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Abstract. The choice of the object representation is crucial for an effec-
tive performance of cognitive tasks such as object recognition, fixation,
etc. In this paper we want to introduce the Gabor wavelet network for an
effective object representation. The Gabor wavelet network has several
advantages such as invariance to some degree with respect to translation,
rotation and dilation. Furthermore, it has the ability to generalize and to
abstract from the training data and to assure, for a given network size,
that a maximum of object information is coded. We will show in the ex-
periments how Gabor wavelet networks can be used for face recognition
applications.
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1 Introduction

It is a crucial question how object information, or image information in general,
should be represented for cognitive systems to perform effectively, because it is
the representation that decides on the distance and similarity measurements.
When dealing with digital images most types of representations that encode the
image information result in a data reduction and it is again the type of infor-
mation representation that decides which image information is relevant, i.e. is
encoded, and which is not. Other important topics in this context are invariance
properties and the question, whether the information is encoded globally or lo-
cally. For example, principle component analysis [10], which is very often applied
in face recognition problems, has no invariance with respect to translation, rota-
tion or scale. Also information is encoded globally, which means that for example
an image is always taken as a whole and local changes in the image result in a
large global change of the representation. On the other hand, the bunch graph
approach [13], a very successful representation approach for face recognition, is
invariant to some degree with respect to translation, rotation and scale. In this
approach the information is represented locally, which means that a local change
in the image results in a local change in the representation. Another aspect is
that the type of information representation decides on the possibility to abstract
from the image data to a possibly symbolic representation of an object.



In this paper we want to present an object representation that is based on
Gabor wavelet networks and superwavelets. Gabor wavelet networks have several
advantages: by their very nature, Gabor wavelet networks (GWNs) are invari-
ant to some degree to affine deformations and illumination changes. Further-
more, GWNSs represent object features in a local manner, and unlike the discrete
wavelet representation, the Gabor wavelet network uses wavelets who'’s param-
eters are chosen from a continuous parameter space (the phase space). This
allows each wavelet to adapt its scale, orientation and position optimally to the
structure of the object on which the wavelet network is trained. This ensures, by
using a given number of Gabor wavelets, that a maximum of image information
is preserved. For object recognition purposes this is the most important aspect.

A GWN has further conceptual advantages: using a small number of Gabor
wavelets, the GWN is capable to generalize. As more and more Gabor wavelets
are used, the GWN becomes more and more specific. In this sense the GWN
behaves like an RBF network, that allows a generalization of the training data
to some degree while using only a small set of basis functions. As the number
of basis functions increases, the RBF network becomes overtrained, and so does
the GWN.

The GWN even seems to allow an abstraction hierarchy. An abstraction
hierarchy implies that the image can be considered as an expansion into image
primitives, which can be viewed as conceptual building blocks forming the image
[4]. This gives rise to the hope that one might find a symbolic representation of
an object that is represented by a GWN.

In the following section we will give an extensive introduction to GWNs.
Also, we will discuss each single point mentioned above, including the invari-
ance properties, the generalization capability, the abstraction capability and the
specificity of the wavelet parameters for the object representation. In the exper-
imental section we will show how GWNs can be used for face recognition. In the
last section we will conclude with some final remarks.

2 Introduction to Gabor Wavelet Networks

In this section we want to propose, as a major contribution of this work, the Ga-
bor Wavelet Network for image representation. The idea of the wavelet network
is inspired by [15], and the use of Gabor functions is inspired by the fact that
they provide the best possible trade off between spatial resolution and frequency
resolution. Furthermore, the Gabor filters are recognized to be good feature
detectors [9]. An image representation with Gabor Wavelet Networks has the
advantage of being sparser than the Gabor jet representation [13]. Yet, it allows
to encodes almost the entire image information and allows a good reconstruction.



To define a GWN, we start out, generally speaking, by taking a family of N
odd Gabor wavelet functions ¥ = {¢,,...,¢¥ny } of the form
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with n = (¢, ¢y,0,82,5,)7. Here, ¢, ¢, denote the translation of the Gabor
wavelet, s;, s, denote the dilation and 6 denotes the orientation. The param-
eters n; (translation, orientation and dilation) of the wavelets may be chosen
arbitrarily at this point. According to [15], any function f € IL*(IR*) can be
represented by a wavelet network. We are therefore going to interpret the image
f to be a function of the space IL2(IR?) and assume further, without loss of
generality that f is DC-free. In order to find the GWN for image f we minimize
the energy function
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with respect to the weights w; and the wavelet parameters n;. Equation (2) says
that the w; and n; are optimized (i.e. translation, dilation and orientation of
each wavelet are chosen) such that the image f is optimally approximated by
the weighted sum of Gabor wavelets ¢,,,. We therefore define a Gabor wavelet
network as follows:

Definition: Let ¢y,,,i =1,..., N be a set of Gabor wavelets, f a DC-free image
and w; and n; chosen according to the energy function (2). The two vectors
¥ = (Y-, ¥ny) T and w = (wy,...,wy)7T define then the Gabor wavelet
network (¥, w) for image f.

