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Abstract

In this work we will present a method for visual face
tracking that is based on a wavelet representation of a
face template. The wavelet representation allows arbi-
trary affine variations of the facial image, it allows to
generalize from an individual face template to a rather
general face template and it allows to adapt the compu-
tational needs of the tracking algorithm to the computa-
tional resources available. The method presented runs
in real-time (25 Hz) on a Linux Pentium 450 MHz and
was tested on several common sequences including the
salesman-sequence.

1 Introduction

In this paper we will address the issue of track-
ing faces. Tracking faces in real-time (RT) (25 Hz)
is of major importance for many applications including
Human-Computer-Interfaces (HCI), surveillance appli-
cations, teleconferencing or teleteaching. Also appli-
cations such as gesture- and gaze detection are of-
ten stated applications that heavily depend on precise
tracking algorithms. Yet, the issue of tracking faces
is far from being solved satisfactorily. Many track-
ing systems use color as a clue for tracking but they
track imprecisely and they are not capable of distin-
guishing between faces and non-faces [9; 1; 16]. Other
tracking systems use a previously given template (gray
value, active contour, etc), while allowing affine varia-
tions of the facial image. These systems track precisely
as shown in the excellent work of [6], but the templates
are either of individual persons or are computationally
expensive [7; 5] so that tracking is not in RT. Other
systems use a separate neural network or eigenfaces for
verifying for the face during tracking. However, these
systems are not invariant with respect to affine varia-
tions of the facial image [13]. In [12] a system is pre-

sented that is able to track faces independently of face
orientation and gesture. The systems uses the wavelet
jet bunch-graph approach [18] but tracks with less than
1 fps.

In this work we will present an approach for RT
face tracking that allows arbitrary affine deformations
of the facial image in order to compensate for differ-
ent poses. For this we use a wavelet representation
for a given face template. In the following context the
wavelets are not used in the manner as introduced by
Mallat or Deaubechies [2; 11] where, in the discrete
case of image representation, homogeneous sampling
schemes are considered. Neither will we use a bunch-
graph like approach that represents only arbitrary lo-
cal image features [18]. The major contribution of this
work will be the introduction of a “third way” of using
wavelets. It is a similar approach to the one in [19]: A
wavelet representation (wavelet network) of a face tem-
plate will be found by optimizing the weights and the
degrees of freedom of each single wavelet (2D dilation,
2D translation, orientation) with respect to the pixel
wise difference to a given face template. With this, the
face template is represented by a linear combination of
these specially optimized wavelets. The wavelets are
optimized within the continuous phase space and are
therefore not limited to the homogeneous discrete grid
of the discrete phase space. Furthermore they are op-
timized with respect to the image contents and do not
represent just arbitrary local image features. This rep-
resentation has several advantages:

1. A face template (or image template, in general)
can be represented by a very small set of weighted
wavelets.

2. The degrees of freedom of each single wavelet cover
the affine deformations without a shear factor and
so do the degrees of freedom of their linear combi-
nation (superwavelet).

3. It is straight forward to introduce a shear factor



to allow the linear combination of the wavelets to
deform affinely.

4. The computer power needed for tracking will de-
pend upon the number of wavelets to evaluate.
This number can be chosen dynamically upon the
computer power available.

5. The number of wavelets used decides on the
amount of detailed template information con-
tained in the wavelet representation. Using less
wavelets the representation becomes more general
which allows to track also arbitrary faces.

By exploiting these advantages, we establish real-time
tracking of arbitrary faces by optimizing the affine pa-
rameters of the entire wavelet representation at each
image frame while being able to dynamically adapt the
number of used wavelets and with this the computer
resources needed.

In section 2 we will give a short introduction to
wavelets. In section 2.1 we explain how we find a
wavelet representation for a given face template and in
section 3, the tracking algorithm is presented. In sec-
tion 4 we test the tracker on the well known sequences
“salesman” and conclude with final remarks in section

3.

2 Introduction to wavelets

In this section we will give a short introduction to
the wavelet transform and review very shortly the two
common wavelet approaches for image representation
taken to date. A function ¢ € IL?(IR?) that satisfies
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is called a wavelet. Here, 1/3 is the Fourier transform
of 1. For any function f € TL.2(IR?) the continuous
wavelet, transform is given by

(Lf)(easeys52,84,0) = - ) (SR(x — ¢))dx

= < f: ¢Cm7cy:915m7sy >
< fon >, (1)

with the rotation matrix R, the dilation matrix S and
the translation vector c:

cosf —sind
R = (sin0 cos 6 )
S = diag(sa,sy)
c = (coe)" .

