sele
tedprominent obje
t points, so that ea
h point is represented by a set of �lterresponses, 
alled jet. An obje
t is then represented by a set of jets, that en
odeea
h a single lo
al texture pat
h of the obje
t. The jet topology, the so-
alledimage graph, en
odes geometri
al obje
t information. A pre
ise positioning ofthe image graph onto the test image is important for good mat
hing results andthe positioning is quite a slow pro
ess. The feature dete
tion 
apabilities of theGabor �lters are not exploited sin
e their parameters are �xed and a variationto di�erent pre
ision levels has not been 
onsidered so far.2 Introdu
tion to Gabor Wavelet NetworksThe basi
 idea of the wavelet networks is �rst stated by [14℄, and the use of Ga-bor fun
tions is inspired by the fa
t that they are re
ognized to be good featuredete
tors [7℄. To de�ne a GWN, we start out, generally speaking, by taking a fam-ily of N odd Gabor wavelet fun
tions	 = f n1 ; : : : ;  nNg of the form  n�x; y� =exp�� 12 hsx ((x� 
x) 
os � � (y � 
y) sin �) i2+hsy ((x� 
x) sin � + (y � 
y) 
os �) i2��sin�sx ((x� 
x) 
os � � (y � 
y) sin �)�, with n = (
x; 
y; �; sx; sy)T . Here, 
x, 
ydenote the translation of the Gabor wavelet, sx, sy denote the dilation and � de-notes the orientation. The 
hoi
e of N is arbitrary and is related to the maximalrepresentation pre
ision of the network. In order to �nd the GWN for image I ,the energy fun
tional E = minni;wi for all i kI �Pi wi nik22 is minimized withrespe
t to the weights wi and the wavelet parameter ve
tor ni. A Gabor waveletnetwork is de�ned as follows:De�nition: Let  ni , i = 1; : : : ; N be a set of Gabor wavelets, I a DC-free imageand wi and ni 
hosen a

ording to the energy fun
tional. The two ve
tors	 = ( n1 ; : : : ;  nN )T and w = (w1; : : : ; wN )T de�ne then the Gabor waveletnetwork (	;w) for image f .The optimization of ea
h wavelet with respe
t to the underlying image ispre
isely the main advantage over the dis
rete approa
h used in[12℄. While in
ase of a dis
rete phase spa
e lo
al image stru
ture has to be approximatedby a 
ombination of wavelets, a single wavelet 
an be 
hosen sele
tively in the
ontinuous 
ase to re
e
t pre
isely the lo
al image stru
ture. This assures thata maximum of the image information is en
oded.Using the optimal wavelets 	 and weights w of the Gabor wavelet networkof an image f , I 
an be (
losely) re
onstru
ted by a linear 
ombination of theweighted wavelets: Î =PNi=1 wi ni =	Tw. Of 
ourse, the quality of the image



Fig. 1. The very right image shows the original fa
e image I, the other images showthe image I, represented with 16, 52, 116 and 216 Gabor wavelets (left to right). Inthe very left image, the positions of the �rst 16 wavelets are indi
ated.Fig. 2. The �gure shows images of a wooden toyblo
k on whi
h a GWN was trained. The bla
k linesegments sket
h the positions, sizes and orientationsof all the wavelets of the GWN (left), and of someautomati
ally sele
ted wavelets (right).representation and of the re
onstru
tion depends on the number N of waveletsused and 
an be varied to rea
h almost any desired pre
ision (see �g. 1).It was mentioned above that the Gabor wavelets are re
ognized to be goodfeature [7℄ dete
tors, that are dire
tly related to the lo
al image features by theenergy fun
tional. This means that an optimized wavelet has e.g. ideally theexa
t position and orientation of a lo
al image feature. An example 
an be seenin �g. 2. The �gure shows the image of a little wooden toy blo
k, on whi
h aGabor wavelet network was trained. The left image shows the positions, s
alesand orientations of the wavelets as little bla
k line segments. By thresholdingthe weights, the more \important" wavelets may be sele
ted, whi
h leads to theright image. Ideally, ea
h Gabor wavelet should be positioned exa
tly on theimage line after optimization. Furthermore, sin
e large weights indi
ate that the
orresponding wavelets represents an edge segment (see se
. 2.1), these waveletsen
ode lo
al geometri
al obje
t information.The use of Gabor �lters as a model for lo
al obje
t primitives leads to a higherlevel of abstra
tion where obje
t knowledge is represented by a set of lo
al imageprimitives. The Gabor wavelets in a network that represent edge segments 
an beeasily identi�ed. How to identify wavelets, however, that en
ode spe
i�
 texturesis not really 
lear, yet, and subje
t to future investigation.2.1 Dire
t Cal
ulation of Weights and Distan
esAs mentioned earlier, the weights wi of a GWN are dire
tly related to the �lterresponses of the Gabor �lters  ni on the training image.Gabor wavelet fun
tions are not orthogonal. For a given family 	 of Gaborwavelets it is therefore not possible to 
al
ulate a weight wi dire
tly by a simpleproje
tion of the Gabor wavelet  ni onto the image. Instead one has to 
onsiderthe family of dual wavelets ~	 = f ~ n1 : : : ~ nN g. The wavelet ~ nj is the dualwavelet to the wavelet  ni i� h ni ; ~ nj i = Æi;j . With ~	 = ( ~ n1 ; : : : ; ~ nN )T , we
an write hh	; ~	ii = 1I. In other words: wi = hI; ~ nii . We �nd ~ ni to be~ ni =Pj �	�1�i;j  nj , where 	i;j = h ni ;  nj i.The equation wi = hI; ~ nii allows us to de�ne the operator T	 : L2 (R2 ) 7�!<( n1 ; : : : ;  nN ) > as follows: Given a set 	 of optimal wavelets of a GWN, the



