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Abstract

In this article we want to introduce first the Gabor wavelet network as a model
based approach for an effective and efficient object representation. The Ga-
bor wavelet network has several advantages such as invariance to some de-
gree with respect to translation, rotation and dilation. Furthermore, the use
of Gabor filters ensured that geometrical and textural object features are en-
coded. The feasibility of the Gabor filters as a model for local object fea-
tures ensures a considerable data reduction while at the same time allowing
any desired precision of the object representation ranging from a sparse to a
photo-realistic representation. In the second part of the paper we will present
an approach for the estimation of a head pose that is based on the Gabor
wavelet networks.

1 Introduction

Recently, model-based approaches for the recognition and the interpretation of images of
variable objects, like the bunch graph approach, PCA, eigenfaces and active appearance
models, have received considerable interest [24; 14; 4; 6].These approaches achieve
good results because solutions are constrained to be valid instances of a model. In these
approaches, the term “model-based” is understood in the sense that a set of training ob-
jects is given in the form of gray value pixel images while themodel “learns” the variances
of the gray values (PCA, eigenfaces) or, respectively, the Gabor filter responses (bunch
graph). With this, model knowledge is given by the variancesof pixel gray values, which
means that the actual knowledge representation is given on apixel basis, that is indepen-
dent from the objects themselves.

In this work we want to introduce a novel approach for object representation that is
based on Gabor Wavelet Networks. Gabor Wavelet Networks (GWN) are combining the
advantages of RBF networks with the advantages of Gabor wavelets: GWNs represent
an object as a linear combination of Gabor wavelets where theparameters of each of the
Gabor functions (such as orientation and position and scale) are optimized to reflect the
particular local image structure. Gabor wavelet networks have several advantages:

1. By their very nature, Gabor wavelet networks are invariant to some degree to affine
deformations and homogeneous illumination changes,



2. Gabor filters are good feature detectors [13] and the optimized parameters of each
of the Gabor wavelets are directly related to the underlyingimage structure,

3. the weights of each of the Gabor wavelet are directly related to their filter responses
and with that they are also directly related to the underlying local image structure,

4. the precision of the representation can be varied toany desired degree ranging from
a coarse representation to an almost photo-realistic one bysimply varying the num-
ber of used wavelets.

We will discuss each single point in section 2.
The use of Gabor filters implies a model for the actual representation of the object

information. In fact, as we will see, the GWN represents object information as a set of
local image features, which leads to a higher level of abstraction and to a considerable
data reduction. Both, textural and geometrical information is encoded at the same time,
but can be split to some degree.

The variability in precision and the data reduction are the most important advantage
in this context, that has several consequences:

1. Because the parameters of the Gabor wavelets and the weights of the network are
directly related to the structure of the training image and the Gabor filter responses,
a GWN can be seen as a task oriented optimal filter bank: given the number of
filters, a GWN definesthat set of filters that extracts the maximal possible image
information.

2. For real-time applications one wants to keep the number offiltrations low to save
computational resources and it makes sense in this context to relate the number of
filtrations to the amount of image information really neededfor a specific task: In
this sense, it is possible to relate the representation precision to the specific task
and to increment the number of filters if more information is needed. This, we call
progressive attention [26].

3. The training speed of neural networks, that correlates with the dimensionality of
the input vector.

The progressive attention is related to theincremental focus of attention (IFA) for
tracking [19] or the attentive processing strategy (GAZE) for face feature detection [8].
Both works are inspired by [20] and relate features to scalesby using a coarse-to-fine
image resolution strategy. In contrary, theprogressive attention should not relate features
to scale but to the object itself that is described by these features. In this sense, the object
is considered as a collection of image features and the more information about the object
is needed to fulfill a task the more features are extracted from the image.

In the following section we will give a short introduction toGWNs. Also, we will
discuss each single point mentioned above, including the invariance properties, the ab-
straction properties and specificity of the wavelet parameters for the object representation
and a task oriented image filtration.

In section 3 we will present the results of our pose estimation experiment where we
exploited the optimality of the filter bank and theprogressive attention property to speed
up the response time of the system and to optimize the training of the neural network.

In the last section we will conclude with some final remarks.



Figure 1: The very right image shows the original face imageI , the other images show
the imageI , represented with 16, 52, 116 and 216 Gabor wavelets (left toright)

2 Introduction to Gabor Wavelet Networks
The basic idea of the wavelet networks is first stated by [27],and the use of Gabor func-
tions is inspired by the fact that they are recognized to be good feature detectors [13].

