
AÆne Real-Time Fae Traking using a Wavelet NetworkVolker Kr�uger, Alexander Happe and Gerald SommerComputer Siene Institute, Christian-Albrehts University KielPreu�erstr. 1-9, 24105 Kiel, GermanyTel: ++49-431-560496, FAX: ++49-431-560481email: vok�ks.informatik.uni-kiel.deAbstratIn this work we will present a method for visual faetraking that is based on a wavelet representation of afae template. The wavelet representation allows arbi-trary aÆne variations of the faial image, it allows togeneralize from an individual fae template to a rathergeneral fae template and it allows to adapt the ompu-tational needs of the traking algorithm to the omputa-tional resoures available. The method presented runsin real-time (25 Hz) on a Linux Pentium 450 MHz andwas tested on several ommon sequenes inluding thesalesman-sequene.1 IntrodutionIn this paper we will address the issue of trak-ing faes. Traking faes in real-time (RT) (25 Hz)is of major importane for many appliations inludingHuman-Computer-Interfaes (HCI), surveillane appli-ations, teleonferening or teleteahing. Also appli-ations suh as gesture- and gaze detetion are of-ten stated appliations that heavily depend on preisetraking algorithms. Yet, the issue of traking faesis far from being solved satisfatorily. Many trak-ing systems use olor as a lue for traking but theytrak impreisely and they are not apable of distin-guishing between faes and non-faes [9; 1; 16℄. Othertraking systems use a previously given template (grayvalue, ative ontour, et), while allowing aÆne varia-tions of the faial image. These systems trak preiselyas shown in the exellent work of [6℄, but the templatesare either of individual persons or are omputationallyexpensive [7; 5℄ so that traking is not in RT. Othersystems use a separate neural network or eigenfaes forverifying for the fae during traking. However, thesesystems are not invariant with respet to aÆne varia-tions of the faial image [13℄. In [12℄ a system is pre-

sented that is able to trak faes independently of faeorientation and gesture. The systems uses the waveletjet bunh-graph approah [18℄ but traks with less than1 fps.In this work we will present an approah for RTfae traking that allows arbitrary aÆne deformationsof the faial image in order to ompensate for di�er-ent poses. For this we use a wavelet representationfor a given fae template. In the following ontext thewavelets are not used in the manner as introdued byMallat or Deaubehies [2; 11℄ where, in the disretease of image representation, homogeneous samplingshemes are onsidered. Neither will we use a bunh-graph like approah that represents only arbitrary lo-al image features [18℄. The major ontribution of thiswork will be the introdution of a \third way" of usingwavelets. It is a similar approah to the one in [19℄: Awavelet representation (wavelet network) of a fae tem-plate will be found by optimizing the weights and thedegrees of freedom of eah single wavelet (2D dilation,2D translation, orientation) with respet to the pixelwise di�erene to a given fae template. With this, thefae template is represented by a linear ombination ofthese speially optimized wavelets. The wavelets areoptimized within the ontinuous phase spae and aretherefore not limited to the homogeneous disrete gridof the disrete phase spae. Furthermore they are op-timized with respet to the image ontents and do notrepresent just arbitrary loal image features. This rep-resentation has several advantages:1. A fae template (or image template, in general)an be represented by a very small set of weightedwavelets.2. The degrees of freedom of eah single wavelet overthe aÆne deformations without a shear fator andso do the degrees of freedom of their linear ombi-nation (superwavelet).3. It is straight forward to introdue a shear fator1



to allow the linear ombination of the wavelets todeform aÆnely.4. The omputer power needed for traking will de-pend upon the number of wavelets to evaluate.This number an be hosen dynamially upon theomputer power available.5. The number of wavelets used deides on theamount of detailed template information on-tained in the wavelet representation. Using lesswavelets the representation beomes more generalwhih allows to trak also arbitrary faes.By exploiting these advantages, we establish real-timetraking of arbitrary faes by optimizing the aÆne pa-rameters of the entire wavelet representation at eahimage frame while being able to dynamially adapt thenumber of used wavelets and with this the omputerresoures needed.In setion 2 we will give a short introdution towavelets. In setion 2.1 we explain how we �nd awavelet representation for a given fae template and insetion 3, the traking algorithm is presented. In se-tion 4 we test the traker on the well known sequenes\salesman" and onlude with �nal remarks in setion5.2 Introdution to waveletsIn this setion we will give a short introdution tothe wavelet transform and review very shortly the twoommon wavelet approahes for image representationtaken to date. A funtion  2 IL2(IR2) that satis�es0 < C = 4�2 ZIR ZIR k ̂(!x; !y)k2k(!x; !y)k d!x d!y <1is alled a wavelet. Here,  ̂ is the Fourier transformof  . For any funtion f 2 IL2(IR2) the ontinuouswavelet transform is given by(Lf)(x; y; sx; sy; �) = ZIR2 f(x) (SR(x � ))dx= < f;  x;y;�;sx;sy >= < f;  n > ; (1)with the rotation matrix R, the dilation matrix S andthe translation vetor :R = �os � � sin �sin � os � �S = diag(sx; sy) = (x; y)T :