The parameters n; are chosen from continuous phase space and the Gabor
wavelets are positioned with sub-pixel accuracy. This is precisely the main advan-
tage over the discrete approach [2; 8]. While in the case of a discrete phase space
local image structure has to be approximated by a combination of wavelets, a
single wavelet can be chosen selectively in the continuous case to reflect precisely
the local image structure. This assures that a maximum of the image informa-
tion is encoded. It also leads to an almost symbolic abstraction [4] of the image
data, as we will see later.

Using the optimal wavelets ¥ and weights w of the Gabor wavelet network
of an image f, f can be (closely) reconstructed by a linear combination of the
weighted wavelets:

N
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Fig. 1. The left image shows the original face image I, the center image shows its
reconstruction I using formula (3) with an optimal wavelet net ¥ of just N = 52
odd Gabor wavelets, distributed over the inner face region. The right image shows the
optimal positions of the first 16 Gabor wavelets.

Of course, the quality of the image representation and of the reconstruction
depends on the number N of wavelets used. An example reconstruction can be
seen in fig. 1: N = 52 wavelets are distributed over the inner face region of the
left image I by the minimization formula (2). The reconstruction I with formula
(3) is shown in the center image. Note that the Gabor wavelets are continuous
functions that interpolate the discrete image they are trained on. This fact will
be of great importance later when we need to deform I affinely.

Minimizing equation (2) is crucial, because finding a global minimum is an
inefficient task. In order to find a GWN (¥, w) for a discrete gray value image
I, we use the Levenberg-Marquard gradient descent method [11]. This method
might get stuck in local minima and a careful selection of the initial parameters
is therefore important. We use prior knowledge about significant image features
to allow a task oriented optimization.

2.1 Direct Calculation of Weights

Gabor wavelet functions are not orthogonal. For a given family ¥ of Gabor
wavelets it is not possible to calculate a weight w; directly by a simple projection
of the Gabor wavelet t,,; onto the image. In [2; 3] it was therefore proposed to use
eq. (2) to find the optimal weight w; for each fixed wavelet. Because optimization
is a slow process, we want to suggest a direct calculation of the correct weights
w; by projecting the dual wavelets @En The wavelet 1[1,11. is the dual wavelet to
the wavelet vy, if < wm,d;nj >=4; ;. With W = (Yn,,...,0ny)", we can write

[<\P,\i’>] = I and we find ¢, to be P, = > (¥ ;)" tn;, where (¥; ;) =
((¥i,1;)). This allows us to define the operator

J

Te : IL*(IR?) —— IL?(IR?)

as follows: Given a set ¥ of optimal wavelets of a GWN, trained on the function
f, the operator Tg realizes an orthogonal projection of a function g onto the



Y Fig. 2. The figure shows images of a wooden toy
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vector space that is spanned by ¥ (see (3)), i.e.

N
9="Tw(9) Zwﬂ/}m with w = ¥g .
i=1
Clearly, by definition (¥ is chosen optimal for f), Te (f) = f ~ f. Furthermore,
for any € > 0 we find a network size N such that ||f — 7w (f)]|?> < € and, because
of the continuity of Ty, we also find for any € > 0 a § such that |[(f+6) — Tw (f +
N? <e.

2.2 Symbolic Abstraction
Generally, two different types of hierarchies can be distinguished [4]:

— scale hierarchies
— abstraction hierarchies.

GWNs allow an abstraction hierarchy of the coded data to some degree [7]. An
abstraction hierarchy implies that the image can be considered as an expansion
into image primitives, such as line or edge segments, that can be viewed as
conceptual building blocks forming the image [4]. In terms of an abstraction
pyramid, we have the image itself at the first level, described as a combination
of gray value pixels. At the higher 2nd level we have a description of line and
edge elements. An example can be seen in fig. 2. The figure shows the image of
a little wooden toy block, on which a Gabor wavelet network was trained. The
left image shows the positions, scales and orientations of the wavelets as little
black line segments. By thresholding the weights, the more “important” wavelets
may be selected, which leads to the right image*. The reason for the behavior
of the Gabor wavelets in fig. 2 is clear: odd Gabor wavelet functions show their
highest impulse response on edge segments that are of the same position and of
the same orientation as the Gabor wavelet function itself. Ideally, each Gabor
wavelet should be positioned exactly on the image line after optimization. Also
its scale and orientation should reflect the scale and orientation of the image
line. In reality, however, interactions with other wavelets of the network have
to be considered so that the wavelet parameters reflect the position, scale, and
orientation of the image line closely, but not precisely. This fact can clearly be
seen in fig. 2.

