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tIn this work we will present a method for visual fa
etra
king that is based on a wavelet representation of afa
e template. The wavelet representation allows arbi-trary aÆne variations of the fa
ial image, it allows togeneralize from an individual fa
e template to a rathergeneral fa
e template and it allows to adapt the 
ompu-tational needs of the tra
king algorithm to the 
omputa-tional resour
es available. The method presented runsin real-time (25 Hz) on a Linux Pentium 450 MHz andwas tested on several 
ommon sequen
es in
luding thesalesman-sequen
e.1 Introdu
tionIn this paper we will address the issue of tra
k-ing fa
es. Tra
king fa
es in real-time (RT) (25 Hz)is of major importan
e for many appli
ations in
ludingHuman-Computer-Interfa
es (HCI), surveillan
e appli-
ations, tele
onferen
ing or teletea
hing. Also appli-
ations su
h as gesture- and gaze dete
tion are of-ten stated appli
ations that heavily depend on pre
isetra
king algorithms. Yet, the issue of tra
king fa
esis far from being solved satisfa
torily. Many tra
k-ing systems use 
olor as a 
lue for tra
king but theytra
k impre
isely and they are not 
apable of distin-guishing between fa
es and non-fa
es [9; 1; 16℄. Othertra
king systems use a previously given template (grayvalue, a
tive 
ontour, et
), while allowing aÆne varia-tions of the fa
ial image. These systems tra
k pre
iselyas shown in the ex
ellent work of [6℄, but the templatesare either of individual persons or are 
omputationallyexpensive [7; 5℄ so that tra
king is not in RT. Othersystems use a separate neural network or eigenfa
es forverifying for the fa
e during tra
king. However, thesesystems are not invariant with respe
t to aÆne varia-tions of the fa
ial image [13℄. In [12℄ a system is pre-

sented that is able to tra
k fa
es independently of fa
eorientation and gesture. The systems uses the waveletjet bun
h-graph approa
h [18℄ but tra
ks with less than1 fps.In this work we will present an approa
h for RTfa
e tra
king that allows arbitrary aÆne deformationsof the fa
ial image in order to 
ompensate for di�er-ent poses. For this we use a wavelet representationfor a given fa
e template. In the following 
ontext thewavelets are not used in the manner as introdu
ed byMallat or Deaube
hies [2; 11℄ where, in the dis
rete
ase of image representation, homogeneous samplings
hemes are 
onsidered. Neither will we use a bun
h-graph like approa
h that represents only arbitrary lo-
al image features [18℄. The major 
ontribution of thiswork will be the introdu
tion of a \third way" of usingwavelets. It is a similar approa
h to the one in [19℄: Awavelet representation (wavelet network) of a fa
e tem-plate will be found by optimizing the weights and thedegrees of freedom of ea
h single wavelet (2D dilation,2D translation, orientation) with respe
t to the pixelwise di�eren
e to a given fa
e template. With this, thefa
e template is represented by a linear 
ombination ofthese spe
ially optimized wavelets. The wavelets areoptimized within the 
ontinuous phase spa
e and aretherefore not limited to the homogeneous dis
rete gridof the dis
rete phase spa
e. Furthermore they are op-timized with respe
t to the image 
ontents and do notrepresent just arbitrary lo
al image features. This rep-resentation has several advantages:1. A fa
e template (or image template, in general)
an be represented by a very small set of weightedwavelets.2. The degrees of freedom of ea
h single wavelet 
overthe aÆne deformations without a shear fa
tor andso do the degrees of freedom of their linear 
ombi-nation (superwavelet).3. It is straight forward to introdu
e a shear fa
tor1



