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Abstract
In this article we present a method for visual face track-

ing that is based on a wavelet representation of a face tem-
plate. The wavelet representation allows arbitrary affine
deformations of the facial image, it allows to generalize
from an individual face template to a rather general face
template and it allows to adapt the computational needs
of the tracking algorithm to the computational resources
available. The method presented was implemented on a
Linux Pentium 450 MHz and runs off-line with 25 Hz and
on-line, using an active camera mount, with 22 Hz. We
present experimentals results on off-line tests on several
common image sequences including the salesman-sequence
as well as on on-line tests.

1 Introduction
This paper addresses the issue of face tracking. Face

tracking in real-time (RT) (25 Hz) is of major impor-
tance for many applications including Human-Computer-
Interfaces (HCI), surveillance applications, teleconferenc-
ing or teleteaching. Also applications such as gesture- and
gaze detection are often stated applications that heavily de-
pend on precise tracking algorithms. Yet, the issue of face
tracking is far from being solved satisfactorily. Many track-
ing systems use color as a clue for tracking but they track
imprecisely and they are not capable of distinguishing be-
tween faces and non-faces [1; 5; 8]. Other tracking sys-
tems use a previously given template (gray value, active
contour, etc), while allowing affine variations of the facial
image. These systems track precisely as shown in the ex-
cellent work of [3], but the templates are either of individ-
ual persons [3] or are computationally expensive [2; 4] and
therefore slow so that tracking is not in RT. In [6] a sys-
tem is presented that is able to track faces independent of
face orientation and gesture. The system uses a wavelet jet
bunch-graph approach and tracks with less than 1 fps.

In this paper we present an approach for RT face tracking� that allows arbitrary affine deformations of the facial
image in order to compensate for different poses,

� that is robust to homogenious illumination changes,� that is efficient, fast and surprisingly robust.
For tracking, we need a gray value face template of the

person who should be tracked. However, for the actual
tracking, we do not use this ordinary gray value template.
Instead, we approximate the discrete face template with a
linear combination of continuous 2D odd-Gabor wavelet
functions. For this, the Gabor wavelets are optimized with
respect to their 2D parameters position, scale and orienta-
tion. Using thisGabor wavelet templatefor tracking has
the following major advantages:

1. The Gabor wavelet template (GWT) is a discretizised
version of a continuous function for which continuous
derivations can be calculated.

2. The Gabor wavelet template can be deformed arbi-
traily, i.e. can be continuously translated, rotated,
scaled and sheared.

3. It is well known that the precision of a wavelet repre-
sentation depends on the number of used basis func-
tions. Using a GWT allows the user to decide on using
a rather low-frequential general template that works
well on different individuals or a rather precise tem-
plate that works well only on the individual person.

4. The computer power needed for tracking will depend
upon the number of wavelets to evaluate. A tracking
program may chose the number dynamically with re-
spect to the available computer power.

By exploiting these advantages, we establish real-time
tracking of arbitrary faces by optimizing the affine parame-
ters of the entire wavelet representation at each image frame
while being able to dynamically adapt the number of used
wavelets and with this the computing resources needed.

In section 2 we give a short introduction to Gabor
wavelets Networks. In section 3, the tracking algorithm is
presented. In section 4 we give experimental results and
conclude with final remarks in section 5.
2 Introduction to Gabor Wavelet Networks

In order to find aGabor wavelet template(GWT) that ap-
proximates a given face templateI , we use a Gabor Wavelet
Network (GWN). A GWN is defined as follows:
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Definition: Let  ni , i = 1; : : : ; N be a set of odd Gabor
wavelets that are given as n�x; y� =exp�� 12hsx ((x � x) os � � (y � y) sin �) i2+hsy ((x � x) sin � + (y � y) os �) i2�� sin�sx ((x� x) os � � (y � y) sin �) � ; (1)

with n = (x; y; �; sx; sy)T . Let I be an image with
DC-value dc(I). Letwi 2 IR be a set of weights andni 2 IR5 be the parameter vectors of the wavelets ni ,
chosen such that the energy functionE = minni;wi for all i kI �Xi wi ni + dc(I)k22 (2)

is minimized with respect to the weightswi and the
wavelet parameter vectorsni. The two vectors	 = ( n1 ; : : : ;  nN )T andw = (w1; : : : ; wN )T
define then theGabor wavelet network(	;w) for im-
ageI .