� denotes the rotation angle of the wavelet  (x),sx, sy the saling in x and y diretion and x, y thetranslations in x and y diretion. In this sense, thewavelets  n are dilated, rotated and translated versionsof the original wavelet  , alled mother wavelet. The�ve dimensional parameter vetor n is given by theseparameters: n = (x; y; �; sx; sy) :The funtion f an always be reonstruted by inte-gration over all wavelet parameters:f = C�1 Z �Lf�n n dn= C�1 Z < f;  n >  n dnThis integration is done over the entire ontinuousphase spae.A natural way to de�ne the disrete wavelet trans-form is to disretizise the phase spae and to as-sign disrete values to the wavelet parameters as fol-lows: sx = (sx0)m; sy = (sy0)m; x = ns0(sx0)m; y =ks0(sy0)m; � = �l = l�0, with m;n; k; l 2 ZZ. With thisthe disrete wavelet transform is given by(Ldmnklf) = < f;  mnkl > : (2)Equation (2) an be interpreted as an abstrat repre-sentation of f by its wavelet oeÆients. To representf uniquely (if possible at all), a huge number of waveletoeÆients are generally needed. How good f is rep-resented by its oeÆients Ldmnklf and how many areneeded depends on the hosen wavelet and on the val-ues sx0 , sy0 , s0 and �0. This type of representationis also applied within the bunh graph approah [18℄,where, however, only a few prominent feature pointsare represented by their wavelet oeÆients. Of ourse,a reonstrution of the image is in this ase not possi-ble.An image f an also be represented (in the sense ofan approximation) by a linear ombination of weightedwavelets f = Xmnklwmnkl mnkl : (3)In the sense of equation (3), the funtion f is approx-imated by a linear ombination of weighted waveletswhere wavelets and weights are found by optimization(see below).In some speial ases (orthogonal ases), wmnkl =Ldm;n;k;lf , however generally, wmnkl 6= Ldm;n;k;lf .



2.1 The third wayGabor funtions are well known to provide the bestpossible tradeo� between spatial resolution and fre-queny resolution and are therefore an important toolin image analysis. Furthermore, the use of Gabor�lters in image analysis is biologially motivated asthey model the response of the reeptive �elds of theorientation-seletive simple ells in the human visualortex [3; 8℄. In fat, it has been suggested [4; 14℄ thatthe reeptive �eld response of simple ells an be de-sribed by the partiular family of 2D Gabor wavelets.It is important to know how well an image I anbe represented by using Gabor wavelets in ase of adisrete phase spae. This topi was studied by Lee[10℄ and it ame out that the dilation step widths, thetranslation step width and the angular step �0 haveto be extremely small whih leads to a highly redun-dant image representation. Thus, one way to representan image is to use suh a general and highly redun-dant Gabor wavelet deomposition (it should be men-tioned that this deomposition allows to represent anyf 2 IL2(IR2)). However, a huge number of waveletsoeÆients are needed. Another possibility is to use aGabor jet representation [18℄. Even though this is ob-viously a very lossy image representation with roughly800 wavelet oeÆients, it seems to work very well inthe ontext of fae reognition.Inspired by [19℄, we want to propose here, as a majorontribution of this work, a third way by representingan image using a wavelet network. This representationhas the advantage of being even sparser than the Ga-bor jet representation. Yet it enodes nearly the entireimage information and allows a good reonstrution.Generally speaking, we start out by seleting afamily of N (not neessarily Gabor) wavelets 	 =f n1 : : :  nNg. The parameters ni (dilation, transla-tion and orientation) may be hosen arbitrarily. In or-der to �nd a representation for a funtion f 2 IL2(IR2)(f DC-free, without limitation of generality) we mini-mize the energy funtionE = minni;wi for all i kf �Xi wi nik22 (4)with respet to the weights wi and the wavelet param-eters ni.De�nition: Let  ni , i = 1 : : :N wavelets. The twovetors 	 = ( n1 ; : : : ;  nN )T andw = (w1; : : : ; wN )de�ne a wavelet network.