operator T	 realizes an orthogonal proje
tion of a fun
tion J onto the ve
-tor subspa
e < 	 > (see �g. 4), i.e. Ĵ = T	(J) = J ~		 = PNi=1 wi niwith w = J ~	. The dire
t 
al
ulation of the distan
e between two familiesof Gabor wavelets, 	 and �, 
an also be established by applying the aboveto ea
h of the wavelets �i 2 �: T	(�j) = Pi hh�j ; ~ iii i, whi
h 
an be in-terpreted as the representation of ea
h wavelet �j as a superposition of thewavelets  i. With this, the distan
e between 	 and � 
an be given dire
tlyby rhPj k�i�T	(�i)kk�ik i2 + hPj k i�T�( i)kk ik i2, where k � k is the eu
lidian norm.With this distan
e measurement, the distan
e between two obje
t representa-tions 
an be 
al
ulated very eÆ
iently.2.2 Reparameterization of Gabor Wavelet NetworksThe \reverse" task of �nding the position, the s
ale and the orientation of aGWN in a new image is most important be
ause otherwise the �lter responsesare without any meaning. For example, 
onsider an image J that shows theperson of �g. 1, left, possibly distorted aÆnely. Given a 
orresponding GWNwe are interested in �nding the 
orre
t position, orientation and s
aling of theGWN so that the wavelets are positioned on the same fa
ial features as in theoriginal image, or, in other words, how should the GWN be deformed (warped)so that it is aligned with the 
oordinate system of the new obje
t. An examplefor a su

essful warping 
an be seen in �g. 1, where in the very right imagethe wavelet positions of the original wavelet network are marked and in �g. 3,where in new images the wavelet positions of the reparameterized Gabor waveletnetwork are marked. Parameterization of a GWN is established by using a
Fig. 3. The images show the positions of ea
h of the 16 wavelets after reparameterizingthe wavelet net and the 
orresponding re
onstru
tion. The re
onstru
ted fa
es showthe same orientation, position and size as the ones they were reparameterized on.superwavelet [10℄:De�nition: Let (	;w) be a Gabor wavelet network with	 = ( n1 ; : : : ;  nN )T ,w = (w1; : : : ; wN )T . A superwavelet 	n is de�ned to be a linear 
ombinationof the wavelets  ni su
h that 	n(x) = Pi wi ni(SR(x � 
)) , where theparameters of ve
tor n of superwavelet 	 de�ne the dilation matrix S =diag(sx; sy), the rotation matrix R, and the translation ve
tor 
 = (
x; 
y)T .A superwavelet	n is again a wavelet (be
ause of the linearity of the sum) and inparti
ular a 
ontinuous fun
tion that has the wavelet parameters dilation, trans-lation and rotation. Therefore, we 
an handle it in the same way as we handled



