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Abstract. In this article we want to introduce the Gabor wavelet net-
work as a model based approach for an effective and efficient object repre-
sentation. The Gabor wavelet network has several advantages: invariance
to some degree with respect to translation, rotation and dilation, the use
of Gabor filters ensured that geometrical and textural object features are
encoded, the representation precision ranges from photorealistic to coarse
and can be adapted as needed for a specific tast. The feasibility of the
Gabor filters as a model for local object features ensures a considerable
data reduction while at the same time allowing any desired precision of
the object representation ranging from a sparse to a photo-realistic rep-
resentation. The feasibility of the object representation is verified by a
pose estimation experiment.

1 Introduction

Recently, model-based approaches for the recognition and the interpretation of
images of variable objects, like the bunch graph approach, PCA, eigenfaces and
active appearance models, have received considerable interest [12; 8; 2]. These
approaches achieve good results because solutions are constrained to be valid
instances of a model. In these approaches, the term “model-based” is under-
stood in the sense that a set of training objects is given in form of gray value
pixel images while the model “learns” the variances of the gray values (PCA,
eigenfaces) or, respectively, the Gabor filter responses (bunch graph).

In this work we want to introduce a novel approach for object representation
that is based on Gabor Wavelet Networks. Gabor Wavelet Networks (GWN)
are combining the advantages of RBF networks with the advantages of Gabor
wavelets: GWNs represent an object as a linear combination of Gabor wavelets
where the parameters of each of the Gabor functions (such as orientation and
position and scale) are optimized to reflect the particular local image structure.
Gabor wavelet networks have several advantages:

1. By their very nature, Gabor wavelet networks are invariant to some degree
to affine deformations and homogenous illumination changes,

2. Gabor filters are good feature detectors [7] and the optimized parameters
of each of the Gabor wavelets are directly related to the underlying image
structure,



3. the weights of each of the Gabor wavelet are directly related to their filter
responses and with that they are also directly related to the underlying local
image structure,

4. the precision of the representation can be varied to any desired degree rang-
ing from a coarse representation to an almost photo-realistic one by simply
varying the number of used wavelets.

We will discuss each single point in section 2.

A further point should be mentioned: The use of Gabor filters implies a
model for the actual representation of the object information: GWN represents
object information as a set of local image primitive, which leads to a higher
level of abstraction and to a considerable data reduction. Both, textural and
geometrical information is encoded at the same time, but can be split to some
degree. Most other approaches, especially those based on PCA and eigenimages,
do not apply any model for the actual knowledge representation. Instead, the
representation is done on a pixel level. The Gabor-model based representation
leads to a considerabel data-reduction. Furthermore, a GWN can be seen as a
task oriented optimal filter bank: given number of filters, a GWN defines that
set of filters that extracts the maximal possible image information. This is an
important aspect for several reasons: E.g. for real-time applications one wants to
keep the number of filtrations low to save computational resources and it makes
sense in this context to relate the number of filtrations to the amount of image
information needed for a specific task.

In the following section we will give a short introduction to GWNs. Also, we
will discuss each single point mentioned above, including the invariance prop-
erties, the abstraction properties and specificity of the wavelet parameters for
the object representation and a task oriented image filtration. In section 3 we
will present results on a pose estimation experiment where we will exploit the
optimality of the filter bank to speed up the response time of the system and to
optimize the training of the neural network. In the last section we will conclude
with some final remarks.

1.1 Related Work

There are other models for image interpretation and object representation. Most
of them are based on PCA, such as the eigenface approach [11]. The eigenface
approach has shown its advantages expecially in the context of face recogni-
tion. Its major drawbacks are its sensitivity to perspective deformations and to
illumination changes. PCA encodes textural information only, while geometri-
cal information is discarded. Furthermore, the alignment of face images into a
common coordinate system is still a problem.

Another PCA based approach is the active appearance model (AAM)[2]. This
approach enhances the eigenface approach considerably by including geometrical
information. This allows an alignment of image data into a common coordinate
system while the formulation of the alignment technique can be elegantly done
with techniques of the AAM framework. Also, recognition and tracking applica-
tions are presented within this framework. An advantage of this approach was



demonstrated in [2]: they showed the ability of the AAM to model, in a photo-
realistic way, almost any face gesture and gender. However, this is undoubly an
expensive task and one might ask in which situation such a precision is really
needed. In fact, a variation to different precision levels in order to spare compu-
tational resources and to restrict considerations to the data actually needed for
a certain application seems not easily possible.

