
Gabor Wavelet Networks for Obje
tRepresentation and Fa
e Re
ognitionVolker Kr�uger and Gerald SommerComputer S
ien
e Institute, Christian-Albre
hts University KielPreu�erstr. 1-9, 24105 Kiel, GermanyTel: ++49-431-560496, FAX: ++49-431-560481email: vok�ks.informatik.uni-kiel.deAbstra
t. The 
hoi
e of the obje
t representation is 
ru
ial for an e�e
-tive performan
e of 
ognitive tasks su
h as obje
t re
ognition, �xation,et
. In this paper we want to introdu
e the Gabor wavelet network for ane�e
tive obje
t representation. The Gabor wavelet network has severaladvantages su
h as invarian
e to some degree with respe
t to translation,rotation and dilation. Furthermore, it has the ability to generalize and toabstra
t from the training data and to assure, for a given network size,that a maximum of obje
t information is 
oded. We will show in the ex-periments how Gabor wavelet networks 
an be used for fa
e re
ognitionappli
ations.Keywords: Gabor wavelets, obje
t representation, fa
e re
ognition1 Introdu
tionIt is a 
ru
ial question how obje
t information, or image information in general,should be represented for 
ognitive systems to perform e�e
tively, be
ause it isthe representation that de
ides on the distan
e and similarity measurements.When dealing with digital images most types of representations that en
ode theimage information result in a data redu
tion and it is again the type of infor-mation representation that de
ides whi
h image information is relevant, i.e. isen
oded, and whi
h is not. Other important topi
s in this 
ontext are invarian
eproperties and the question, whether the information is en
oded globally or lo-
ally. For example, prin
iple 
omponent analysis [10℄, whi
h is very often appliedin fa
e re
ognition problems, has no invarian
e with respe
t to translation, rota-tion or s
ale. Also information is en
oded globally, whi
h means that for examplean image is always taken as a whole and lo
al 
hanges in the image result in alarge global 
hange of the representation. On the other hand, the bun
h graphapproa
h [13℄, a very su

essful representation approa
h for fa
e re
ognition, isinvariant to some degree with respe
t to translation, rotation and s
ale. In thisapproa
h the information is represented lo
ally, whi
h means that a lo
al 
hangein the image results in a lo
al 
hange in the representation. Another aspe
t isthat the type of information representation de
ides on the possibility to abstra
tfrom the image data to a possibly symboli
 representation of an obje
t.



In this paper we want to present an obje
t representation that is based onGabor wavelet networks and superwavelets. Gabor wavelet networks have severaladvantages: by their very nature, Gabor wavelet networks (GWNs) are invari-ant to some degree to aÆne deformations and illumination 
hanges. Further-more, GWNs represent obje
t features in a lo
al manner, and unlike the dis
retewavelet representation, the Gabor wavelet network uses wavelets who's param-eters are 
hosen from a 
ontinuous parameter spa
e (the phase spa
e). Thisallows ea
h wavelet to adapt its s
ale, orientation and position optimally to thestru
ture of the obje
t on whi
h the wavelet network is trained. This ensures, byusing a given number of Gabor wavelets, that a maximum of image informationis preserved. For obje
t re
ognition purposes this is the most important aspe
t.A GWN has further 
on
eptual advantages: using a small number of Gaborwavelets, the GWN is 
apable to generalize. As more and more Gabor waveletsare used, the GWN be
omes more and more spe
i�
. In this sense the GWNbehaves like an RBF network, that allows a generalization of the training datato some degree while using only a small set of basis fun
tions. As the numberof basis fun
tions in
reases, the RBF network be
omes overtrained, and so doesthe GWN.The GWN even seems to allow an abstra
tion hierar
hy. An abstra
tionhierar
hy implies that the image 
an be 
onsidered as an expansion into imageprimitives, whi
h 
an be viewed as 
on
eptual building blo
ks forming the image[4℄. This gives rise to the hope that one might �nd a symboli
 representation ofan obje
t that is represented by a GWN.In the following se
tion we will give an extensive introdu
tion to GWNs.Also, we will dis
uss ea
h single point mentioned above, in
luding the invari-an
e properties, the generalization 
apability, the abstra
tion 
apability and thespe
i�
ity of the wavelet parameters for the obje
t representation. In the exper-imental se
tion we will show how GWNs 
an be used for fa
e re
ognition. In thelast se
tion we will 
on
lude with some �nal remarks.2 Introdu
tion to Gabor Wavelet NetworksIn this se
tion we want to propose, as a major 
ontribution of this work, the Ga-bor Wavelet Network for image representation. The idea of the wavelet networkis inspired by [15℄, and the use of Gabor fun
tions is inspired by the fa
t thatthey provide the best possible trade o� between spatial resolution and frequen
yresolution. Furthermore, the Gabor �lters are re
ognized to be good featuredete
tors [9℄. An image representation with Gabor Wavelet Networks has theadvantage of being sparser than the Gabor jet representation [13℄. Yet, it allowsto en
odes almost the entire image information and allows a good re
onstru
tion.