* Since the weights depend on the contrast of the image, they were normalized before
selecting the ones with a weight > 0.8. It should be mentioned that this simple
proceeding is possible only on images with clear edges.



2.3 Reparameterization Gabor Wavelet Networks

The “reverse” task of finding the position, the scale and the orientation of a
GWN in a new image is most important. For example, consider an image J that
shows the person of fig. 1, left, possibly distorted affinely. Given a corresponding
GWN we are interested in finding the correct position, orientation and scaling
of the GWN so that the wavelets are positioned on the same facial features as
in the original image. An example for this can be seen in fig. 1, where in the
right image the original positions of the wavelets are marked and in fig. 4, where
in new images the wavelet positions of the reparameterized wavelet network are
marked.

Parameterization of a wavelet net is established by using a superwavelet [12].

Definition: Let (¥, w) be a Gabor wavelet network with ¥ = (¢, , .-, ¥ny) T,

of the wavelets ¢y, such that

U (x) = Z witn; (SR(x —¢)) , (3)

where the parameters of vector n of superwavelet ¥ define the dilation ma-
trix S = diag(ss,sy), the rotation matrix R, and the translation vector

c= (cmcy)T

A superwavelet W, is again a wavelet [12] and in particular a continuous function
that has the wavelet parameters dilation, translation and rotation (see section
2). Therefore, we can handle it in the same way as we handled each single
wavelet in the previous section. For a new image g we may arbitrarily deform
the superwavelet by optimizing its parameters n with respect to the energy
function E:

B = min [lg — a3 ()
Equation (4) defines the operator

Py : L*(R?) +— R’ (5)
g —n=/(cy,¢y,0,5;,5,) ,

where n minimizes the energy function F of eq. (4). For optimization of the
superwavelet parameters, we can elegantly use the same optimization procedure
as in section 2. An example of the optimization process can be seen in fig. 3:
Shown are the initial values of n, the values after 2 and 4 optimization cycles and
the final values after 8 cycles, each marked with the white square. The square
refers to the inner face region. Its center position marks the center position of
the corresponding superwavelet. The superwavelet used in fig. 3 is Iy of fig. 1. A
further example can be seen in fig. 4. The 1st and 3rd image have to be compared
with the right image in fig. 1: It can be seen that the wavelets are positioned



Fig. 3. The images show the 1st, the 2th(top), the 4th and the 8th (final) step (bottom)
of the gradient descent method optimizing the parameters of a superwavelet. The top
left image shows the initial values with 10 px. off from the true position, rotated by 10°
and scaled by 20%. The bottom right image shows the final result. As superwavelet,
f4 of figure 1 was used.

Fig. 4. The images show the positions of each of the 16 wavelets after reparameter-
izing the wavelet net (top) and the corresponding reconstruction (bottom). The re-
constructed faces show the same orientation, position and size as the ones they were
reparameterized on.

correctly on the same corresponding facial features (see fig. 1). The 2nd and 4th
image of fig. 4 shows the reconstructions using the reparameterized GWNs.

The reparameterization of the superwavelet can be understood as warping,
where the original face, represented by the GWN (¥, w) is warped onto the new
face. This idea is shown in fig. 5.

Fig. 5. The two images show the wavelet net f4,6,
repositioned onto the two test images of fig. 4.
This demonstrates that the repositioning process
can be understood as warping the superwavelet
onto the new test faces.

The reparameterization (warping) works quite robust: Using the superwavelet
I, or f4,6, we have found in several experiments on the subjects in fig. 4 that
the initialization of ng may vary from the correct parameters by approx. £10 px
in x and y direction, by approx. 20% in scale and by approx. £10° in rotation
(see fig. 3). Of course, these are only approximate values since they depend on
the number of wavelets used, on the template face and on the scale of the used
wavelets. In our case, 10 px. correspond to & 1/3 of the width of the white box
in fig. 3, marking the inner face region.

3 Face Recognition independent of Gesture

Various applications to Gabor Wavelet Networks have been discussed, among
them affine real time face tracking [6] and efficient head pose estimation [5].



In this section we will present some promising face recognition results while
using GWNs for the face representation. By training a GWN (¥, w) on an image
f and applying the GWN to a test image g, the recognition is established in two
steps:

1. optimal repositioning of the GWN by using the positioning operator Py
2. calculating the optimal weights for the optimally repositioned GWN by using
the projection operator 7Tg.

