
Gabor Wavelet Networks for ObjetRepresentation and Fae ReognitionVolker Kr�uger and Gerald SommerComputer Siene Institute, Christian-Albrehts University KielPreu�erstr. 1-9, 24105 Kiel, GermanyTel: ++49-431-560496, FAX: ++49-431-560481email: vok�ks.informatik.uni-kiel.deAbstrat. The hoie of the objet representation is ruial for an e�e-tive performane of ognitive tasks suh as objet reognition, �xation,et. In this paper we want to introdue the Gabor wavelet network for ane�etive objet representation. The Gabor wavelet network has severaladvantages suh as invariane to some degree with respet to translation,rotation and dilation. Furthermore, it has the ability to generalize and toabstrat from the training data and to assure, for a given network size,that a maximum of objet information is oded. We will show in the ex-periments how Gabor wavelet networks an be used for fae reognitionappliations.Keywords: Gabor wavelets, objet representation, fae reognition1 IntrodutionIt is a ruial question how objet information, or image information in general,should be represented for ognitive systems to perform e�etively, beause it isthe representation that deides on the distane and similarity measurements.When dealing with digital images most types of representations that enode theimage information result in a data redution and it is again the type of infor-mation representation that deides whih image information is relevant, i.e. isenoded, and whih is not. Other important topis in this ontext are invarianeproperties and the question, whether the information is enoded globally or lo-ally. For example, priniple omponent analysis [10℄, whih is very often appliedin fae reognition problems, has no invariane with respet to translation, rota-tion or sale. Also information is enoded globally, whih means that for examplean image is always taken as a whole and loal hanges in the image result in alarge global hange of the representation. On the other hand, the bunh graphapproah [13℄, a very suessful representation approah for fae reognition, isinvariant to some degree with respet to translation, rotation and sale. In thisapproah the information is represented loally, whih means that a loal hangein the image results in a loal hange in the representation. Another aspet isthat the type of information representation deides on the possibility to abstratfrom the image data to a possibly symboli representation of an objet.



In this paper we want to present an objet representation that is based onGabor wavelet networks and superwavelets. Gabor wavelet networks have severaladvantages: by their very nature, Gabor wavelet networks (GWNs) are invari-ant to some degree to aÆne deformations and illumination hanges. Further-more, GWNs represent objet features in a loal manner, and unlike the disretewavelet representation, the Gabor wavelet network uses wavelets who's param-eters are hosen from a ontinuous parameter spae (the phase spae). Thisallows eah wavelet to adapt its sale, orientation and position optimally to thestruture of the objet on whih the wavelet network is trained. This ensures, byusing a given number of Gabor wavelets, that a maximum of image informationis preserved. For objet reognition purposes this is the most important aspet.A GWN has further oneptual advantages: using a small number of Gaborwavelets, the GWN is apable to generalize. As more and more Gabor waveletsare used, the GWN beomes more and more spei�. In this sense the GWNbehaves like an RBF network, that allows a generalization of the training datato some degree while using only a small set of basis funtions. As the numberof basis funtions inreases, the RBF network beomes overtrained, and so doesthe GWN.The GWN even seems to allow an abstration hierarhy. An abstrationhierarhy implies that the image an be onsidered as an expansion into imageprimitives, whih an be viewed as oneptual building bloks forming the image[4℄. This gives rise to the hope that one might �nd a symboli representation ofan objet that is represented by a GWN.In the following setion we will give an extensive introdution to GWNs.Also, we will disuss eah single point mentioned above, inluding the invari-ane properties, the generalization apability, the abstration apability and thespei�ity of the wavelet parameters for the objet representation. In the exper-imental setion we will show how GWNs an be used for fae reognition. In thelast setion we will onlude with some �nal remarks.2 Introdution to Gabor Wavelet NetworksIn this setion we want to propose, as a major ontribution of this work, the Ga-bor Wavelet Network for image representation. The idea of the wavelet networkis inspired by [15℄, and the use of Gabor funtions is inspired by the fat thatthey provide the best possible trade o� between spatial resolution and frequenyresolution. Furthermore, the Gabor �lters are reognized to be good featuredetetors [9℄. An image representation with Gabor Wavelet Networks has theadvantage of being sparser than the Gabor jet representation [13℄. Yet, it allowsto enodes almost the entire image information and allows a good reonstrution.