To de�ne a GWN, we start out, generally speaking, by taking a family of Nodd Gabor wavelet fun
tions 	 = f n1 ; : : : ;  nNg of the form n�x; y� = exp�� 12hsx ((x� 
x) 
os � � (y � 
y) sin �) i2+ hsy ((x � 
x) sin � + (y � 
y) 
os �) i2�� sin�sx ((x � 
x) 
os � � (y � 
y) sin �) � ; (1)with n = (
x; 
y; �; sx; sy)T . Here, 
x, 
y denote the translation of the Gaborwavelet, sx, sy denote the dilation and � denotes the orientation. The param-eters ni (translation, orientation and dilation) of the wavelets may be 
hosenarbitrarily at this point. A

ording to [15℄, any fun
tion f 2 IL2(IR2) 
an berepresented by a wavelet network. We are therefore going to interpret the imagef to be a fun
tion of the spa
e IL2(IR2) and assume further, without loss ofgenerality that f is DC-free. In order to �nd the GWN for image f we minimizethe energy fun
tion E = minni;wi for all i kf �Xi wi nik22 (2)with respe
t to the weights wi and the wavelet parameters ni. Equation (2) saysthat the wi and ni are optimized (i.e. translation, dilation and orientation ofea
h wavelet are 
hosen) su
h that the image f is optimally approximated bythe weighted sum of Gabor wavelets  ni . We therefore de�ne a Gabor waveletnetwork as follows:De�nition: Let  ni , i = 1; : : : ; N be a set of Gabor wavelets, f a DC-free imageand wi and ni 
hosen a

ording to the energy fun
tion (2). The two ve
tors	 = ( n1 ; : : : ;  nN )T and w = (w1; : : : ; wN )T de�ne then the Gabor waveletnetwork (	;w) for image f .The parameters ni are 
hosen from 
ontinuous phase spa
e and the Gaborwavelets are positioned with sub-pixel a

ura
y. This is pre
isely the main advan-tage over the dis
rete approa
h [2; 8℄. While in the 
ase of a dis
rete phase spa
elo
al image stru
ture has to be approximated by a 
ombination of wavelets, asingle wavelet 
an be 
hosen sele
tively in the 
ontinuous 
ase to re
e
t pre
iselythe lo
al image stru
ture. This assures that a maximum of the image informa-tion is en
oded. It also leads to an almost symboli
 abstra
tion [4℄ of the imagedata, as we will see later.Using the optimal wavelets 	 and weights w of the Gabor wavelet networkof an image f , f 
an be (
losely) re
onstru
ted by a linear 
ombination of theweighted wavelets: f̂ = NXi=0 wi ni = 	Tw :