To define a GWN, we start out, generally speaking, by taking a family ofN odd Ga-
bor wavelet functions	 = f n1 ; : : : ;  nNg of the form n�x; y� == exp�� 12 hsx ((x� x) os � � (y � y) sin �) i2+hsy ((x� x) sin � + (y � y) os �) i2��sin�sx ((x� x) os � � (y � y) sin �)� , with n = (x; y; �; sx; sy)T . Here,x, y de-
note the translation of the Gabor wavelet,sx, sy denote the dilation and� denotes the
orientation. The choice ofN is arbitrary and is related to the maximal representation
precision of the network. The parameter vectorn (translation, orientation and dilation) of
the wavelets may be chosen arbitrarily at this point. In order to find the GWN for imageI , the energy functional for wavelet networks:E = minni;wi for all i kI �Pi wi nik22
is minimized with respect to the weightswi and the wavelet parameter vectorni. We
therefore define a Gabor wavelet network as follows:

Definition: Let  ni , i = 1; : : : ; N be a set of Gabor wavelets,I a DC-free image
andwi andni chosen according to the above energy functional. The two vectors	 = ( n1 ; : : : ;  nN )T andw = (w1; : : : ; wN )T define then theGabor wavelet
network (	;w) for imagef .

The parameter vectorsni are chosen fromcontinuous phase spaceR5 [5] and the Ga-
bor wavelets are positioned with sub-pixel accuracy. This is precisely the main advantage
over the discrete approach [5; 12]. While in case of a discrete phase space local image
structure has to be approximated by a combination of wavelets, asingle wavelet can be
chosen selectively in the continuous case to reflectprecisely the local image structure.
This assures that a maximum of the image information is encoded.

Using the optimal wavelets	 and weightsw of the Gabor wavelet network of an im-
agef , I can be (closely) reconstructed by a linear combination of the weighted wavelets:Î = PNi=1 wi ni = 	Tw. Of course, the quality of the image representation and of
the reconstruction depends on the numberN of wavelets used and can be varied to reach
almost any desired precision. In section 2.2 we will discussthe relation betweenI andÎ
in more detail. An example reconstruction can be seen in fig. 1: A family of 216 wavelets
has been distributed over the inner face region of the very right imageI by the energy
functional. Different reconstructionŝI with variableN are shown in the first four images.

A further example can be seen in fig. 2: The left image shows a reconstruction with
16 wavelets and the right image indicates the correspondingwavelet positions. It should
be pointed out that at each indicated wavelet position, justone single wavelet is located.



Figure 2: The images show a Gabor wavelet network
with N = 16 wavelets after optimization (left) and
the indicated positions of each single wavelet(right).

Figure 3: The figure shows images of a wooden toy
block on which a GWN was trained. The black line
segments sketch the positions, sizes and orientations
of all the wavelets of the GWN (left), and of some
automatically selected wavelets (right).

2.1 Feature Representation with Gabor Wavelets
It was mentioned in the introduction that the Gabor waveletsare recognized to be good
feature [13] detectors, that are directly related to the local image features by the energy
functional. This means that an optimized wavelet has e.g. ideally the exact position
and orientation of a local image feature. An example can be seen in fig. 3. The figure
shows the image of a little wooden toy block, on which a Gabor wavelet network was
trained. The left image shows the positions, scales and orientations of the wavelets as
little black line segments. By thresholding the weights, the more “important” wavelets
may be selected, which leads to the right image. Ideally, each Gabor wavelet should be
positionedexactly on the image line after optimization. Furthermore, since large weights
indicate that the corresponding wavelets represents an edge segment (see sec. 2.2), these
wavelets encode local geometrical object information. In reality, however, interactions
with other wavelets of the network have to be considered so that most wavelet parameters
reflect the position, scale, and orientation of the image line closely, but not precisely. This
fact is clearly visible in fig. 3. As it can be seen in fig. 1 an object can be represented
almost perfectly with a relatively small set of wavelets. The considerable data reduction is
achieved by the introduction of the model for local image primitives, i.e. the introduction
of Gabor wavelets.

The use of Gabor filters as a model for local object primitivesleads to a higher level
of abstraction where object knowledge is represented by a set of local image primitives.
The Gabor wavelets in a network that represent edge segmentscan be easily identified.
How to identify wavelets, however, that encode specific textures is not really clear, yet,
and subject to future investigation.

2.2 Direct Calculation of Weights and Distances
As mentioned earlier, the weightswi of a GWN are directly related to the filter responses
of the Gabor filters ni on the training image.

Gabor wavelet functions are not orthogonal. For a given family 	 of Gabor wavelets
it is therefore not possible to calculate a weightwi directly by a simple projection of
the Gabor wavelet ni onto the image. Instead one has to consider the family of dual
wavelets~	 = f ~ n1 : : : ~ nNg. The wavelet~ nj is the dual wavelet to the wavelet ni
iff h ni ; ~ nj i = Æi;j . With ~	 = ( ~ n1 ; : : : ; ~ nN )T , we can write

hh	; ~	ii = 1I. In

other words:wi = hI; ~ nii . We find ~ ni to be ~ ni = Pj �	�1�i;j  nj , where	i;j =h ni ;  nj i.
The equationwi = hI; ~ nii allows us to define the operatorT	 : L2 (R2 ) 7�!<( n1 ; : : : ;  nN ) > as follows: Given a set	 of optimal wavelets of a GWN, the operator



T	 realizes an orthogonal projection of a functionJ onto the closed linear span of	 i.e.Ĵ = T	(J) = J ~		 = PNi=1 wi ni , with w = J ~	.