To de�ne a GWN, we start out, generally speaking, by taking a family of Nodd Gabor wavelet funtions 	 = f n1 ; : : : ;  nNg of the form n�x; y� = exp�� 12hsx ((x� x) os � � (y � y) sin �) i2+ hsy ((x � x) sin � + (y � y) os �) i2�� sin�sx ((x � x) os � � (y � y) sin �) � ; (1)with n = (x; y; �; sx; sy)T . Here, x, y denote the translation of the Gaborwavelet, sx, sy denote the dilation and � denotes the orientation. The param-eters ni (translation, orientation and dilation) of the wavelets may be hosenarbitrarily at this point. Aording to [15℄, any funtion f 2 IL2(IR2) an berepresented by a wavelet network. We are therefore going to interpret the imagef to be a funtion of the spae IL2(IR2) and assume further, without loss ofgenerality that f is DC-free. In order to �nd the GWN for image f we minimizethe energy funtion E = minni;wi for all i kf �Xi wi nik22 (2)with respet to the weights wi and the wavelet parameters ni. Equation (2) saysthat the wi and ni are optimized (i.e. translation, dilation and orientation ofeah wavelet are hosen) suh that the image f is optimally approximated bythe weighted sum of Gabor wavelets  ni . We therefore de�ne a Gabor waveletnetwork as follows:De�nition: Let  ni , i = 1; : : : ; N be a set of Gabor wavelets, f a DC-free imageand wi and ni hosen aording to the energy funtion (2). The two vetors	 = ( n1 ; : : : ;  nN )T and w = (w1; : : : ; wN )T de�ne then the Gabor waveletnetwork (	;w) for image f .The parameters ni are hosen from ontinuous phase spae and the Gaborwavelets are positioned with sub-pixel auray. This is preisely the main advan-tage over the disrete approah [2; 8℄. While in the ase of a disrete phase spaeloal image struture has to be approximated by a ombination of wavelets, asingle wavelet an be hosen seletively in the ontinuous ase to reet preiselythe loal image struture. This assures that a maximum of the image informa-tion is enoded. It also leads to an almost symboli abstration [4℄ of the imagedata, as we will see later.Using the optimal wavelets 	 and weights w of the Gabor wavelet networkof an image f , f an be (losely) reonstruted by a linear ombination of theweighted wavelets: f̂ = NXi=0 wi ni = 	Tw :



Fig. 1. The left image shows the original fae image I, the enter image shows itsreonstrution Î using formula (3) with an optimal wavelet net 	 of just N = 52odd Gabor wavelets, distributed over the inner fae region. The right image shows theoptimal positions of the �rst 16 Gabor wavelets.Of ourse, the quality of the image representation and of the reonstrutiondepends on the number N of wavelets used. An example reonstrution an beseen in �g. 1: N = 52 wavelets are distributed over the inner fae region of theleft image I by the minimization formula (2). The reonstrution Î with formula(3) is shown in the enter image. Note that the Gabor wavelets are ontinuousfuntions that interpolate the disrete image they are trained on. This fat willbe of great importane later when we need to deform Î aÆnely.Minimizing equation (2) is ruial, beause �nding a global minimum is anineÆient task. In order to �nd a GWN (	, w) for a disrete gray value imageI , we use the Levenberg-Marquard gradient desent method [11℄. This methodmight get stuk in loal minima and a areful seletion of the initial parametersis therefore important. We use prior knowledge about signi�ant image featuresto allow a task oriented optimization.2.1 Diret Calulation of WeightsGabor wavelet funtions are not orthogonal. For a given family 	 of Gaborwavelets it is not possible to alulate a weight wi diretly by a simple projetionof the Gabor wavelet  ni onto the image. In [2; 3℄ it was therefore proposed to useeq. (2) to �nd the optimal weight wi for eah �xed wavelet. Beause optimizationis a slow proess, we want to suggest a diret alulation of the orret weightswi by projeting the dual wavelets ~ ni . The wavelet ~ ni is the dual wavelet tothe wavelet  ni if <  ni ; ~ nj >= Æi;j . With ~	 = ( ~ n1 ; : : : ; ~ nN )T , we an writehD	; ~	Ei = I and we �nd ~ ni to be ~ ni = Pj (	i;j)�1  nj , where (	i;j) =(h i;  ji). This allows us to de�ne the operatorT	 : IL2(IR2) 7�! IL2(IR2)as follows: Given a set 	 of optimal wavelets of a GWN, trained on the funtionf , the operator T	 realizes an orthogonal projetion of a funtion g onto the