Fig. 1. The left image shows the original fa
e image I, the 
enter image shows itsre
onstru
tion Î using formula (3) with an optimal wavelet net 	 of just N = 52odd Gabor wavelets, distributed over the inner fa
e region. The right image shows theoptimal positions of the �rst 16 Gabor wavelets.Of 
ourse, the quality of the image representation and of the re
onstru
tiondepends on the number N of wavelets used. An example re
onstru
tion 
an beseen in �g. 1: N = 52 wavelets are distributed over the inner fa
e region of theleft image I by the minimization formula (2). The re
onstru
tion Î with formula(3) is shown in the 
enter image. Note that the Gabor wavelets are 
ontinuousfun
tions that interpolate the dis
rete image they are trained on. This fa
t willbe of great importan
e later when we need to deform Î aÆnely.Minimizing equation (2) is 
ru
ial, be
ause �nding a global minimum is anineÆ
ient task. In order to �nd a GWN (	, w) for a dis
rete gray value imageI , we use the Levenberg-Marquard gradient des
ent method [11℄. This methodmight get stu
k in lo
al minima and a 
areful sele
tion of the initial parametersis therefore important. We use prior knowledge about signi�
ant image featuresto allow a task oriented optimization.2.1 Dire
t Cal
ulation of WeightsGabor wavelet fun
tions are not orthogonal. For a given family 	 of Gaborwavelets it is not possible to 
al
ulate a weight wi dire
tly by a simple proje
tionof the Gabor wavelet  ni onto the image. In [2; 3℄ it was therefore proposed to useeq. (2) to �nd the optimal weight wi for ea
h �xed wavelet. Be
ause optimizationis a slow pro
ess, we want to suggest a dire
t 
al
ulation of the 
orre
t weightswi by proje
ting the dual wavelets ~ ni . The wavelet ~ ni is the dual wavelet tothe wavelet  ni if <  ni ; ~ nj >= Æi;j . With ~	 = ( ~ n1 ; : : : ; ~ nN )T , we 
an writehD	; ~	Ei = I and we �nd ~ ni to be ~ ni = Pj (	i;j)�1  nj , where (	i;j) =(h i;  ji). This allows us to de�ne the operatorT	 : IL2(IR2) 7�! IL2(IR2)as follows: Given a set 	 of optimal wavelets of a GWN, trained on the fun
tionf , the operator T	 realizes an orthogonal proje
tion of a fun
tion g onto the



Fig. 2. The �gure shows images of a wooden toyblo
k on whi
h a GWN was trained. The bla
k linesegments sket
h the positions, sizes and orientationsof all the wavelets of the GWN (left), and of someautomati
ally sele
ted wavelets (right).ve
tor spa
e that is spanned by 	 (see (3)), i.e.ĝ = T	(g) NXi=1 wi ni with w = ~	g :Clearly, by de�nition (	 is 
hosen optimal for f), T	(f) = f̂ � f . Furthermore,for any � > 0 we �nd a network size N su
h that kf �T	(f)k2 < � and, be
auseof the 
ontinuity of T	, we also �nd for any � > 0 a Æ su
h that k(f+Æ)�T	(f+Æ)k2 < � :2.2 Symboli
 Abstra
tionGenerally, two di�erent types of hierar
hies 
an be distinguished [4℄:{ s
ale hierar
hies{ abstra
tion hierar
hies.GWNs allow an abstra
tion hierar
hy of the 
oded data to some degree [7℄. Anabstra
tion hierar
hy implies that the image 
an be 
onsidered as an expansioninto image primitives, su
h as line or edge segments, that 
an be viewed as
on
eptual building blo
ks forming the image [4℄. In terms of an abstra
tionpyramid, we have the image itself at the �rst level, des
ribed as a 
ombinationof gray value pixels. At the higher 2nd level we have a des
ription of line andedge elements. An example 
an be seen in �g. 2. The �gure shows the image ofa little wooden toy blo
k, on whi
h a Gabor wavelet network was trained. Theleft image shows the positions, s
ales and orientations of the wavelets as littlebla
k line segments. By thresholding the weights, the more \important" waveletsmay be sele
ted, whi
h leads to the right image?. The reason for the behaviorof the Gabor wavelets in �g. 2 is 
lear: odd Gabor wavelet fun
tions show theirhighest impulse response on edge segments that are of the same position and ofthe same orientation as the Gabor wavelet fun
tion itself. Ideally, ea
h Gaborwavelet should be positioned exa
tly on the image line after optimization. Alsoits s
ale and orientation should re
e
t the s
ale and orientation of the imageline. In reality, however, intera
tions with other wavelets of the network haveto be 
onsidered so that the wavelet parameters re
e
t the position, s
ale, andorientation of the image line 
losely, but not pre
isely. This fa
t 
an 
learly beseen in �g. 2.? Sin
e the weights depend on the 
ontrast of the image, they were normalized beforesele
ting the ones with a weight > 0:8. It should be mentioned that this simplepro
eeding is possible only on images with 
lear edges.