Figure 1. The left image shows the original faeimage, the right image shows its reonstrutionusing formula (5) with an optimal wavelet net	 of just N = 52 odd Gabor wavelets.It may be mentioned that it was proposed before[2; 10; 4℄ to use an energy funtion (4) in order to�nd the optimal weights wi for non-orthogonal wavelets ni . We enhane this approah to also �nd optimalparameters of eah wavelet  ni . The parameters niare hosen from ontinuous phase spae. This is exatlythe great advantage over the disrete approah: Whilein the ase of a disrete phase spae image struturehas to be interpolated, wavelets an in the ontinuousase be seletively hosen to reet preisely the loalimage struture.Using the optimal wavelets 	 and weights w theoriginal image an be (losely) reonstruted by a linearombination of weighted wavelets:~f = NXi=0 wi ni (5)= 	wT :Of ourse the quality of the reonstrution depends onthe number N of used wavelets.In this work, we use the Gabor funtion as motherwavelets  and restrit our onsiderations to the oddpart (imaginary part) only: n�x; y� = �� 12hsx ((x� x) os � � (y � y) sin �) i2+ hsy ((x� x) sin � + (y � y) os �) i2�� sin�sx ((x� x) os � � (y � y) sin �)� ;(6)with n = (x; y; �; sx; sy). The left image �g. (1)shows the original image I , the right image ~I4;6 itsreonstrution (5) using an optimal wavelet net 	 ofjust N = 52 odd Gabor wavelets.



The hoie of the mother wavelet  is arbitrary. Weuse the odd Gabor funtion as mother wavelet through-out this paper beause we found that this funtionleads to the best reonstrution results. Furthermore,sine the odd Gabor wavelets are DC-free, they areinvariant to homogeneous illumination hanges.In order to minimize formula (4) and to �nd anoptimal wavelet net 	, w for an image I , we usethe Levenberg-Marquard gradient desent method [15℄.Suh a method �nds a loal minimum, a areful sele-tion of initial parameters is therefore important. Ourinitialization and optimization sheme is similar to theLaplaian pyramid sheme: First we position equidis-tantly 4�4 oarse wavelets within the prominent imageregion (in our ase the inner fae region) (�g. 2, topleft). These 16 wavelets de�ne the �rst pyramid layer.They are then optimized with respet to the energyfuntion (4). The optimization result,~I4, is shown in�g. 2, top right. In a seond step we alulate the dif-ferene image between the original image and its reon-strution, I � ~I4, whih is then, in turn, approximatedby 6� 6 �ner wavelets (2nd row, left). These waveletsde�ne the 2nd pyramid layer. The result is shown in the2nd row, right. Adding the two right images togetherleads to image ~I4;6, shown in the 3rd row. To the left,the positions of the �rst layer wavelets are skethed.The original image I is for omparison shown in �g. 1.This proeeding may be ontinued for further pyramidlayers. It should be mentioned that at eah indiatedwavelet position in �g. 2, just one single wavelet is lo-ated. Their initial orientations are random and theirinitial sales are onstant in eah layer and hosen withrespet to the distane to the neighboring wavelet. Aoarse-to-�ne strategy for optimization is intuitive be-ause the energy funtion (4) an be better minimizedusing �rst oarse and then �ne wavelets.3 AÆne Fae Traking in Image Se-quenesWe have given in the preeding setion an exten-sive introdution to wavelet networks. This is neededto understand the basi priniples of the wavelet rep-resentation. Now, all tools are in plae and we anontinue merely straight forward by desribing in thenext subsetion 3.1 how a wavelet net, taken as a faetemplate, an be repositioned (translated, saled androtated) on a new fae suh that the wavelets will bepositioned in the new image on the same faial featuresas in the old one. In subsetion 3.2 we will extend thisapproah to allow a repeated repositioning of the tem-plate net in a sequene of images.