6 denotes the rotation angle of the wavelet ¢ (x),
Sz, Sy the scaling in z and y direction and c,, ¢, the
translations in = and y direction. In this sense, the
wavelets ¢y, are dilated, rotated and translated versions
of the original wavelet ¢, called mother wavelet. The
five dimensional parameter vector n is given by these
parameters:

n-= (Cm, Cyaea Sm: Sy) °

The function f can always be reconstructed by inte-
gration over all wavelet parameters:
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This integration is done over the entire continuous
phase space.

A natural way to define the discrete wavelet trans-
form is to discretizise the phase space and to as-
sign discrete values to the wavelet parameters as fol-
lows: Sz = (Sa0)™, Sy = (Syo)™: Ca = NS0(Sa)™, Cy =
kso(Sy,)™,0 = 0, = 10y, with m,n, k.1 € Z. With this
the discrete wavelet transform is given by

(Lo ) = < folmnk > (2)

Equation (2) can be interpreted as an abstract repre-
sentation of f by its wavelet coefficients. To represent
f uniquely (if possible at all), a huge number of wavelet
coefficients are generally needed. How good f is rep-
resented by its coefficients Lﬁmklf and how many are
needed depends on the chosen wavelet and on the val-
ues Sz, Sy,, So and 6p. This type of representation
is also applied within the bunch graph approach [18],
where, however, only a few prominent feature points
are represented by their wavelet coefficients. Of course,
a reconstruction of the image is in this case not possi-
ble.

An image f can also be represented (in the sense of
an approximation) by a linear combination of weighted
wavelets

f = Z wmnklwmnkl - (3)

mnkl

In the sense of equation (3), the function f is approx-
imated by a linear combination of weighted wavelets
where wavelets and weights are found by optimization
(see below).

In some special cases (orthogonal cases), Wpynr =

d
mon. k1 - however generally, Wk 7# L7, 1 f-



2.1 The third way

Gabor functions are well known to provide the best
possible tradeoff between spatial resolution and fre-
quency resolution and are therefore an important tool
in image analysis. Furthermore, the use of Gabor
filters in image analysis is biologically motivated as
they model the response of the receptive fields of the
orientation-selective simple cells in the human visual
cortex [3; 8]. In fact, it has been suggested [4; 14] that
the receptive field response of simple cells can be de-
scribed by the particular family of 2D Gabor wavelets.

It is important to know how well an image I can
be represented by using Gabor wavelets in case of a
discrete phase space. This topic was studied by Lee
[10] and it came out that the dilation step widths, the
translation step width and the angular step 6y have
to be extremely small which leads to a highly redun-
dant image representation. Thus, one way to represent
an image is to use such a general and highly redun-
dant Gabor wavelet decomposition (it should be men-
tioned that this decomposition allows to represent any
f € IL2(R?)). However, a huge number of wavelets
coefficients are needed. Another possibility is to use a
Gabor jet representation [18]. Even though this is ob-
viously a very lossy image representation with roughly
800 wavelet coefficients, it seems to work very well in
the context of face recognition.

Inspired by [19], we want to propose here, as a major
contribution of this work, a third way by representing
an image using a wavelet network. This representation
has the advantage of being even sparser than the Ga-
bor jet representation. Yet it encodes nearly the entire
image information and allows a good reconstruction.

Generally speaking, we start out by selecting a
family of N (not necessarily Gabor) wavelets ¥ =
{tn, - - - ¥ny}. The parameters n; (dilation, transla-
tion and orientation) may be chosen arbitrarily. In or-
der to find a representation for a function f € IL?(IR?)
(f DC-free, without limitation of generality) we mini-
mize the energy function
5 (4)

E = min
n;,w; for all i

1f =D withn,
i
with respect to the weights w; and the wavelet param-

eters n;.

Definition: Let t¢y,, i = 1... N wavelets. The two
vectors

v = (¢n1,---7¢nN)T and

w = (wy,...,wN)

define a wavelet network.

Figure 1. The left image shows the original face
image, the right image shows its reconstruction
using formula (5) with an optimal wavelet net
¥ of just N =52 odd Gabor wavelets.