2.3 Reparameterization Gabor Wavelet NetworksThe \reverse" task of �nding the position, the s
ale and the orientation of aGWN in a new image is most important. For example, 
onsider an image J thatshows the person of �g. 1, left, possibly distorted aÆnely. Given a 
orrespondingGWN we are interested in �nding the 
orre
t position, orientation and s
alingof the GWN so that the wavelets are positioned on the same fa
ial features asin the original image. An example for this 
an be seen in �g. 1, where in theright image the original positions of the wavelets are marked and in �g. 4, wherein new images the wavelet positions of the reparameterized wavelet network aremarked.Parameterization of a wavelet net is established by using a superwavelet [12℄.De�nition: Let (	;w) be a Gabor wavelet network with	 = ( n1 ; : : : ;  nN )T ,w = (w1; : : : ; wN )T . A superwavelet 	n is de�ned to be a linear 
ombinationof the wavelets  ni su
h that	n(x) =Xi wi ni(SR(x� 
)) ; (3)where the parameters of ve
tor n of superwavelet 	 de�ne the dilation ma-trix S = diag(sx; sy), the rotation matrix R, and the translation ve
tor
 = (
x; 
y)T .A superwavelet	n is again a wavelet [12℄ and in parti
ular a 
ontinuous fun
tionthat has the wavelet parameters dilation, translation and rotation (see se
tion2). Therefore, we 
an handle it in the same way as we handled ea
h singlewavelet in the previous se
tion. For a new image g we may arbitrarily deformthe superwavelet by optimizing its parameters n with respe
t to the energyfun
tion E: E = minn kg �	nk22 (4)Equation (4) de�nes the operatorP	 : IL2(IR2) 7�! IR5 (5)g �! n = (
x; 
y; �; sx; sy) ;where n minimizes the energy fun
tion E of eq. (4). For optimization of thesuperwavelet parameters, we 
an elegantly use the same optimization pro
edureas in se
tion 2. An example of the optimization pro
ess 
an be seen in �g. 3:Shown are the initial values of n, the values after 2 and 4 optimization 
y
les andthe �nal values after 8 
y
les, ea
h marked with the white square. The squarerefers to the inner fa
e region. Its 
enter position marks the 
enter position ofthe 
orresponding superwavelet. The superwavelet used in �g. 3 is Î4 of �g. 1. Afurther example 
an be seen in �g. 4. The 1st and 3rd image have to be 
omparedwith the right image in �g. 1: It 
an be seen that the wavelets are positioned