The bunch graph approach [12], on the other hand, is based on the discrete
wavelet transform. A set of Gabor wavelets are applied at a set of hand selected
prominent object points, so that each point is represented by a set of filter
responses, called jet. An object is then represented by a set of jets, that encode
each a single local texture patch of the object. The jet topology, the so-called
image graph, encodes geometrical object information. A precise positioning of
the image graph onto the test image is important for good matching results and
the positioning is quite a slow process. The feature detection capabilities of the
Gabor filters are not exploited since their parameters are fixed and a variation
to different precision levels has not been considered so far.

2 Introduction to Gabor Wavelet Networks
The basic idea of the wavelet networks is first stated by [14], and the use of Ga-

bor functions is inspired by the fact that they are recognized to be good feature
detectors [7]. To define a GWN, we start out, generally speaking, by taking a fam-

ily of N odd Gabor wavelet functions ¥ = {t)n,,, ..., %ny } of the form ¢ (z,y) =
exp (—% [sm ((x —cz)cosf — (y —cy) sin0)]2+[sy ((z — cz)sinb + (y — ¢y) cos 0)]2) X

sin (s,c ((x — cz) cos§ — (y — cy) sin 9)), with n = (cg,¢y,0,5.,8,)7. Here, ¢, ¢,
denote the translation of the Gabor wavelet, s,, s, denote the dilation and 6 de-
notes the orientation. The choice of IV is arbitrary and is related to the maximal
representation precision of the network. In order to find the GWN for image I,
the energy functional E = minn, u; for ai i ||[I — Y_; Witn, ||3 is minimized with
respect to the weights w; and the wavelet parameter vector n;. A Gabor wavelet
network is defined as follows:

Definition: Let ¢n,,7 = 1,..., N be a set of Gabor wavelets, I a DC-free image
and w; and n; chosen according to the energy functional. The two vectors
U= (Yn,,...,%ny)" and w = (w1,...,wn)" define then the Gabor wavelet
network (¥, w) for image f.

The optimization of each wavelet with respect to the underlying image is
precisely the main advantage over the discrete approach used in[12]. While in
case of a discrete phase space local image structure has to be approximated
by a combination of wavelets, a single wavelet can be chosen selectively in the
continuous case to reflect precisely the local image structure. This assures that
a maximum of the image information is encoded.

Using the optimal wavelets ¥ and weights w of the Gabor wavelet network
of an image f, I can be (closely) reconstructed by a linear combination of the
weighted wavelets: I= Zfil withn, = ¥Tw. Of course, the quality of the image



Fig. 1. The very right image shows the original face image I, the other images show
the image I, represented with 16, 52, 116 and 216 Gabor wavelets (left to right). In
the very left image, the positions of the first 16 wavelets are indicated.

Saec Fig. 2. The figure shows images of a wooden toy
‘?';"/:_:;'": =< ¥ block on which a GWN was trained. The black line
:d Vs di L segments sketch the positions, sizes and orientations
\‘t\\%ﬁ’%. ‘-"T"l of all the wavelets of the GWN (left), and of some

automatically selected wavelets (right).

representation and of the reconstruction depends on the number N of wavelets
used and can be varied to reach almost any desired precision (see fig. 1).

It was mentioned above that the Gabor wavelets are recognized to be good
feature [7] detectors, that are directly related to the local image features by the
energy functional. This means that an optimized wavelet has e.g. ideally the
exact position and orientation of a local image feature. An example can be seen
in fig. 2. The figure shows the image of a little wooden toy block, on which a
Gabor wavelet network was trained. The left image shows the positions, scales
and orientations of the wavelets as little black line segments. By thresholding
the weights, the more “important” wavelets may be selected, which leads to the
right image. Ideally, each Gabor wavelet should be positioned ezactly on the
image line after optimization. Furthermore, since large weights indicate that the
corresponding wavelets represents an edge segment (see sec. 2.1), these wavelets
encode local geometrical object information.

The use of Gabor filters as a model for local object primitives leads to a higher
level of abstraction where object knowledge is represented by a set of local image
primitives. The Gabor wavelets in a network that represent edge segments can be
easily identified. How to identify wavelets, however, that encode specific textures
is not really clear, yet, and subject to future investigation.

2.1 Direct Calculation of Weights and Distances
As mentioned earlier, the weights w; of a GWN are directly related to the filter
responses of the Gabor filters vy, on the training image.