to allow the linear 
ombination of the wavelets todeform aÆnely.4. The 
omputer power needed for tra
king will de-pend upon the number of wavelets to evaluate.This number 
an be 
hosen dynami
ally upon the
omputer power available.5. The number of wavelets used de
ides on theamount of detailed template information 
on-tained in the wavelet representation. Using lesswavelets the representation be
omes more generalwhi
h allows to tra
k also arbitrary fa
es.By exploiting these advantages, we establish real-timetra
king of arbitrary fa
es by optimizing the aÆne pa-rameters of the entire wavelet representation at ea
himage frame while being able to dynami
ally adapt thenumber of used wavelets and with this the 
omputerresour
es needed.In se
tion 2 we will give a short introdu
tion towavelets. In se
tion 2.1 we explain how we �nd awavelet representation for a given fa
e template and inse
tion 3, the tra
king algorithm is presented. In se
-tion 4 we test the tra
ker on the well known sequen
es\salesman" and 
on
lude with �nal remarks in se
tion5.2 Introdu
tion to waveletsIn this se
tion we will give a short introdu
tion tothe wavelet transform and review very shortly the two
ommon wavelet approa
hes for image representationtaken to date. A fun
tion  2 IL2(IR2) that satis�es0 < C = 4�2 ZIR ZIR k ̂(!x; !y)k2k(!x; !y)k d!x d!y <1is 
alled a wavelet. Here,  ̂ is the Fourier transformof  . For any fun
tion f 2 IL2(IR2) the 
ontinuouswavelet transform is given by(Lf)(
x; 
y; sx; sy; �) = ZIR2 f(x) (SR(x � 
))dx= < f;  
x;
y;�;sx;sy >= < f;  n > ; (1)with the rotation matrix R, the dilation matrix S andthe translation ve
tor 
:R = �
os � � sin �sin � 
os � �S = diag(sx; sy)
 = (
x; 
y)T :

� denotes the rotation angle of the wavelet  (x),sx, sy the s
aling in x and y dire
tion and 
x, 
y thetranslations in x and y dire
tion. In this sense, thewavelets  n are dilated, rotated and translated versionsof the original wavelet  , 
alled mother wavelet. The�ve dimensional parameter ve
tor n is given by theseparameters: n = (
x; 
y; �; sx; sy) :The fun
tion f 
an always be re
onstru
ted by inte-gration over all wavelet parameters:f = C�1 Z �Lf�n n dn= C�1 Z < f;  n >  n dnThis integration is done over the entire 
ontinuousphase spa
e.A natural way to de�ne the dis
rete wavelet trans-form is to dis
retizise the phase spa
e and to as-sign dis
rete values to the wavelet parameters as fol-lows: sx = (sx0)m; sy = (sy0)m; 
x = ns0(sx0)m; 
y =ks0(sy0)m; � = �l = l�0, with m;n; k; l 2 ZZ. With thisthe dis
rete wavelet transform is given by(Ldmnklf) = < f;  mnkl > : (2)Equation (2) 
an be interpreted as an abstra
t repre-sentation of f by its wavelet 
oeÆ
ients. To representf uniquely (if possible at all), a huge number of wavelet
oeÆ
ients are generally needed. How good f is rep-resented by its 
oeÆ
ients Ldmnklf and how many areneeded depends on the 
hosen wavelet and on the val-ues sx0 , sy0 , s0 and �0. This type of representationis also applied within the bun
h graph approa
h [18℄,where, however, only a few prominent feature pointsare represented by their wavelet 
oeÆ
ients. Of 
ourse,a re
onstru
tion of the image is in this 
ase not possi-ble.An image f 
an also be represented (in the sense ofan approximation) by a linear 
ombination of weightedwavelets f = Xmnklwmnkl mnkl : (3)In the sense of equation (3), the fun
tion f is approx-imated by a linear 
ombination of weighted waveletswhere wavelets and weights are found by optimization(see below).In some spe
ial 
ases (orthogonal 
ases), wmnkl =Ldm;n;k;lf , however generally, wmnkl 6= Ldm;n;k;lf .