Fig. 3. The images show the 1st, the 2th(top), the 4th and the 8th (�nal) step (bottom)of the gradient des
ent method optimizing the parameters of a superwavelet. The topleft image shows the initial values with 10 px. o� from the true position, rotated by 10Æand s
aled by 20%. The bottom right image shows the �nal result. As superwavelet,Î4 of �gure 1 was used.
Fig. 4. The images show the positions of ea
h of the 16 wavelets after reparameter-izing the wavelet net (top) and the 
orresponding re
onstru
tion (bottom). The re-
onstru
ted fa
es show the same orientation, position and size as the ones they werereparameterized on.
orre
tly on the same 
orresponding fa
ial features (see �g. 1). The 2nd and 4thimage of �g. 4 shows the re
onstru
tions using the reparameterized GWNs.The reparameterization of the superwavelet 
an be understood as warping,where the original fa
e, represented by the GWN (	;w) is warped onto the newfa
e. This idea is shown in �g. 5. Fig. 5. The two images show the wavelet net Î4;6,repositioned onto the two test images of �g. 4.This demonstrates that the repositioning pro
ess
an be understood as warping the superwaveletonto the new test fa
es.The reparameterization (warping) works quite robust: Using the superwaveletÎ4 or Î4;6, we have found in several experiments on the subje
ts in �g. 4 thatthe initialization of n0 may vary from the 
orre
t parameters by approx. �10 pxin x and y dire
tion, by approx. 20% in s
ale and by approx. �10Æ in rotation(see �g. 3). Of 
ourse, these are only approximate values sin
e they depend onthe number of wavelets used, on the template fa
e and on the s
ale of the usedwavelets. In our 
ase, 10 px. 
orrespond to � 1=3 of the width of the white boxin �g. 3, marking the inner fa
e region.3 Fa
e Re
ognition independent of GestureVarious appli
ations to Gabor Wavelet Networks have been dis
ussed, amongthem aÆne real time fa
e tra
king [6℄ and eÆ
ient head pose estimation [5℄.



In this se
tion we will present some promising fa
e re
ognition results whileusing GWNs for the fa
e representation. By training a GWN (	;w) on an imagef and applying the GWN to a test image g, the re
ognition is established in twosteps:1. optimal repositioning of the GWN by using the positioning operator P	2. 
al
ulating the optimal weights for the optimally repositioned GWN by usingthe proje
tion operator T	.This 
an be written 
on
isely as T P(g)	 (g) = ĝ (6)This 
omposite operator leads to an image very similar to g if, and only if, gis well 
hara
terized by the GWN of the operator T	. This means that (6) isapproximately the identity, if, and only if, g � f or g = 0?? (images are assumedto be DC-free). Assuming, without loss of generality, that g 6= 0, we 
an write:T P(g)	 (g) = � ĝ � g i� g � fĝ 6= g i� g 6= f (7)Using eq. (7) it is straight forward to de�ne the following distan
e measure:d	(f; g) = kT P(g)	 (f)� T P(g)	 (g)k22 (8)The distan
e measurement d	(f; g) is de�ned to be the sum of squared dif-feren
es between the wavelet representations of the training image f that iswarped onto the test image g, whi
h is T P(g)	 (f), and the wavelet representationof the test image g, T P(g)	 (g), represented with the wavelet set 	 of a GWNthat was trained on image f . In �g. 6, an example is shown: the image T P(g)	 (f)(left), and the image T P(g)	 (g)(right). The distan
e d	 is given to be the sumof squared di�eren
es between the two shown images. In the ideal 
ase whereFig. 6. The two images show the original im-age f , warped onto the image g, T P(g)	 (f);(left) and the result of the operator T P(g)f (g)applied on the image g. The distan
e d	(f; g)of images f , g, is de�ned to be the sum ofsquared di�eren
es between these two shownimages.the test image g is the same as the training image f , the d	 distan
e should bezero. Note that with T P(g)	 (f) the wavelet representation of f is warped ontoimage g so that, when doing a pixel wise 
omparison of the two images, only
orresponding image features are 
ompared.?? This is the trivial 
ase where all weights are zero.