ea
h single wavelet in the previous se
tion. For a new image J we may arbitrar-ily deform the superwavelet by optimizing its parameters n with respe
t to thesuperwavelet energy fun
tional E: E = minn kJ �	nk22. Equation de�nes theoperator P	 : L2 (R2 ) 7�! R5 , g �! n = (
x; 
y; �; sx; sy) , where n minimizesthe superwavelet energy fun
tional E; 	 is de�ned to be a superwavelet. Foroptimization of the superwavelet parameters, the same optimization pro
edureas for the energy fun
tional may be used.The reparameterization (warping) works quite robust: Using the superwaveletof �g. 1 we have found in several experiments on the various subje
ts with� 60 pixels in width that the initialization of n0 may vary from the 
orre
tparameters by approx. �10 px. in x and y dire
tion, by approx. 20% in s
aleand by approx. �10Æ in rotation. Compared to the AAM, these �ndings indi
atea mu
h better robustness [2℄. Furthermore, we found that the warping algorithm
onverged in 100% of the 
ases to the 
orre
t values when applied on the sameindividual, independently of pose and gesture. The tests were done on the imagesof the Yale fa
e database and on our own images. The poses were varied withinthe range of � �20Æ in pan and tilt where all fa
e features were still visible.The various gestures in
luded normal, happy, sad, surprised, sleepy, glasses,wink. The warping on other fa
es depended 
ertainly on the similarity betweenthe training person and the test person and on the number of used wavelets.We found that the warping algorithm always 
onverged 
orre
tly on � 80% ofthe test persons (in
luding the training person) of the Yale fa
e database. Thewarping algorithm has also been su

essfully applied for an wavelet based aÆnereal-time fa
e tra
king appli
ation [6℄.3 Experiments: Pose EstimationIn this se
tion we will present results of our experiments for estimating the poseof a fa
e. There exist many di�erent approa
hes for pose estimation, in
ludingpose estimation with 
olor blobs [3℄, pose estimation applying a geometri
al ap-proa
h [4℄, stereo information [13℄ or neural networks [1℄, to 
ite just a few. Colorblob approa
hes give only approximate orientation information. The pre
ision ofthe geometri
al approa
h [4℄ was extensively tested and veri�ed in [9℄. The mini-mal mean pan/tilt error that was rea
hed was > 1:6Æ. In 
omparison to this, theneural network approa
h in [1℄ rea
hed a minimal pan/tilt error of > 0:58Æ. Thegood result in [1℄ was rea
hed by �rst dete
ting the head using a 
olor tra
kingapproa
h. Within the dete
ted 
olor blob region, 4� 4 sets of 4 
omplex Gabor�lters with the di�erent orientations of 0, �4 , �2 and 34� were evenly distributed.The 128 
omplex proje
tions of these �lters were then fed into a neural RBFnetwork. At this point, it is reasonable to assume that a pre
ise positioning ofthe Gabor �lters would result into an even lower mean pan/tilt error. In ourexperiments we therefore trained a GWN on an image I showing a doll's head.For the training of the GWN we used again the optimization s
heme introdu
edin se
tion 2 with N = 52 Gabor wavelets.In order to be 
omparable we used in our experiments exa
tly the sameneural network and the same number of training examples as des
ribed in [1℄.The doll's head was 
onne
ted to a robot arm, so that the pan/tilt ground truth



was known. During the training and testing, the doll's head was �rst tra
kedusing our wavelet based fa
e tra
ker [6℄. For ea
h frame we pro
eeded in twosteps:1. optimal repositioning of the GWN by using the positioning operator P2. 
al
ulating the optimal weights for the optimally repositioned GWN by usingthe proje
tion operator T .See �g. 4 for example images. The weight ve
tor that was 
al
ulated with the
Fig. 4. The images show di�erent orientations of the doll's head. The head is 
onne
tedto a robot arm so that the ground truth is known. The white square indi
ates thedete
ted position, s
ale and orientation of the GWN.operator T was then fed into the same neural RBF network that was used in [1℄.The training was done exa
tly as it was des
ribed in [1℄: We used 400 trainingimages, evenly distributed within the range of �20Æ in pan and tilt dire
tion(this is the range where all fa
e features appeared to be visible). With this, werea
hed a minimal mean pan/tilt error of 0:19Æ for a GWN with 52 waveletsand a minimal mean pan/tilt error of 0:29Æ for a GWN with 16 wavelets. Thetheoreti
al speed of the system on a 450 MHz Linux Pentium should rea
h >� 5fps for the 52 wavelet network and >� 10 fps for the 16 wavelet network. Theexperiments were 
arried out on an experimental setup, that has not yet beenintegrated into a 
omplete, single system.4 Con
lusionsThe 
ontribution of this arti
le is twofold: First, we introdu
ed the 
on
eptsof the Gabor wavelet network and the Gabor superwavelet that allow a dataabstra
tion, a data redu
tion and a sele
tive �ltering:{ The representation of an obje
t with variable degree of pre
ision, from a
oarse representation to an almost photo-realisti
 one,{ the de�nition of an optimal set of �lters for a sele
tive �ltering{ the representation of obje
t information on a basis of lo
al image primitivesand{ the possibility for aÆne deformations to 
ope with perspe
tive deformations.In the se
ond se
tion we dis
ussed these various properties in detail. In [5; 6℄,GWNs have already been used su