2.1 The third wayGabor fun
tions are well known to provide the bestpossible tradeo� between spatial resolution and fre-quen
y resolution and are therefore an important toolin image analysis. Furthermore, the use of Gabor�lters in image analysis is biologi
ally motivated asthey model the response of the re
eptive �elds of theorientation-sele
tive simple 
ells in the human visual
ortex [3; 8℄. In fa
t, it has been suggested [4; 14℄ thatthe re
eptive �eld response of simple 
ells 
an be de-s
ribed by the parti
ular family of 2D Gabor wavelets.It is important to know how well an image I 
anbe represented by using Gabor wavelets in 
ase of adis
rete phase spa
e. This topi
 was studied by Lee[10℄ and it 
ame out that the dilation step widths, thetranslation step width and the angular step �0 haveto be extremely small whi
h leads to a highly redun-dant image representation. Thus, one way to representan image is to use su
h a general and highly redun-dant Gabor wavelet de
omposition (it should be men-tioned that this de
omposition allows to represent anyf 2 IL2(IR2)). However, a huge number of wavelets
oeÆ
ients are needed. Another possibility is to use aGabor jet representation [18℄. Even though this is ob-viously a very lossy image representation with roughly800 wavelet 
oeÆ
ients, it seems to work very well inthe 
ontext of fa
e re
ognition.Inspired by [19℄, we want to propose here, as a major
ontribution of this work, a third way by representingan image using a wavelet network. This representationhas the advantage of being even sparser than the Ga-bor jet representation. Yet it en
odes nearly the entireimage information and allows a good re
onstru
tion.Generally speaking, we start out by sele
ting afamily of N (not ne
essarily Gabor) wavelets 	 =f n1 : : :  nNg. The parameters ni (dilation, transla-tion and orientation) may be 
hosen arbitrarily. In or-der to �nd a representation for a fun
tion f 2 IL2(IR2)(f DC-free, without limitation of generality) we mini-mize the energy fun
tionE = minni;wi for all i kf �Xi wi nik22 (4)with respe
t to the weights wi and the wavelet param-eters ni.De�nition: Let  ni , i = 1 : : :N wavelets. The twove
tors 	 = ( n1 ; : : : ;  nN )T andw = (w1; : : : ; wN )de�ne a wavelet network.

Figure 1. The left image shows the original fa
eimage, the right image shows its re
onstru
tionusing formula (5) with an optimal wavelet net	 of just N = 52 odd Gabor wavelets.It may be mentioned that it was proposed before[2; 10; 4℄ to use an energy fun
tion (4) in order to�nd the optimal weights wi for non-orthogonal wavelets ni . We enhan
e this approa
h to also �nd optimalparameters of ea
h wavelet  ni . The parameters niare 
hosen from 
ontinuous phase spa
e. This is exa
tlythe great advantage over the dis
rete approa
h: Whilein the 
ase of a dis
rete phase spa
e image stru
turehas to be interpolated, wavelets 
an in the 
ontinuous
ase be sele
tively 
hosen to re
e
t pre
isely the lo
alimage stru
ture.Using the optimal wavelets 	 and weights w theoriginal image 
an be (
losely) re
onstru
ted by a linear
ombination of weighted wavelets:~f = NXi=0 wi ni (5)= 	wT :Of 
ourse the quality of the re
onstru
tion depends onthe number N of used wavelets.In this work, we use the Gabor fun
tion as motherwavelets  and restri
t our 
onsiderations to the oddpart (imaginary part) only: n�x; y� = �� 12hsx ((x� 
x) 
os � � (y � 
y) sin �) i2+ hsy ((x� 
x) sin � + (y � 
y) 
os �) i2�� sin�sx ((x� 
x) 
os � � (y � 
y) sin �)� ;(6)with n = (
x; 
y; �; sx; sy). The left image �g. (1)shows the original image I , the right image ~I4;6 itsre
onstru
tion (5) using an optimal wavelet net 	 ofjust N = 52 odd Gabor wavelets.