In other words, a Gabor wavelet network for an imageI is defined to be anN -dimensional vector of weightswi
and anN -dimensional vector of Gabor wavelets ni , where
the the weightswi and the parameter vectorsni are chosen
such that the weighted sum of Gabor wavelets ni approx-
imates the discrete gray value imageI optimally. Thedis-
creteGWT Î of imageI is according to eq. (2) given byÎ =X�Pi wi ni + d(I)� ; (3)

whereX(x) is the usually obmitted sampling function. An

Figure 1. A GWN with N = 52 wavelets is op-timized for image I (very left) aording to eq.(2). The seond image (from left) shows theorresponding GWT Î. The third image showsthe GWT Î16, made up of just the 16 largestwavelets, the fourth image shows their posi-tions.
example can be seen in fig. 1:N = 52 wavelets are dis-
tributed over the inner face region of the very left imageI

by the minimization formula (2). The corresponding GWTÎ is shown in the second image (from left). The third image
shows the GWT̂I16, made up of the 16 largest wavelets and
the forth image shows their positions.

Minimizing equation (2) is crucial, because finding a
global minimum is an inefficient task. In order to find a
GWN (	, w) for a discrete gray value imageI , we use
the Levenberg-Marquard gradient descent method [7]. The
Levenberg-Marquard method optimizes the parameters of
each single Gabor wavelet with respect to the energy func-
tion (2). This method might get stuck in local minima and
a careful selection of the initial parameters is therefore im-
portant. We use prior knowledge about significant image
features to allow a task oriented optimization.

3 Affine Face Tracking in Image Sequences

In the preceding section we have given an introduction to
wavelet networks. Now, we are going to describe in the next
subsection 3.1 how a GWT, taken as a face template, can be
used to precisely locate the face independently of perspec-
tive deformations and illumination. In subsection 3.2 we
will extend this approach to allow a repeated localization of
the face in image sequences and we will show that the local-
ization is speeded up considerably because image changes
are small from frame to frame.3.1 Re-parameterizing a Gabor WaveletNetwork in Single Images

In this subsection we will demonstrate how a GWT can
be used to precisely localize a face. For this, we first as-
sume that the face is given by the GWN of its gray value
templateI and by the corresponding GWT̂I . We further
assume that the approximate position, scale and orientation
of the searched face in imageJ is known (for a justifica-
tion, see below). We then re-parameterize (translate, rotate,
dilate and sheare) the GWN so that its wavelets are finally
positioned on the same facial features in the new test imageJ as they were in the original gray value templateI . An ex-
ample for this can be seen in fig. 1, where in the very right
image the original positions of the first 16 Gabor wavelets
are marked and in fig. 2, where in new images the positions
of the first 16 Gabor wavelet of there-parameterizedGWN
are marked. In fig. 2, the corresponding re-parameterized
GWT can be seen.

Image distortions of a planar object that is viewed un-
der orthographic projection is described by six parameters:
translationx, y, rotation�, dilation sx, sy andsxy. For
larger distances a face can be well understood as a planar
object. What we therefore need to do for a correct re-
parameterization of the GWT is to find the correct affine
parametersx; y; �; sx; sy; sxy.

Re-parameterizing a GWN, i.e. finding the correct pa-
rameters, is established by using asuperwavelet[9].



Figure 2. The images show the positionsof eah of the �rst 16 wavelets after re-parameterization of the GWN (left) andthe orresponding GWT (right). The re-parameterized GWTs show the same orienta-tion, position and size as the ones they wererepositioned on.
Definition: Let 	 = ( n1 ; : : : ;  nN ), w =(w1; : : : ; wN ) be a GWN. A Gabor superwavelet

(GSW)	n is defined to be a linear combination of the
wavelets ni such that	n(x) = Xi wi ni(SR(x � )) ; (4)

where the parameters of vectorn of the GSW	 define
the dilation matrixS, the rotation matrixR and the
translation vector. To reflect the re-parameterization,
the corresponding GWT is denoted byÎn.

A Gabor superwavelet	n is again a wavelet that has the
typical wavelet parameters dilationsx; sy, translationx; y
and rotation�. Therefore, we can handle it in the same way
as we handled each single Gabor wavelet in the previous
section, and we may optimize its parametersn with respect
to the energy functionE that, in this case, reads:E = minn kI �	nk22 (5)

Even though eq. (4) looks similar to the definition of a GWT
in eq. (3) we want to point out that eq. (4) refers to a con-
tinuous wavelet function, whereas a GWT is a discrete gray
value image that is derived from a GWN, or GSW, respec-
tively.

The degrees of freedom of a wavelet only allow trans-
lation, dilation and rotation. But it is straight forward to
include also shearing and thus allow any affine deformation
of 	n. For this, we enhance the parameter vectorn 2 IR6
to a six dimensional vectorn = (x; y; �; sx; sy; sxy)
By rewriting the scaling matrixS,S = �sx sxy0 sy � ;
we become able to deform the GSW	n affinely.

In order to minimize (5) and to find the optimal pa-
rameter vectorn 2 IR6 we may elegantly use the same
Levenberg-Marquard algorithm as in the preceding section.