Gabor wavelet functions are not orthogonal. For a given family ¥ of Gabor
wavelets it is therefore not possible to calculate a weight w; directly by a simple
projection of the Gabor wavelet ¢, onto the image. Instead one has to consider
the family of dual wavelets ¥ = {tn, ...¢ny}. The wavelet @nj is the dual
wavelet to the wavelet ¢y, iff (¢n,, @nj) = 6. With ¥ = (¢, ..., 0hny)T, we

can write [(\Il,\il)] = 1. In other words: w; = (I,¢n,) . We find iy, to be
zﬁm = Zj (W_l)i}j wnja where Wi,j = (1/)111'51/)11]')'

The equation w; = (I, hy,) allows us to define the operator Ty : L2 (R?) —s<
(Ynys .-, ¥ny) > as follows: Given a set ¥ of optimal wavelets of a GWN; the



operator Tg realizes an orthogonal projection of a function J onto the vec-
tor subspace < ¥ > (see fig. 4), ie. J = Tg(J) = JO¥ = Zﬁilwnpm
with w = J®. The direct calculation of the distance between two families
of Gabor wavelets, ¥ and ®, can also be established by applying the above

to each of the wavelets ¢; € ®: Tg(d;) = >, [(qﬁj,wi)] 1;, which can be in-

terpreted as the representation of each wavelet ¢; as a superposition of the

wavelets ;. With this, the distance between ¥ and ® can be given directly
2 2

by \/[Z] 7”¢FH€‘I,’H(¢Z')”] + [Z] li=Tee ()l 7H1Tfﬁ¢i)”] , where || - || is the euclidian norm.

With this distance measurement, the distance between two object representa-

tions can be calculated very efficiently.

2.2 Reparameterization of Gabor Wavelet Networks

The “reverse” task of finding the position, the scale and the orientation of a
GWN in a new image is most important because otherwise the filter responses
are without any meaning. For example, consider an image .J that shows the
person of fig. 1, left, possibly distorted affinely. Given a corresponding GWN
we are interested in finding the correct position, orientation and scaling of the
GWN so that the wavelets are positioned on the same facial features as in the
original image, or, in other words, how should the GWN be deformed (warped)
so that it is aligned with the coordinate system of the new object. An example
for a successful warping can be seen in fig. 1, where in the very right image
the wavelet positions of the original wavelet network are marked and in fig. 3,
where in new images the wavelet positions of the reparameterized Gabor wavelet
network are marked. Parameterization of a GWN is established by using a

Fig. 3. The images show the positions of each of the 16 wavelets after reparameterizing
the wavelet net and the corresponding reconstruction. The reconstructed faces show
the same orientation, position and size as the ones they were reparameterized on.

superwavelet [10]:
Definition: Let (¥, w) be a Gabor wavelet network with ¥ = (¢, ..., %ny)7,

w = (wy,...,wy)T. A superwavelet ¥, is defined to be a linear combination
of the wavelets ¢, such that ¥, (x) = >, withn,(SR(x — ¢)) , where the
parameters of vector n of superwavelet ¥ define the dilation matrix S =
diag(s,, sy), the rotation matrix R, and the translation vector ¢ = (cz,c,)T

A superwavelet W,, is again a wavelet (because of the linearity of the sum) and in
particular a continuous function that has the wavelet parameters dilation, trans-
lation and rotation. Therefore, we can handle it in the same way as we handled



each single wavelet in the previous section. For a new image J we may arbitrar-
ily deform the superwavelet by optimizing its parameters n with respect to the
superwavelet energy functional E: E = miny, ||J — ¥,||3. Equation defines the
operator Py : L?(R?) — R, g — n = (¢, ¢y,0,5,,5,) , where n minimizes
the superwavelet energy functional E; W is defined to be a superwavelet. For
optimization of the superwavelet parameters, the same optimization procedure
as for the energy functional may be used.

The reparameterization (warping) works quite robust: Using the superwavelet
of fig. 1 we have found in several experiments on the various subjects with
~ 60 pixels in width that the initialization of ny may vary from the correct
parameters by approx. 10 px. in 2 and y direction, by approx. 20% in scale
and by approx. +10° in rotation. Compared to the AAM, these findings indicate
a much better robustness [2]. Furthermore, we found that the warping algorithm
converged in 100% of the cases to the correct values when applied on the same
individual, independently of pose and gesture. The tests were done on the images
of the Yale face database and on our own images. The poses were varied within
the range of &~ +20° in pan and tilt where all face features were still visible.
The various gestures included normal, happy, sad, surprised, sleepy, glasses,
wink. The warping on other faces depended certainly on the similarity between
the training person and the test person and on the number of used wavelets.
We found that the warping algorithm always converged correctly on ~ 80% of
the test persons (including the training person) of the Yale face database. The
warping algorithm has also been successfully applied for an wavelet based affine
real-time face tracking application [6].