The 
hoi
e of the mother wavelet  is arbitrary. Weuse the odd Gabor fun
tion as mother wavelet through-out this paper be
ause we found that this fun
tionleads to the best re
onstru
tion results. Furthermore,sin
e the odd Gabor wavelets are DC-free, they areinvariant to homogeneous illumination 
hanges.In order to minimize formula (4) and to �nd anoptimal wavelet net 	, w for an image I , we usethe Levenberg-Marquard gradient des
ent method [15℄.Su
h a method �nds a lo
al minimum, a 
areful sele
-tion of initial parameters is therefore important. Ourinitialization and optimization s
heme is similar to theLapla
ian pyramid s
heme: First we position equidis-tantly 4�4 
oarse wavelets within the prominent imageregion (in our 
ase the inner fa
e region) (�g. 2, topleft). These 16 wavelets de�ne the �rst pyramid layer.They are then optimized with respe
t to the energyfun
tion (4). The optimization result,~I4, is shown in�g. 2, top right. In a se
ond step we 
al
ulate the dif-feren
e image between the original image and its re
on-stru
tion, I � ~I4, whi
h is then, in turn, approximatedby 6� 6 �ner wavelets (2nd row, left). These waveletsde�ne the 2nd pyramid layer. The result is shown in the2nd row, right. Adding the two right images togetherleads to image ~I4;6, shown in the 3rd row. To the left,the positions of the �rst layer wavelets are sket
hed.The original image I is for 
omparison shown in �g. 1.This pro
eeding may be 
ontinued for further pyramidlayers. It should be mentioned that at ea
h indi
atedwavelet position in �g. 2, just one single wavelet is lo-
ated. Their initial orientations are random and theirinitial s
ales are 
onstant in ea
h layer and 
hosen withrespe
t to the distan
e to the neighboring wavelet. A
oarse-to-�ne strategy for optimization is intuitive be-
ause the energy fun
tion (4) 
an be better minimizedusing �rst 
oarse and then �ne wavelets.3 AÆne Fa
e Tra
king in Image Se-quen
esWe have given in the pre
eding se
tion an exten-sive introdu
tion to wavelet networks. This is neededto understand the basi
 prin
iples of the wavelet rep-resentation. Now, all tools are in pla
e and we 
an
ontinue merely straight forward by des
ribing in thenext subse
tion 3.1 how a wavelet net, taken as a fa
etemplate, 
an be repositioned (translated, s
aled androtated) on a new fa
e su
h that the wavelets will bepositioned in the new image on the same fa
ial featuresas in the old one. In subse
tion 3.2 we will extend thisapproa
h to allow a repeated repositioning of the tem-plate net in a sequen
e of images.

4� 4 initialization +
6� 6 initialization =

Figure 2. These images demonstrate the idea ofthe Lapla
e pyramid-like initialization and opti-mization s
heme. The wavelet net is �rst ini-tialized with the wavelets sket
hed in the topleft image. The optimization results in the netshown in the top right image. The di�eren
ebetween that image and the original image isthen approximated by the wavelets that are ini-tialized a

ording to the 
enter left image. Theoptimization result is shown in the 
enter rightimage. The bottom right image shows �nallythe sum between the top right image and the
enter right one. The bottom left image showsthe positions of the wavelets of the top image.3.1 Repositioning Wavelet Networks inSingle ImagesIn this subse
tion we will demonstrate how an en-tire wavelet net 
an be translated, s
aled and rotatedso that its wavelets are �nally positioned on the samefa
ial features as in the original image. An example forthis 
an be see in �g. 2, where in the bottom left imagethe original positions of the wavelets are marked andin �g. 4, where in new images the wavelet positions ofthe repositioned wavelet network are marked.Positioning a wavelet net is established by using a



superwavelet [17℄.De�nition: Let 	 = ( n1 ; : : : ;  nN ), w =(w1; : : : ; wN ) be a wavelet net. A superwavelet	n is de�ned to be a linear 
ombination of thewavelets  ni su
h that	n(x) = Xi wi ni(SR(x � 
)) ; (7)where the parameters of ve
tor n of superwavelet	 de�ne the dilation matrix S, the rotation matrixR and the translation ve
tor 
.A superwavelet 	n is again a wavelet [17℄ that has thewavelet parameters dilation, translation and rotation.Therefore, we 
an handle it in the same way as wehandled ea
h single wavelet in the previous se
tion, andwe may optimize its parameters n with respe
t to someenergy fun
tion E:E = minn kI �	nk22 (8)For optimization, we 
an elegantly use the same opti-mization pro
edure as in the pre
eding se
tion. In sev-eral experiments we have found that the initializationthat has to be supplied to the gradient de
ent methodmay be within the range of approximately �10 px inposition, �20% in s
ale and �10Æ in orientation (seebelow for further 
omments). An example of the opti-mization pro
ess 
an be seen in �g. 3: Shown are theinitial values of n, the values after 2 and 4 optimization
y
les and the �nal values after 8 
y
les, ea
h markedwith the white square. The square refers to the imageregion where the wavelets were initially homogeneouslydistributed as shown in �g. 2. Its 
enter position marksthe 
enter position of the 
orresponding superwavlet.The superwavelet used in �g. 3 is ~I4 of �g. 2 i.e. itis derived from the person in �g. 1. A further exam-ple 
an be seen in �g. 4. The left images have to be
ompared to the bottom left image in �g. 2: It 
anbe seen that the wavelets are repositioned 
orre
tly tothe same 
orresponding fa
ial features. The images tothe right of �g. 4 show the re
onstru
tions using therepositioned wavelet nets.The image distortions of a planar obje
t that isviewed under orthographi
 proje
tion is des
ribed bysix parameters: translation 
x, 
y, rotation � and di-lation sx, sy and sxy. The degrees of freedom of awavelet only allow translation, dilation and rotation.However, it is straight forward to in
lude also shearingand thus allow any aÆne deformation of 	n. For this,we enhan
e the parameter ve
tor n to a six dimensionalve
tor n = (
x; 
y; �; sx; sy; sxy)