Fig. 2. The �gure shows images of a wooden toyblok on whih a GWN was trained. The blak linesegments sketh the positions, sizes and orientationsof all the wavelets of the GWN (left), and of someautomatially seleted wavelets (right).vetor spae that is spanned by 	 (see (3)), i.e.ĝ = T	(g) NXi=1 wi ni with w = ~	g :Clearly, by de�nition (	 is hosen optimal for f), T	(f) = f̂ � f . Furthermore,for any � > 0 we �nd a network size N suh that kf �T	(f)k2 < � and, beauseof the ontinuity of T	, we also �nd for any � > 0 a Æ suh that k(f+Æ)�T	(f+Æ)k2 < � :2.2 Symboli AbstrationGenerally, two di�erent types of hierarhies an be distinguished [4℄:{ sale hierarhies{ abstration hierarhies.GWNs allow an abstration hierarhy of the oded data to some degree [7℄. Anabstration hierarhy implies that the image an be onsidered as an expansioninto image primitives, suh as line or edge segments, that an be viewed asoneptual building bloks forming the image [4℄. In terms of an abstrationpyramid, we have the image itself at the �rst level, desribed as a ombinationof gray value pixels. At the higher 2nd level we have a desription of line andedge elements. An example an be seen in �g. 2. The �gure shows the image ofa little wooden toy blok, on whih a Gabor wavelet network was trained. Theleft image shows the positions, sales and orientations of the wavelets as littleblak line segments. By thresholding the weights, the more \important" waveletsmay be seleted, whih leads to the right image?. The reason for the behaviorof the Gabor wavelets in �g. 2 is lear: odd Gabor wavelet funtions show theirhighest impulse response on edge segments that are of the same position and ofthe same orientation as the Gabor wavelet funtion itself. Ideally, eah Gaborwavelet should be positioned exatly on the image line after optimization. Alsoits sale and orientation should reet the sale and orientation of the imageline. In reality, however, interations with other wavelets of the network haveto be onsidered so that the wavelet parameters reet the position, sale, andorientation of the image line losely, but not preisely. This fat an learly beseen in �g. 2.? Sine the weights depend on the ontrast of the image, they were normalized beforeseleting the ones with a weight > 0:8. It should be mentioned that this simpleproeeding is possible only on images with lear edges.



2.3 Reparameterization Gabor Wavelet NetworksThe \reverse" task of �nding the position, the sale and the orientation of aGWN in a new image is most important. For example, onsider an image J thatshows the person of �g. 1, left, possibly distorted aÆnely. Given a orrespondingGWN we are interested in �nding the orret position, orientation and salingof the GWN so that the wavelets are positioned on the same faial features asin the original image. An example for this an be seen in �g. 1, where in theright image the original positions of the wavelets are marked and in �g. 4, wherein new images the wavelet positions of the reparameterized wavelet network aremarked.Parameterization of a wavelet net is established by using a superwavelet [12℄.De�nition: Let (	;w) be a Gabor wavelet network with	 = ( n1 ; : : : ;  nN )T ,w = (w1; : : : ; wN )T . A superwavelet 	n is de�ned to be a linear ombinationof the wavelets  ni suh that	n(x) =Xi wi ni(SR(x� )) ; (3)where the parameters of vetor n of superwavelet 	 de�ne the dilation ma-trix S = diag(sx; sy), the rotation matrix R, and the translation vetor = (x; y)T .A superwavelet	n is again a wavelet [12℄ and in partiular a ontinuous funtionthat has the wavelet parameters dilation, translation and rotation (see setion2). Therefore, we an handle it in the same way as we handled eah singlewavelet in the previous setion. For a new image g we may arbitrarily deformthe superwavelet by optimizing its parameters n with respet to the energyfuntion E: E = minn kg �	nk22 (4)Equation (4) de�nes the operatorP	 : IL2(IR2) 7�! IR5 (5)g �! n = (x; y; �; sx; sy) ;where n minimizes the energy funtion E of eq. (4). For optimization of thesuperwavelet parameters, we an elegantly use the same optimization proedureas in setion 2. An example of the optimization proess an be seen in �g. 3:Shown are the initial values of n, the values after 2 and 4 optimization yles andthe �nal values after 8 yles, eah marked with the white square. The squarerefers to the inner fae region. Its enter position marks the enter position ofthe orresponding superwavelet. The superwavelet used in �g. 3 is Î4 of �g. 1. Afurther example an be seen in �g. 4. The 1st and 3rd image have to be omparedwith the right image in �g. 1: It an be seen that the wavelets are positioned