3 Experiments: Pose Estimation

In this section we will present results of our experiments for estimating the pose
of a face. There exist many different approaches for pose estimation, including
pose estimation with color blobs [3], pose estimation applying a geometrical ap-
proach [4], stereo information [13] or neural networks [1], to cite just a few. Color
blob approaches give only approximate orientation information. The precision of
the geometrical approach [4] was extensively tested and verified in [9]. The mini-
mal mean pan/tilt error that was reached was > 1.6°. In comparison to this, the
neural network approach in [1] reached a minimal pan/tilt error of > 0.58°. The
good result in [1] was reached by first detecting the head using a color tracking
approach. Within the detected color blob region, 4 x 4 sets of 4 complex Gabor
filters with the different orientations of 0, 7, § and %W were evenly distributed.
The 128 complex projections of these filters were then fed into a neural RBF
network. At this point, it is reasonable to assume that a precise positioning of
the Gabor filters would result into an even lower mean pan/tilt error. In our
experiments we therefore trained a GWN on an image I showing a doll’s head.
For the training of the GWN we used again the optimization scheme introduced
in section 2 with N = 52 Gabor wavelets.

In order to be comparable we used in our experiments exactly the same
neural network and the same number of training examples as described in [1].
The doll’s head was connected to a robot arm, so that the pan/tilt ground truth



was known. During the training and testing, the doll’s head was first tracked
using our wavelet based face tracker [6]. For each frame we proceeded in two
steps:

1. optimal repositioning of the GWN by using the positioning operator P

2. calculating the optimal weights for the optimally repositioned GWN by using

the projection operator 7.
See fig. 4 for example images. The weight vector that was calculated with the

Fig. 4. The images show different orientations of the doll’s head. The head is connected
to a robot arm so that the ground truth is known. The white square indicates the
detected position, scale and orientation of the GWN.

operator 7 was then fed into the same neural RBF network that was used in [1].
The training was done exactly as it was described in [1]: We used 400 training
images, evenly distributed within the range of £20° in pan and tilt direction
(this is the range where all face features appeared to be visible). With this, we
reached a minimal mean pan/tilt error of 0.19° for a GWN with 52 wavelets
and a minimal mean pan/tilt error of 0.29° for a GWN with 16 wavelets. The
theoretical speed of the system on a 450 MHz Linux Pentium should reach >~ 5
fps for the 52 wavelet network and >= 10 fps for the 16 wavelet network. The
experiments were carried out on an experimental setup, that has not yet been
integrated into a complete, single system.

4 Conclusions

The contribution of this article is twofold: First, we introduced the concepts
of the Gabor wavelet network and the Gabor superwavelet that allow a data
abstraction, a data reduction and a selective filtering;:

— The representation of an object with variable degree of precision, from a
coarse representation to an almost photo-realistic one,

— the definition of an optimal set of filters for a selective filtering

the representation of object information on a basis of local image primitives

and

the possibility for affine deformations to cope with perspective deformations.

In the second section we discussed these various properties in detail. In [5; 6],
GWNs have already been used successfully for wavelet based affine real time face
tracking and pose invariant face recognition. It is future work, to fully exploit the
advantages of the data reduction by reducing considerations to the vector space
over the set of Gabor wavelet networks. We exploited all these advantages of
the GWN for the estimation of the head pose. Second, the experimental results
showed quite impressively that it is sensible for an object representation to reflect
the specific individual properties of the object rather than being independent of



the individual properties such as general representations are. This can especially
be seen when comparing the presented approach with the one in [1]: While having
used the same experimental setup and the same type of neural network, the
precision of the presented approach is twice as good with only 16 coefficients (vs.
128), and three times as good with only about half the coefficients. Furthermore,
the experiment shows, how the precision in pose estimation and the system speed
change with an increasing number of filters. A controllable variability of precision
and speed has a major advantage: The system is able to decide how precise the
estimation should be in order to minimize the probability that the given task is

not fulfilled satisfactorily.
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