Figure 3. The images show the 1st, the 2th,the 4th and the 8th (�nal) step of the gradientdes
ent method optimizing the parameters ofa superwavelet. The top left image shows theinitial values with 10 px. o� from the true po-sition, rotated by 10Æ and s
aled by 20%. Thebottom right image shows the �nal result. Assuperwavelet, ~I4 of �gure 1 was used.

Figure 4. The images show the positions ofea
h of the 16 wavelets after repositioning thewavelet net (left) and the 
orresponding re
on-stru
tion(right). The re
onstru
ted fa
es showthe same orientation, position and size as theones they were repositioned on.By rewriting the s
aling matrix S,S = �sx sxy0 sy � ;



we be
ome able to deform the superwavelet 	n aÆnely.The repositioning of the superwavelet 
an be under-stood as warping where the original fa
e, representedby the wavelet net 	, is warped onto the new fa
e.This idea is shown in �g. 5.
Figure 5. The two images show the wavelet net~I4;6, repositioned onto the two test images of�g. 4. This demonstrates that the reposition-ing pro
ess 
an be understood as warping thesuperwavelet onto the new test fa
es.3.2 AÆne Tra
king using Wavelet Net-worksThe te
hnique of repositioning a superwavelet withrespe
t to the energy fun
tion (8), as it was explainedin the pre
eding subse
tion, 
an also be applied to im-age sequen
es. For this, (8) may be rewritten toE = minnt kIt �	ntk22 : (9)so that for the frame It at time step t the superwavelet	nt is optimized with respe
t to the energy fun
tion(9). To derive nt+1 for a su

essive frame It+1 at timet + 1, nt from the pre
eding frame is used as initialvalue. These initial values were in our experimentsgood enough that the optimization always 
onvergedqui
kly (see se
tion 4).Initial values n0 for the very �rst frame I0 
an bederived from the 
olor blob information of the fa
e asexperiments have shown. A 
olor blob is given by itsmean value and its standard deviation. The mean valuegives a 
lue about the position and a �rst 
lue aboutthe s
ale and the orientation 
an be 
al
ulated from thestandard deviation matrix. For the test sequen
e of �g.6, we have 
hosen n0 by hand be
ause the sequen
es isa gray s
ale sequen
e.The number of wavelets that make up the super-wavelet 
an be adapted: The maximum number isgiven by the number N of wavelets in the wavelet net-work. However, we are free to use less wavelets. Ea
hwavelet of the superwavelet has to be evaluated duringthe repositioning pro
ess, so that using less wavelets