Experiments were 
arried out on the images of the Yale Fa
e Database [14℄.The database 
onsists of 15 di�erent subje
ts that show eight di�erent ges-tures. It was the goal to re
ognize ea
h subje
t independent of the gesture. Toa
hieve this we trained a wavelet networks for ea
h individual where the train-ing was done on the image showing the \normal" expression. We thus endedup with 15 di�erent wavelet networks or, respe
tively, with 15 di�erent opera-tors T	i ; i = 1; : : : ; 15. In �g. 7 and 8, example results (bottom rows) of theoperator appli
ation T P(J)	01 (J) on the di�erent gestures and subje
ts (top rows)are shown. The wavelet network applied is \subje
t01", the one in �g. 1, left,or, respe
tively, the very left one in �g. 7. The greater the di�eren
e betweenthe original image and operator result of T P , the less is the similarity and theless is the probability that the test image and the training image show the samesubje
t. This 
an 
learly be seen in the two sample �gures. Whereas in �g. 7, thesimilarity is always good, the operator results of T P in �g. 8 are all bad. Table 3shows the 
omputing results of the distan
e d	 on the images of the database.
normal glasses happy sad sleepyFig. 7. Various images of \subje
t01" (top) and the results of the appli
ation of theoperator T P(g)	 (g). (bottom). To 
al
ulate these examples, the GWN of �g. 1, Î4;6, with52 wavelets was applied. The \normal" image was taken to be the training image f .
subje
t02 subje
t03 subje
t05 subje
t06 subje
t11Fig. 8. Various subje
ts of the database (top) and the results of the appli
ation of theoperator T P(g)	 (g)(bottom). To 
al
ulate these examples, the GWN of �g. 1, Î4;6, with52 wavelets was applied. The \normal" image in �g. 7 was taken to be the trainingimage f .
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1=d	

Fig. 9. The table showsthe distan
e measure-ments 1=d	 of the imagesof the various subje
tsin the fa
e database tothe referen
e image in�g. 7, left. Higher valuesindi
ate a higher simi-larity between the two
ompared images. Onesees that the values inthe left part of the tables(same subje
t) indi
atea mu
h higher similaritythan the values in theright part of the table(di�erent subje
ts).The results of table 3 show a 
lear di�eren
e for d	 between probe imagesthat show the original subje
t with di�erent gestures and probe images thatshow other subje
ts. With this we rea
hed a �nal re
ognition rate of 96% on theYale Fa
e Database [14℄. See [1℄ for a 
omparison with other approa
hes.With minor algebrai
 transformations, eq. (8) 
an be rewritten su
h that thedistan
e d	 
an be written solely on the basis of the 
omputed weight ve
tors:d	(f; g) = (v �w)t(	i;j)(v �w) ;where v and w is the weight ve
tor with respe
t to 	 of f and of g, respe
tively.The matrix (	i;j) = (h i;  ji) is the same above in se
tion 2.1.4 Con
lusionsIn this paper we introdu
ed as the major 
ontribution the Gabor wavelet networkfor obje
t and image representation. We gave an overview of several experimentsin order to show that the GWN is indeed a representation that is able to preservea maximum of image information be
ause it re
e
ts pre
isely the properties ofan obje
t by a 
areful sele
tion of wavelet parameters. The use of low-frequentialGabor fun
tions ensures robustness to minor lo
al 
hanges. As a ni
e side e�e
t,GWNs a
hieve a great data redu
tion. For example, in all our experiments weused for ea
h GWN 52 wavelets, ea
h de�ned by 5 parameters, so that ea
hGWN needed an amount of 1040 bytes of memory. Our experimental results arequite promising. In fa
t, they show quite impressively that it is important for anobje
t representation to re
e
t the spe
i�
 individual properties of the obje
t
lass that should be represented. This ensures that di�erent individuals 
an bedistinguished e�e
tively independent from their gesture. The experiments were




arried out on a small fa
e database and a generalization to larger databases isdiÆ
ult.A
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