essfully for wavelet based aÆne real time fa
etra
king and pose invariant fa
e re
ognition. It is future work, to fully exploit theadvantages of the data redu
tion by redu
ing 
onsiderations to the ve
tor spa
eover the set of Gabor wavelet networks. We exploited all these advantages ofthe GWN for the estimation of the head pose. Se
ond, the experimental resultsshowed quite impressively that it is sensible for an obje
t representation to re
e
tthe spe
i�
 individual properties of the obje
t rather than being independent of



the individual properties su
h as general representations are. This 
an espe
iallybe seen when 
omparing the presented approa
h with the one in [1℄: While havingused the same experimental setup and the same type of neural network, thepre
ision of the presented approa
h is twi
e as good with only 16 
oeÆ
ients (vs.128), and three times as good with only about half the 
oeÆ
ients. Furthermore,the experiment shows, how the pre
ision in pose estimation and the system speed
hange with an in
reasing number of �lters. A 
ontrollable variability of pre
isionand speed has a major advantage: The system is able to de
ide how pre
ise theestimation should be in order to minimize the probability that the given task isnot ful�lled satisfa
torily.A
knowledgment The images used are derived from the Yale Fa
e Database.This work was supported by the DFG grant Ei 322/1-2.Referen
es1. J. Bruske, E. Abraham-Mumm, J. Pauli, and G. Sommer. Head-pose estimationfrom fa
ial images with subspa
e neural networks. In Pro
. of Int. Neural Networkand Brain Conferen
e, pages 528{531, Beijing, China, 1998.2. T.F. Cootes, G.J. Edwards, and C.J. Taylor. A
tive appearan
e models. InPro
. Fifth European Conferen
e on Computer Vision, volume 2, pages 484{498,Freiburg, Germany, June 1-5, 1998.3. T. Darrell, B. Moghaddam, and A. Pentland. A
tive fa
e tra
king and pose es-timation in an intera
tive room. In IEEE Conf. Computer Vision and PatternRe
ognition, CVPR, pages 67{72, Seattle, WA, June 21-23, 1996.4. A. Gee and R. Cipolla. Determining the gaze of fa
es in images. Image and VisionComputing, 12(10):639{647, 1994.5. V Kr�uger and G. Sommer. Gabor wavelet networks for obje
t representation. InPro
. of the Int. Dagstuhl 2000 Workshop, 2000. to be published.6. V. Kr�uger and Gerald Sommer. AÆne real-time fa
e tra
king using gabor waveletnetworks. In Pro
. Int. Conf. on Pattern Re
ognition, pages 141{150, Bar
elona,Spain, Sept. 3-8, 1999.7. B.S. Manjunath and R. Chellappa. A uni�ed approa
h to boundary per
eption:edges, textures, and illusory 
ontours. IEEE Trans. Neural Networks, 4(1):96{107,1993.8. B. Moghaddam and A. Pentland. Probabilisti
 visual learning for obje
t dete
tion.IEEE Trans. Pattern Analysis and Ma
hine Intelligen
e, 17(7):696{710, Juli 1997.9. Eleni Petraki. Analyse der bli
kri
htung des mens
hen und er kopforientierungim raum mittels passiver bildanalyse. Master's thesis, Te
hni
al University ofHamburg-Harburg, 1996.10. H. Szu, B. Telfer, and S. Kadambe. Neural network adaptive wavelets for signalrepresentation and 
lassi�
ation. Opti
al Engineering, 31(9):1907{1961, 1992.11. M. Turk and A. Pentland. Eigenfa
es for re
ognition. Int. Journal of CognitiveNeuros
ien
e, 3(1):71{89, 1991.12. L. Wiskott, J. M. Fellous, N. Kr�uger, and C. v. d. Malsburg. Fa
e re
ognitionby elasti
 bun
h graph mat
hing. IEEE Trans. Pattern Analysis and Ma
hineIntelligen
e, 19(7):775{779, July 1997.13. M. Xu and T. Akatsuka. Dete
ting head pose from stereo image sequen
es for a
tivefa
e re
ognition. In Int. Conf. on Automati
 Fa
e- and Gesture-Re
ognition, pages82{87, Nara, Japan, April 14-16, 1998.14. Q. Zhang and A. Benviste. Wavelet networks. IEEE Trans. Neural Networks,3(6):889{898, Nov. 1992.