results in a respe
tive speedup. To 
hoose the bestwavelets  ni , the absolute value of their weights, kwik,
an be used as a measure of importan
e.Te
hniques for aÆne motion predi
tion have not yetbeen in
orporated into the tra
ker. Su
h te
hniquesshould result in a signi�
ant speedup.4 ExperimentsUsing the superwavelet ~I4, we have found in severalexperiments that the initialization of n0 may vary fromthe 
orre
t parameters by approx. �10 px in x andy dire
tion, by approx. 20% in s
ale and by approx.�10Æ in rotation (see �g. 3). Of 
ourse, these are onlyapproximate values sin
e they depend on the numberof wavelets used, on the template fa
e and on the s
aleof the used wavelets. In our 
ase, 10 px. 
orrespond to� 1=6 of the width of the white box in �g. 3, markingthe inner fa
e region.We have further tested the positioning pro
edureon the Yale fa
e database. This database 
onsists of15 di�erent individuals, showing eights di�erent fa
ialexpressions, the fa
es are approximately all of the samesize. The wavelet net ~I4 
an be 
onsidered as a rathergeneral fa
e template. Using this wavelet net, the posi-tioning pro
edure 
onverged 
orre
tly on 13 individuals(independent of expression) by just giving the approx-imate image 
enter as initial values. This shows twothings:1. it shows, that the wavelet net template is not �xedto one individual and that it is suÆ
iently general.2. it shows, that the reposition algorithm is quite sta-ble with respe
t to its initial values.For fa
e tra
king, using 
olor blob information asinitial values for n seems to be pre
ise enough. Wehave tested the fa
e tra
ker on several sequen
es, in-
luding the salesman sequen
e. Example frames 
anbe seen in �g. 6, the entire mpeg-sequen
e (64k) maybe downloaded fromhttp://www.ks.informatik.uni-kiel.de/~vok/resear
h/wavelet_tra
ker/salesman.mpg.Figure 7 shows for ea
h frame the square error inpixels between the \ground truth" 
enter position ofthe fa
es and the estimated 
enter position of the su-perwavelet (whi
h is the 
enter of its white box). Theground truth was estimated by hand, an estimation er-ror of � one pixel in x- and y- dire
tion is possible. Fortra
king, only 9 (!) wavelets were used. This, however,limits the tra
king pre
ision whi
h 
an be noti
ed in�g. 6 and 7.



Figure 6. The images shows from left to rightframe 11, frame 50, frame 120 and frame 137.
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Figure 7. The �gure shows the Eu
lidean dis-tan
e between the estimated position of thesuperwavelet and the \ground truth".During tra
king, sin
e we tra
k with 25 Hz, su

es-sive frames are suÆ
iently similar so that the gradi-ent des
ent method never needed more than two 
y
lesfor ea
h time step until rea
hing the minimum. Us-ing 9 wavelets the 
omputing time 
onsumed for ea
hframe was less than 35 ms on a 450 MHz Linux Pen-tium. Using more wavelets instead, the tra
king be-
omes more pre
ise but slower. Furthermore, when thesystem tra
ks slower, the initial values for the position-ing pro
edure are less pre
ise be
ause of the in
reasedtemporal distan
e between su

essive image. Using all16 wavelets of the �rst pyramid layer, the tra
ker 
on-sequently rea
hes only 10 Hz. However, this loss of

speed probably would have been less drasti
 if a mo-tion predi
tion had been used.5 Con
lusionIn this paper we presented a novel approa
h for real-time fa
e tra
king. The major 
ontributions of thiswork are1. the introdu
tion of the notion wavelet network.The wavelet network is used to approximate a tem-plate image while using a relatively small set ofwavelets.2. the introdu
tion of the notion superwavelet, thatallows us to handle an entire wavelet network asa single wavelet and to deform the wavelet netaÆnely.Even though we are by no means the �rst to use waveletnetworks and superwavelets, we are still the �rst toapply them 
onsequently in pra
ti
e and to study andexploit their properties and advantages. As far as weknow, both terms have so far only been of theoreti
alinterest.3. The development of a tra
king approa
h that ex-ploits the advantages of the superwavelet whi
hhas several advantages:� The 
exible representation of the templateusing a wavelet network allows a tra
kingthat is not �xed to one parti
ular individual.� The tra
ker is able to 
ope with aÆne defor-mations of the tra
ked obje
t.� The tra
ker uses only moderate hardware re-sour
es.� The resour
es needed for tra
king 
an be dy-nami
ally adapted to the resour
es available.This is parti
ularly useful when the tra
keris to be used in 
onjun
tion with other pro-grams.In several experiments the tra
king and the reposi-tioning algorithm was su

essfully evaluated and 
om-pared to the ground truth. It will be future work toin
orporate this tra
king te
hnique into our a
tive 
am-era mount [9℄ and to study and evaluate the propertiesand qualities of our wavelet representation. Further-more it is future work to use wavelet networks for fa
e-and gesture re
ognition.
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