It may be mentioned that it was proposed before
[2; 10; 4] to use an energy function (4) in order to
find the optimal weights w; for non-orthogonal wavelets
1¥n;. We enhance this approach to also find optimal
parameters of each wavelet v¢,,. The parameters n;
are chosen from continuous phase space. This is exactly
the great advantage over the discrete approach: While
in the case of a discrete phase space image structure
has to be interpolated, wavelets can in the continuous
case be selectively chosen to reflect precisely the local
image structure.

Using the optimal wavelets ¥ and weights w the
original image can be (closely) reconstructed by a linear
combination of weighted wavelets:

. N
F= S witn, (5)
i=0
= ow’ .

Of course the quality of the reconstruction depends on
the number N of used wavelets.

In this work, we use the Gabor function as mother
wavelets ¢ and restrict our considerations to the odd
part (imaginary part) only:

zbn(m,y) = (1[% ((x — ¢z) cosb — (y fcy)sinﬂ)r

N

+ [Su ((x —cg)sinf + (y — ¢y) cosﬁ)r)

X sin (sm ((z — ¢z) cosf — (y — ¢;) sin 9)) (6)

with n = (c¢z,¢y.0,55,54). The left image fig. (1)
shows the original image I, the right image I~4,6 its
reconstruction (5) using an optimal wavelet net ¥ of
just N = 52 odd Gabor wavelets.



The choice of the mother wavelet ¢ is arbitrary. We
use the odd Gabor function as mother wavelet through-
out this paper because we found that this function
leads to the best reconstruction results. Furthermore,
since the odd Gabor wavelets are DC-free, they are
invariant to homogeneous illumination changes.

In order to minimize formula (4) and to find an
optimal wavelet net ¥, w for an image I, we use
the Levenberg-Marquard gradient descent method [15].
Such a method finds a local minimum, a careful selec-
tion of initial parameters is therefore important. Our
initialization and optimization scheme is similar to the
Laplacian pyramid scheme: First we position equidis-
tantly 4 x4 coarse wavelets within the prominent image
region (in our case the inner face region) (fig. 2, top
left). These 16 wavelets define the first pyramid layer.
They are then optimized with respect to the energy
function (4). The optimization result.l,, is shown in
fig. 2, top right. In a second step we calculate the dif-
ference image between the original image and its recon-
struction, I — I, which is then, in turn, approximated
by 6 x 6 finer wavelets (2nd row, left). These wavelets
define the 2nd pyramid layer. The result is shown in the
2nd row, right. Adding the two right images together
leads to image I~4,6, shown in the 3rd row. To the left,
the positions of the first layer wavelets are sketched.
The original image I is for comparison shown in fig. 1.
This proceeding may be continued for further pyramid
layers. It should be mentioned that at each indicated
wavelet, position in fig. 2, just one single wavelet is lo-
cated. Their initial orientations are random and their
initial scales are constant in each layer and chosen with
respect to the distance to the neighboring wavelet. A
coarse-to-fine strategy for optimization is intuitive be-
cause the energy function (4) can be better minimized
using first coarse and then fine wavelets.

3 Affine Face Tracking in Image Se-
quences

We have given in the preceding section an exten-
sive introduction to wavelet networks. This is needed
to understand the basic principles of the wavelet rep-
resentation. Now, all tools are in place and we can
continue merely straight forward by describing in the
next subsection 3.1 how a wavelet net, taken as a face
template, can be repositioned (translated, scaled and
rotated) on a new face such that the wavelets will be
positioned in the new image on the same facial features
as in the old one. In subsection 3.2 we will extend this
approach to allow a repeated repositioning of the tem-
plate net in a sequence of images.
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Figure 2. These images demonstrate the idea of
the Laplace pyramid-like initialization and opti-
mization scheme. The wavelet net is first ini-
tialized with the wavelets sketched in the top
left image. The optimization results in the net
shown in the top right image. The difference
between that image and the original image is
then approximated by the wavelets that are ini-
tialized according to the center left image. The
optimization result is shown in the center right
image. The bottom right image shows finally
the sum between the top right image and the
center right one. The bottom left image shows
the positions of the wavelets of the top image.

3.1 Repositioning Wavelet Networks in
Single Images

In this subsection we will demonstrate how an en-
tire wavelet net can be translated, scaled and rotated
so that its wavelets are finally positioned on the same
facial features as in the original image. An example for
this can be see in fig. 2, where in the bottom left image
the original positions of the wavelets are marked and
in fig. 4, where in new images the wavelet positions of
the repositioned wavelet network are marked.