In several experiments we have found that the initialization
that has to be supplied to the gradient decent method may
be within the range of approximately�10 px in position,�20% in scale and�10Æ in orientation (see below for fur-
ther comments). An example of the optimization process
can be seen in fig. 3: Shown are the initial values ofn, the
values after 2 and 4 optimization cycles and the final val-
ues after 8 cycles, each marked with the white square. The
square refers to the inner face region. Its center position
marks the center position of the corresponding GSW. The
GSW used in fig. 3 is derived from the person in fig. 1. It
uses the first 16 wavelets only and its GWT looks likeÎ16
of fig. 1.

Figure 3. The images show the 1st, the 2th,the 4th and the 8th (�nal) step of the gradientdesent method optimizing the parameters ofa GSW. The top left image shows the initialvalues with 10 px. o� from the true position,rotated by 10Æ and saled by 20%. The bottomright image shows the �nal result. As GWT,Î16 of �gure 1 was used.3.2 Re-parameterizing GWNs in ImageSequenes for AÆne Fae Traking
The technique of re-parameterizing a GSW with respect

to the energy function (5), as it was explained in the pre-
ceding subsection, can also be applied to image sequences.
This enables us to track affinely. For this, (5) may be rewrit-
ten to E = minnt kJt �	ntk22 : (6)

so that for each frameJt at time stept the GSW	nt is
optimized with respect to the energy function (6). As ini-
tial values for the optimization the parametersnt�1 from
the preceding frame are used. These initial values were in
our experiments always good enough that the optimization
procedure always converged quickly (see section 4).

Initial valuesn0 for the very first frameI0 are derived
from the color blob information. A color blob is given by
its mean value and its standard deviation. The mean value
gives a clue about the position and a first clue about the
scale and the orientation can be calculated from the standard
deviation matrix. For the test sequence of fig. 4, we have
chosenn0 by hand because the sequences is a gray scale
sequence.

The number of wavelets that make up the GSW can be
adapted: The maximum number is given by the number



N of wavelets in the GWN, but we are free to use less
wavelets. Each wavelet of the GSW has to be evaluated
during the re-parameterization process, so that using less
wavelets results in a respective speedup. Techniques for
affine motion prediction have not yet been incorporated into
the tracker. Such techniques should result in a significant
speedup.

4 Experiments
For a GWT of40�40 pixels we have found in several ex-

periments that the initialization values ofn may vary from
the correct values by approx.�10 px in x andy direction,
by approx.20% in scale and by approx.�10Æ in rotation
(see fig. 3).

We have further tested the positioning procedure on the
Yale face database. This database consists of 15 different
individuals, showing eights different facial expressions, the
faces are approximately all of the same size. The GWTÎ16
in fig. 1, that was made up by the first 16 Gabor wavelets of
the corresponding GWN can be considered as a rather gen-
eral face template. Using this GWT, the positioning proce-
dure converged correctly on 13 individuals (independent of
expression) by just giving the approximate image center as
initial values. This shows two things:

1. It shows, that the reposition algorithm is quite stable
with respect to its initial values.

2. It shows, that the wavelet net template is not fixed to
one individual and that it is sufficiently general.

For face tracking, using color blob information as initial
values forn seems to be precise enough. We have tested the
face tracker within our active camera mount as well as on
several sequences, including the salesman sequence (fig 4).

Figure 4. The images show from left to rightframe 11, frame 50, frame 120 and frame 137(top) and some ative amera images (bot-tom).
Off-line tracking is done with25 Hz, on-line tracking is

done with22 Hz (the difference is due to the frame grab-
bing). During tracking, since we track with22-25 Hz, suc-
cessive frames are sufficiently similar so that the gradient
descent method never needed more than two cycles for each
time step until reaching the minimum. The GWT we used in
all our experiments was made up by the largest 10 wavelets
of the corresponding GWN that was trained on the respec-
tive person. Experiments were carried out on a 450 MHz
Linux Pentium.

5 Conclusion
As the major contribution of this work we presented a

novel approach for real-time face tracking where tracking
is done with a Gabor wavelet template. The GWT has
the advantage that it can be arbitraily translated, rotated,
scaled and sheared. This is because the GWT is given by
a discrete linear combination ofcontinuousGabor wavelets
whose weights and wavelets are given by its corresponding
GWN or GSW, respectively. A further great advantage that
comes with the continuity is that we can use a fast gradi-
ent decent method to estimate the affine parameters. A next
great advantage of the GWT is that it can be made up of
different numbers of Gabor wavelets of the corresponding
GWN which means that the GWT can describe the face of
a templateI in almost any desired precision. This allows an
application of the GWT also to different individuals.

We have exploited all these advantages and have de-
signed a tracking system that is able to work in real time
(22-25 Hz), that is able to cope with perspective defor-
mations and that is able, by changing the number of used
wavelets, to track either only a special individual or almost
any person.
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