4� 4 initialization +
6� 6 initialization =

Figure 2. These images demonstrate the idea ofthe Laplae pyramid-like initialization and opti-mization sheme. The wavelet net is �rst ini-tialized with the wavelets skethed in the topleft image. The optimization results in the netshown in the top right image. The di�erenebetween that image and the original image isthen approximated by the wavelets that are ini-tialized aording to the enter left image. Theoptimization result is shown in the enter rightimage. The bottom right image shows �nallythe sum between the top right image and theenter right one. The bottom left image showsthe positions of the wavelets of the top image.3.1 Repositioning Wavelet Networks inSingle ImagesIn this subsetion we will demonstrate how an en-tire wavelet net an be translated, saled and rotatedso that its wavelets are �nally positioned on the samefaial features as in the original image. An example forthis an be see in �g. 2, where in the bottom left imagethe original positions of the wavelets are marked andin �g. 4, where in new images the wavelet positions ofthe repositioned wavelet network are marked.Positioning a wavelet net is established by using a



superwavelet [17℄.De�nition: Let 	 = ( n1 ; : : : ;  nN ), w =(w1; : : : ; wN ) be a wavelet net. A superwavelet	n is de�ned to be a linear ombination of thewavelets  ni suh that	n(x) = Xi wi ni(SR(x � )) ; (7)where the parameters of vetor n of superwavelet	 de�ne the dilation matrix S, the rotation matrixR and the translation vetor .A superwavelet 	n is again a wavelet [17℄ that has thewavelet parameters dilation, translation and rotation.Therefore, we an handle it in the same way as wehandled eah single wavelet in the previous setion, andwe may optimize its parameters n with respet to someenergy funtion E:E = minn kI �	nk22 (8)For optimization, we an elegantly use the same opti-mization proedure as in the preeding setion. In sev-eral experiments we have found that the initializationthat has to be supplied to the gradient deent methodmay be within the range of approximately �10 px inposition, �20% in sale and �10Æ in orientation (seebelow for further omments). An example of the opti-mization proess an be seen in �g. 3: Shown are theinitial values of n, the values after 2 and 4 optimizationyles and the �nal values after 8 yles, eah markedwith the white square. The square refers to the imageregion where the wavelets were initially homogeneouslydistributed as shown in �g. 2. Its enter position marksthe enter position of the orresponding superwavlet.The superwavelet used in �g. 3 is ~I4 of �g. 2 i.e. itis derived from the person in �g. 1. A further exam-ple an be seen in �g. 4. The left images have to beompared to the bottom left image in �g. 2: It anbe seen that the wavelets are repositioned orretly tothe same orresponding faial features. The images tothe right of �g. 4 show the reonstrutions using therepositioned wavelet nets.The image distortions of a planar objet that isviewed under orthographi projetion is desribed bysix parameters: translation x, y, rotation � and di-lation sx, sy and sxy. The degrees of freedom of awavelet only allow translation, dilation and rotation.However, it is straight forward to inlude also shearingand thus allow any aÆne deformation of 	n. For this,we enhane the parameter vetor n to a six dimensionalvetor n = (x; y; �; sx; sy; sxy)

Figure 3. The images show the 1st, the 2th,the 4th and the 8th (�nal) step of the gradientdesent method optimizing the parameters ofa superwavelet. The top left image shows theinitial values with 10 px. o� from the true po-sition, rotated by 10Æ and saled by 20%. Thebottom right image shows the �nal result. Assuperwavelet, ~I4 of �gure 1 was used.

Figure 4. The images show the positions ofeah of the 16 wavelets after repositioning thewavelet net (left) and the orresponding reon-strution(right). The reonstruted faes showthe same orientation, position and size as theones they were repositioned on.By rewriting the saling matrix S,S = �sx sxy0 sy � ;



we beome able to deform the superwavelet 	n aÆnely.The repositioning of the superwavelet an be under-stood as warping where the original fae, representedby the wavelet net 	, is warped onto the new fae.This idea is shown in �g. 5.
Figure 5. The two images show the wavelet net~I4;6, repositioned onto the two test images of�g. 4. This demonstrates that the reposition-ing proess an be understood as warping thesuperwavelet onto the new test faes.3.2 AÆne Traking using Wavelet Net-worksThe tehnique of repositioning a superwavelet withrespet to the energy funtion (8), as it was explainedin the preeding subsetion, an also be applied to im-age sequenes. For this, (8) may be rewritten toE = minnt kIt �	ntk22 : (9)so that for the frame It at time step t the superwavelet	nt is optimized with respet to the energy funtion(9). To derive nt+1 for a suessive frame It+1 at timet + 1, nt from the preeding frame is used as initialvalue. These initial values were in our experimentsgood enough that the optimization always onvergedquikly (see setion 4).Initial values n0 for the very �rst frame I0 an bederived from the olor blob information of the fae asexperiments have shown. A olor blob is given by itsmean value and its standard deviation. The mean valuegives a lue about the position and a �rst lue aboutthe sale and the orientation an be alulated from thestandard deviation matrix. For the test sequene of �g.6, we have hosen n0 by hand beause the sequenes isa gray sale sequene.The number of wavelets that make up the super-wavelet an be adapted: The maximum number isgiven by the number N of wavelets in the wavelet net-work. However, we are free to use less wavelets. Eahwavelet of the superwavelet has to be evaluated duringthe repositioning proess, so that using less wavelets