Positioning a wavelet net is established by using a



superwavelet [17].

Definition: Let ¥ = (¢n,,-..,Uny);, W =
(w1,...,wy) be a wavelet net. A superwavelet
¥, is defined to be a linear combination of the
wavelets ¢y, such that

Un(x) = Zwi¢ni(SR(X_c))7 (7)

where the parameters of vector n of superwavelet
¥ define the dilation matrix S, the rotation matrix
R and the translation vector c.

A superwavelet ¥, is again a wavelet [17] that has the
wavelet parameters dilation, translation and rotation.
Therefore, we can handle it in the same way as we
handled each single wavelet in the previous section, and
we may optimize its parameters n with respect to some
energy function E:

E = min||l - W3 (®)

For optimization, we can elegantly use the same opti-
mization procedure as in the preceding section. In sev-
eral experiments we have found that the initialization
that has to be supplied to the gradient decent method
may be within the range of approximately £10 px in
position, £20% in scale and £10° in orientation (see
below for further comments). An example of the opti-
mization process can be seen in fig. 3: Shown are the
initial values of n, the values after 2 and 4 optimization
cycles and the final values after 8 cycles, each marked
with the white square. The square refers to the image
region where the wavelets were initially homogeneously
distributed as shown in fig. 2. Its center position marks
the center position of the corresponding superwavlet.
The superwavelet used in fig. 3 is I of fig. 2 i.e. it
is derived from the person in fig. 1. A further exam-
ple can be seen in fig. 4. The left images have to be
compared to the bottom left image in fig. 2: It can
be seen that the wavelets are repositioned correctly to
the same corresponding facial features. The images to
the right of fig. 4 show the reconstructions using the
repositioned wavelet nets.

The image distortions of a planar object that is
viewed under orthographic projection is described by
six parameters: translation c,, c,, rotation 6 and di-
lation s,, s, and sgy. The degrees of freedom of a
wavelet only allow translation, dilation and rotation.
However, it is straight forward to include also shearing
and thus allow any affine deformation of ¥,,. For this,
we enhance the parameter vector n to a six dimensional
vector

n = (cw,cy,é,sz, Sy, Swu)

Figure 3. The images show the 1st, the 2th,
the 4th and the 8th (final) step of the gradient
descent method optimizing the parameters of
a superwavelet. The top left image shows the
initial values with 10 px. off from the true po-
sition, rotated by 10° and scaled by 20%. The
bottom right image shows the final result. As
superwavelet, I, of figure 1 was used.

Figure 4. The images show the positions of
each of the 16 wavelets after repositioning the
wavelet net (left) and the corresponding recon-
struction(right). The reconstructed faces show
the same orientation, position and size as the
ones they were repositioned on.

By rewriting the scaling matrix S,

_ Sz Sazy
S_<0 sy)’



we become able to deform the superwavelet ¥,, affinely.

The repositioning of the superwavelet can be under-
stood as warping where the original face, represented
by the wavelet net ¥, is warped onto the new face.
This idea is shown in fig. 5.

Figure 5. The two images show the wavelet net
f4,6, repositioned onto the two test images of
fig. 4. This demonstrates that the reposition-
ing process can be understood as warping the
superwavelet onto the new test faces.

3.2 Affine Tracking using Wavelet Net-
works

The technique of repositioning a superwavelet with
respect to the energy function (8), as it was explained
in the preceding subsection, can also be applied to im-
age sequences. For this, (8) may be rewritten to

E = min|l - a3 (9)

so that for the frame I; at time step ¢ the superwavelet
¥, is optimized with respect to the energy function
(9). To derive n;4; for a successive frame I;;1 at time
t + 1, n; from the preceding frame is used as initial
value. These initial values were in our experiments
good enough that the optimization always converged
quickly (see section 4).

Initial values ng for the very first frame Iy can be
derived from the color blob information of the face as
experiments have shown. A color blob is given by its
mean value and its standard deviation. The mean value
gives a clue about the position and a first clue about
the scale and the orientation can be calculated from the
standard deviation matrix. For the test sequence of fig.
6, we have chosen ng by hand because the sequences is
a gray scale sequence.