Fig. 3. The images show the 1st, the 2th(top), the 4th and the 8th (�nal) step (bottom)of the gradient desent method optimizing the parameters of a superwavelet. The topleft image shows the initial values with 10 px. o� from the true position, rotated by 10Æand saled by 20%. The bottom right image shows the �nal result. As superwavelet,Î4 of �gure 1 was used.
Fig. 4. The images show the positions of eah of the 16 wavelets after reparameter-izing the wavelet net (top) and the orresponding reonstrution (bottom). The re-onstruted faes show the same orientation, position and size as the ones they werereparameterized on.orretly on the same orresponding faial features (see �g. 1). The 2nd and 4thimage of �g. 4 shows the reonstrutions using the reparameterized GWNs.The reparameterization of the superwavelet an be understood as warping,where the original fae, represented by the GWN (	;w) is warped onto the newfae. This idea is shown in �g. 5. Fig. 5. The two images show the wavelet net Î4;6,repositioned onto the two test images of �g. 4.This demonstrates that the repositioning proessan be understood as warping the superwaveletonto the new test faes.The reparameterization (warping) works quite robust: Using the superwaveletÎ4 or Î4;6, we have found in several experiments on the subjets in �g. 4 thatthe initialization of n0 may vary from the orret parameters by approx. �10 pxin x and y diretion, by approx. 20% in sale and by approx. �10Æ in rotation(see �g. 3). Of ourse, these are only approximate values sine they depend onthe number of wavelets used, on the template fae and on the sale of the usedwavelets. In our ase, 10 px. orrespond to � 1=3 of the width of the white boxin �g. 3, marking the inner fae region.3 Fae Reognition independent of GestureVarious appliations to Gabor Wavelet Networks have been disussed, amongthem aÆne real time fae traking [6℄ and eÆient head pose estimation [5℄.



In this setion we will present some promising fae reognition results whileusing GWNs for the fae representation. By training a GWN (	;w) on an imagef and applying the GWN to a test image g, the reognition is established in twosteps:1. optimal repositioning of the GWN by using the positioning operator P	2. alulating the optimal weights for the optimally repositioned GWN by usingthe projetion operator T	.This an be written onisely as T P(g)	 (g) = ĝ (6)This omposite operator leads to an image very similar to g if, and only if, gis well haraterized by the GWN of the operator T	. This means that (6) isapproximately the identity, if, and only if, g � f or g = 0?? (images are assumedto be DC-free). Assuming, without loss of generality, that g 6= 0, we an write:T P(g)	 (g) = � ĝ � g i� g � fĝ 6= g i� g 6= f (7)Using eq. (7) it is straight forward to de�ne the following distane measure:d	(f; g) = kT P(g)	 (f)� T P(g)	 (g)k22 (8)The distane measurement d	(f; g) is de�ned to be the sum of squared dif-ferenes between the wavelet representations of the training image f that iswarped onto the test image g, whih is T P(g)	 (f), and the wavelet representationof the test image g, T P(g)	 (g), represented with the wavelet set 	 of a GWNthat was trained on image f . In �g. 6, an example is shown: the image T P(g)	 (f)(left), and the image T P(g)	 (g)(right). The distane d	 is given to be the sumof squared di�erenes between the two shown images. In the ideal ase whereFig. 6. The two images show the original im-age f , warped onto the image g, T P(g)	 (f);(left) and the result of the operator T P(g)f (g)applied on the image g. The distane d	(f; g)of images f , g, is de�ned to be the sum ofsquared di�erenes between these two shownimages.the test image g is the same as the training image f , the d	 distane should bezero. Note that with T P(g)	 (f) the wavelet representation of f is warped ontoimage g so that, when doing a pixel wise omparison of the two images, onlyorresponding image features are ompared.?? This is the trivial ase where all weights are zero.