results in a respetive speedup. To hoose the bestwavelets  ni , the absolute value of their weights, kwik,an be used as a measure of importane.Tehniques for aÆne motion predition have not yetbeen inorporated into the traker. Suh tehniquesshould result in a signi�ant speedup.4 ExperimentsUsing the superwavelet ~I4, we have found in severalexperiments that the initialization of n0 may vary fromthe orret parameters by approx. �10 px in x andy diretion, by approx. 20% in sale and by approx.�10Æ in rotation (see �g. 3). Of ourse, these are onlyapproximate values sine they depend on the numberof wavelets used, on the template fae and on the saleof the used wavelets. In our ase, 10 px. orrespond to� 1=6 of the width of the white box in �g. 3, markingthe inner fae region.We have further tested the positioning proedureon the Yale fae database. This database onsists of15 di�erent individuals, showing eights di�erent faialexpressions, the faes are approximately all of the samesize. The wavelet net ~I4 an be onsidered as a rathergeneral fae template. Using this wavelet net, the posi-tioning proedure onverged orretly on 13 individuals(independent of expression) by just giving the approx-imate image enter as initial values. This shows twothings:1. it shows, that the wavelet net template is not �xedto one individual and that it is suÆiently general.2. it shows, that the reposition algorithm is quite sta-ble with respet to its initial values.For fae traking, using olor blob information asinitial values for n seems to be preise enough. Wehave tested the fae traker on several sequenes, in-luding the salesman sequene. Example frames anbe seen in �g. 6, the entire mpeg-sequene (64k) maybe downloaded fromhttp://www.ks.informatik.uni-kiel.de/~vok/researh/wavelet_traker/salesman.mpg.Figure 7 shows for eah frame the square error inpixels between the \ground truth" enter position ofthe faes and the estimated enter position of the su-perwavelet (whih is the enter of its white box). Theground truth was estimated by hand, an estimation er-ror of � one pixel in x- and y- diretion is possible. Fortraking, only 9 (!) wavelets were used. This, however,limits the traking preision whih an be notied in�g. 6 and 7.



Figure 6. The images shows from left to rightframe 11, frame 50, frame 120 and frame 137.
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Figure 7. The �gure shows the Eulidean dis-tane between the estimated position of thesuperwavelet and the \ground truth".During traking, sine we trak with 25 Hz, sues-sive frames are suÆiently similar so that the gradi-ent desent method never needed more than two ylesfor eah time step until reahing the minimum. Us-ing 9 wavelets the omputing time onsumed for eahframe was less than 35 ms on a 450 MHz Linux Pen-tium. Using more wavelets instead, the traking be-omes more preise but slower. Furthermore, when thesystem traks slower, the initial values for the position-ing proedure are less preise beause of the inreasedtemporal distane between suessive image. Using all16 wavelets of the �rst pyramid layer, the traker on-sequently reahes only 10 Hz. However, this loss of

speed probably would have been less drasti if a mo-tion predition had been used.5 ConlusionIn this paper we presented a novel approah for real-time fae traking. The major ontributions of thiswork are1. the introdution of the notion wavelet network.The wavelet network is used to approximate a tem-plate image while using a relatively small set ofwavelets.2. the introdution of the notion superwavelet, thatallows us to handle an entire wavelet network asa single wavelet and to deform the wavelet netaÆnely.Even though we are by no means the �rst to use waveletnetworks and superwavelets, we are still the �rst toapply them onsequently in pratie and to study andexploit their properties and advantages. As far as weknow, both terms have so far only been of theoretialinterest.3. The development of a traking approah that ex-ploits the advantages of the superwavelet whihhas several advantages:� The exible representation of the templateusing a wavelet network allows a trakingthat is not �xed to one partiular individual.� The traker is able to ope with aÆne defor-mations of the traked objet.� The traker uses only moderate hardware re-soures.� The resoures needed for traking an be dy-namially adapted to the resoures available.This is partiularly useful when the trakeris to be used in onjuntion with other pro-grams.In several experiments the traking and the reposi-tioning algorithm was suessfully evaluated and om-pared to the ground truth. It will be future work toinorporate this traking tehnique into our ative am-era mount [9℄ and to study and evaluate the propertiesand qualities of our wavelet representation. Further-more it is future work to use wavelet networks for fae-and gesture reognition.
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