The number of wavelets that make up the super-
wavelet can be adapted: The maximum number is
given by the number N of wavelets in the wavelet net-
work. However, we are free to use less wavelets. Each
wavelet of the superwavelet has to be evaluated during
the repositioning process, so that using less wavelets

results in a respective speedup. To choose the best
wavelets 1y, , the absolute value of their weights, ||w;]],
can be used as a measure of importance.

Techniques for affine motion prediction have not yet
been incorporated into the tracker. Such techniques
should result in a significant speedup.

4 Experiments

Using the superwavelet I, we have found in several
experiments that the initialization of ny may vary from
the correct parameters by approx. £10 px in z and
y direction, by approx. 20% in scale and by approx.
+10° in rotation (see fig. 3). Of course, these are only
approximate values since they depend on the number
of wavelets used, on the template face and on the scale
of the used wavelets. In our case, 10 px. correspond to
~ 1/6 of the width of the white box in fig. 3, marking
the inner face region.

We have further tested the positioning procedure
on the Yale face database. This database consists of
15 different individuals, showing eights different facial
expressions, the faces are approximately all of the same
size. The wavelet net f4 can be considered as a rather
general face template. Using this wavelet net, the posi-
tioning procedure converged correctly on 13 individuals
(independent of expression) by just giving the approx-
imate image center as initial values. This shows two
things:

1. it shows, that the wavelet net template is not fixed
to one individual and that it is sufficiently general.

2. it shows, that the reposition algorithm is quite sta-
ble with respect to its initial values.

For face tracking, using color blob information as
initial values for n seems to be precise enough. We
have tested the face tracker on several sequences, in-
cluding the salesman sequence. Example frames can
be seen in fig. 6, the entire mpeg-sequence (64k) may
be downloaded from

http://www.ks.informatik.uni-kiel.de/ vok/
research/wavelet_tracker/salesman.mpg.

Figure 7 shows for each frame the square error in
pixels between the “ground truth” center position of
the faces and the estimated center position of the su-
perwavelet (which is the center of its white box). The
ground truth was estimated by hand, an estimation er-
ror of + one pixel in z- and y- direction is possible. For
tracking, only 9 (!) wavelets were used. This, however,
limits the tracking precision which can be noticed in
fig. 6 and 7.



Figure 6. The images shows from left to right
frame 11, frame 50, frame 120 and frame 137.
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Figure 7. The figure shows the Euclidean dis-
tance between the estimated position of the
superwavelet and the “ground truth”.

During tracking, since we track with 25 Hz, succes-
sive frames are sufficiently similar so that the gradi-
ent, descent method never needed more than two cycles
for each time step until reaching the minimum. Us-
ing 9 wavelets the computing time consumed for each
frame was less than 35 ms on a 450 MHz Linux Pen-
tium. Using more wavelets instead, the tracking be-
comes more precise but slower. Furthermore, when the
system tracks slower, the initial values for the position-
ing procedure are less precise because of the increased
temporal distance between successive image. Using all
16 wavelets of the first pyramid layer, the tracker con-
sequently reaches only 10 Hz. However, this loss of

speed probably would have been less drastic if a mo-
tion prediction had been used.

5 Conclusion

In this paper we presented a novel approach for real-
time face tracking. The major contributions of this
work are

1. the introduction of the notion wavelet network.
The wavelet network is used to approximate a tem-
plate image while using a relatively small set of
wavelets.

2. the introduction of the notion superwavelet, that
allows us to handle an entire wavelet network as
a single wavelet and to deform the wavelet net
affinely.

Even though we are by no means the first to use wavelet
networks and superwavelets, we are still the first to
apply them consequently in practice and to study and
exploit their properties and advantages. As far as we
know, both terms have so far only been of theoretical
interest.

3. The development of a tracking approach that ex-
ploits the advantages of the superwavelet which
has several advantages:

e The flexible representation of the template
using a wavelet network allows a tracking
that is not fixed to one particular individual.

e The tracker is able to cope with affine defor-
mations of the tracked object.

e The tracker uses only moderate hardware re-
sources.

e The resources needed for tracking can be dy-
namically adapted to the resources available.
This is particularly useful when the tracker
is to be used in conjunction with other pro-
grams.

In several experiments the tracking and the reposi-
tioning algorithm was successfully evaluated and com-
pared to the ground truth. It will be future work to
incorporate this tracking technique into our active cam-
era mount [9] and to study and evaluate the properties
and qualities of our wavelet representation. Further-
more it is future work to use wavelet networks for face-
and gesture recognition.
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