This can be written concisely as

Ta W (9) =g (6)

This composite operator leads to an image very similar to g if, and only if, g
is well characterized by the GWN of the operator 7g. This means that (6) is
approximately the identity, if, and only if, g & f or ¢ = 0** (images are assumed
to be DC-free). Assuming, without loss of generality, that g # 0, we can write:

g grygiff g~
’ff"“w:{Z#ZiffZ#? (7)

Using eq. (7) it is straight forward to define the following distance measure:

de(f.9) = Tg W (f) — Tg ()3 8)

The distance measurement dw (f, g) is defined to be the sum of squared dif-
ferences between the wavelet representations of the training image f that is

warped onto the test image g, which is T;)(g) (f), and the wavelet representation
of the test image g, ’7"17,3(9)(9)7 represented with the wavelet set ¥ of a GWN
that was trained on image f. In fig. 6, an example is shown: the image 7-‘17,3(9) ()

(left), and the image 7-‘17’3(9) (g)(right). The distance dg is given to be the sum
of squared differences between the two shown images. In the ideal case where

Fig. 6. The two images show the original im-
age f, warped onto the image g, T\f(g)(f),
(left) and the result of the operator Tfp(g)(g)
applied on the image g. The distance dw (f, g)
of images f, g, is defined to be the sum of
squared differences between these two shown
images.

the test image g is the same as the training image f, the dg distance should be
zero. Note that with T\f(g)(f) the wavelet representation of f is warped onto
image ¢ so that, when doing a pixel wise comparison of the two images, only
corresponding image features are compared.

** This is the trivial case where all weights are zero.



Experiments were carried out on the images of the Yale Face Database [14].
The database consists of 15 different subjects that show eight different ges-
tures. It was the goal to recognize each subject independent of the gesture. To
achieve this we trained a wavelet networks for each individual where the train-
ing was done on the image showing the “normal” expression. We thus ended
up with 15 different wavelet networks or, respectively, with 15 different opera-
tors Tw,, ¢ = 1,...,15. In fig. 7 and 8, example results (bottom rows) of the
operator application 7"17,30(1]) (J) on the different gestures and subjects (top rows)
are shown. The wavelet network applied is “subject01”, the one in fig. 1, left,
or, respectively, the very left one in fig. 7. The greater the difference between
the original image and operator result of 77 , the less is the similarity and the
less is the probability that the test image and the training image show the same
subject. This can clearly be seen in the two sample figures. Whereas in fig. 7, the
similarity is always good, the operator results of 77 in fig. 8 are all bad. Table 3
shows the computing results of the distance dg on the images of the database.

2

normal glasses happy sleepy

Fig. 7. Various images of “subject01” (top) and the results of the application of the
operator Tf(g)(g). (bottom). To calculate these examples, the GWN of fig. 1, 11,6, with
52 wavelets was applied. The “normal” image was taken to be the training image f.

subject02 subject03 subject05 subject06 subject1l

Fig. 8. Various subjects of the database (top) and the results of the application of the
operator T\f(g)(g)(bottom). To calculate these examples, the GWN of fig. 1, I4,6, with
52 wavelets was applied. The “normal” image in fig. 7 was taken to be the training
image f.



Fig. 9. The table shows
0014 the distance measure-
ments 1/dw of the images
of the various subjects
oot in the face database to
the reference image in
fig. 7, left. Higher values
0c0s indicate a higher simi-
larity between the two
compared images. One
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oon2 sees that the values in
. the left part of the tables
f@és&é FAAES PSS SIS (same subject) indicate
sy zﬁ”f"}@“& & @o@:@&‘;&ﬁ FFFES S S a much higher similarity

than the values in the
right part of the table
(different subjects).

The results of table 3 show a clear difference for dg between probe images
that show the original subject with different gestures and probe images that
show other subjects. With this we reached a final recognition rate of 96% on the
Yale Face Database [14]. See [1] for a comparison with other approaches.

With minor algebraic transformations, eq. (8) can be rewritten such that the
distance dyg can be written solely on the basis of the computed weight vectors:

dw (f g) = (V - w)t(‘pi;]')(v - W) !

where v and w is the weight vector with respect to ¥ of f and of g, respectively.
The matrix (¥; ;) = ({(¢;,1;)) is the same above in section 2.1.

4 Conclusions

In this paper we introduced as the major contribution the Gabor wavelet network
for object and image representation. We gave an overview of several experiments
in order to show that the GWN is indeed a representation that is able to preserve
a maximum of image information because it reflects precisely the properties of
an object by a careful selection of wavelet parameters. The use of low-frequential
Gabor functions ensures robustness to minor local changes. As a nice side effect,
GWNs achieve a great data reduction. For example, in all our experiments we
used for each GWN 52 wavelets, each defined by 5 parameters, so that each
GWN needed an amount of 1040 bytes of memory. Our experimental results are
quite promising. In fact, they show quite impressively that it is important for an
object representation to reflect the specific individual properties of the object
class that should be represented. This ensures that different individuals can be
distinguished effectively independent from their gesture. The experiments were



carried out on a small face database and a generalization to larger databases is
difficult.
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