Experiments were arried out on the images of the Yale Fae Database [14℄.The database onsists of 15 di�erent subjets that show eight di�erent ges-tures. It was the goal to reognize eah subjet independent of the gesture. Toahieve this we trained a wavelet networks for eah individual where the train-ing was done on the image showing the \normal" expression. We thus endedup with 15 di�erent wavelet networks or, respetively, with 15 di�erent opera-tors T	i ; i = 1; : : : ; 15. In �g. 7 and 8, example results (bottom rows) of theoperator appliation T P(J)	01 (J) on the di�erent gestures and subjets (top rows)are shown. The wavelet network applied is \subjet01", the one in �g. 1, left,or, respetively, the very left one in �g. 7. The greater the di�erene betweenthe original image and operator result of T P , the less is the similarity and theless is the probability that the test image and the training image show the samesubjet. This an learly be seen in the two sample �gures. Whereas in �g. 7, thesimilarity is always good, the operator results of T P in �g. 8 are all bad. Table 3shows the omputing results of the distane d	 on the images of the database.
normal glasses happy sad sleepyFig. 7. Various images of \subjet01" (top) and the results of the appliation of theoperator T P(g)	 (g). (bottom). To alulate these examples, the GWN of �g. 1, Î4;6, with52 wavelets was applied. The \normal" image was taken to be the training image f .
subjet02 subjet03 subjet05 subjet06 subjet11Fig. 8. Various subjets of the database (top) and the results of the appliation of theoperator T P(g)	 (g)(bottom). To alulate these examples, the GWN of �g. 1, Î4;6, with52 wavelets was applied. The \normal" image in �g. 7 was taken to be the trainingimage f .
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Fig. 9. The table showsthe distane measure-ments 1=d	 of the imagesof the various subjetsin the fae database tothe referene image in�g. 7, left. Higher valuesindiate a higher simi-larity between the twoompared images. Onesees that the values inthe left part of the tables(same subjet) indiatea muh higher similaritythan the values in theright part of the table(di�erent subjets).The results of table 3 show a lear di�erene for d	 between probe imagesthat show the original subjet with di�erent gestures and probe images thatshow other subjets. With this we reahed a �nal reognition rate of 96% on theYale Fae Database [14℄. See [1℄ for a omparison with other approahes.With minor algebrai transformations, eq. (8) an be rewritten suh that thedistane d	 an be written solely on the basis of the omputed weight vetors:d	(f; g) = (v �w)t(	i;j)(v �w) ;where v and w is the weight vetor with respet to 	 of f and of g, respetively.The matrix (	i;j) = (h i;  ji) is the same above in setion 2.1.4 ConlusionsIn this paper we introdued as the major ontribution the Gabor wavelet networkfor objet and image representation. We gave an overview of several experimentsin order to show that the GWN is indeed a representation that is able to preservea maximum of image information beause it reets preisely the properties ofan objet by a areful seletion of wavelet parameters. The use of low-frequentialGabor funtions ensures robustness to minor loal hanges. As a nie side e�et,GWNs ahieve a great data redution. For example, in all our experiments weused for eah GWN 52 wavelets, eah de�ned by 5 parameters, so that eahGWN needed an amount of 1040 bytes of memory. Our experimental results arequite promising. In fat, they show quite impressively that it is important for anobjet representation to reet the spei� individual properties of the objetlass that should be represented. This ensures that di�erent individuals an bedistinguished e�etively independent from their gesture. The experiments were
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