2.3 Reparameterization of Gabor Wavelet Networks
The “reverse” task of finding the position, the scale and the orientation of a GWN in a
new image is most important because otherwise the filter responses are without any sense.
Here, PCA, bunch graphs and GWN have similar properties: In case of the PCA and
bunch graph it is important to ensure that corresponding pixels are aligned into a common
coordinate system, in case of the GWN, local image primitives have to be aligned. For
example, consider an imageJ that shows the person of fig. 1, left, possibly distorted
affinely. Given a corresponding GWN we are interested in finding the correct position,
orientation and scaling of the GWN so that the wavelets are positioned on the same facial
features as in the original image, or, in other words, how should the GWN be deformed
(warped) so that it is aligned with the coordinate system of the new object. An example for
a successful warping can be seen in fig. 2, where in the right image the wavelet positions
of theoriginal wavelet network are marked and in fig. 4, where in new images the wavelet
positions of thereparameterized Gabor wavelet network are marked. Parameterization of

Figure 4: The images show the positions of each of the 16 wavelets after reparameterizing
the wavelet net and the corresponding reconstruction. The reconstructed faces show the
same orientation, position and size as the ones they were reparameterized on.

a GWN is established by using asuperwavelet [18]:

Definition: Let (	;w) be a Gabor wavelet network with	 = ( n1 ; : : : ;  nN )T , w =(w1; : : : ; wN )T . A superwavelet 	n is defined to be a linear combination of the
wavelets ni such that	n(x) =Pi wi ni(SR(x� )) , where the parameters of
vectorn of superwavelet	 define the dilation matrixS = diag(sx; sy), the rotation
matrixR, and the translation vector = (x; y)T .

A superwavelet	n is again a wavelet (because of the linearity of the sum) and inparticu-
lar a continuous function that has the wavelet parameters dilation, translation and rotation.
Therefore, we can handle it in the same way as we handled each single wavelet in the
previous ssection. For a new imageJ we may arbitrarily deform the superwavelet by op-
timizing its parametersn with respect to the energy functionalE: E = minn kJ �	nk22
The above energy functional defines the operatorP	 : L2 (R2 ) 7�! R5 , g �! n =(x; y; �; sx; sy), wheren minimizes the energy functionalE of the above equation. In
the eq. of the operatorP 	 is defined to be a superwavelet. For optimization of the
superwavelet parameters, the same optimization procedureas for the optimization of the
GWNs may be used. An example of an optimization process can beseen in fig. 5: Shown
are the initial values ofn, the values after 2 and 4 optimization cycles of the gradient
decent method and the final values after 8 cycles, each markedwith the white square. The
square marks the inner face region and its center position marks the center position of the



corresponding superwavelet. The superwavelet used in fig. 5is the one of fig. 2, i.e. it is
derived from the person in fig. 1.

Figure 5: The images show the 1st, the 2th, the 4th and the 8th (final) step of the gradient
descent method optimizing the parameters of a superwavelet. The top left image shows
the initial values with 10 px. off from the true position, rotated by10Æ and scaled by20%.
The bottom right image shows the final result. As superwavelet, the GWN of figure 1 was
used.

The image distortions of a planar object that is viewed underorthographic projection
is described by six parameters: translationx, y, rotation�, and dilationsx, sy andsxy.

The reparameterization (warping) works quite robust: Using the superwavelet of fig.
1 we have found in several experiments on the various subjects with� 60 pixels in width
that the initialization ofn0 may vary from the correct parameters by approx.�10 px.
in x andy direction, by approx.20% in scale and by approx.�10Æ in rotation (see
fig. 5). Compared to the AAM, these findings indicate a much better robustness [4].
Furthermore, we found that the warping algorithm convergedin 100% of the cases to the
correct values when applied on thesame individual, independently of pose and gesture.
The tests were done on the images of the Yale face database [22] and on our own images.
The poses were varied within the range of� �20Æ in pan and tilt where all face features
were still visible. The various gestures includednormal, happy, sad, surprised, sleepy,
glasses, wink. The warping on other faces depended certainly on the similarity between
the training person and the test person and on the number of used wavelets. We found
that the warping algorithm always converged correctly on� 80% of the test persons
(including the training person) of the Yale face database. The warping algorithm has also
been successfully applied for a wavelet based affine real-time face tracking application
[11].

2.4 Related Work
There are other models for image interpretation and object representation. Most of them
are based on PCA [9], such as the eigenface approach [21]. Theeigenface approach has
shown its advantages expecially in the context of face recognition. Its major drawbacks
are its sensitivity to perspective deformations and to illumination changes. PCA encodes
textural information only, while geometrical informationis discarded. Furthermore, the
alignment of face images into a common coordinate system is still a problem.

Another PCA based approach is the active appearance model (AAM)[4]. This ap-
proach enhances the eigenface approach considerably by including geometrical informa-
tion. This allows an alignment of image data into a common coordinate system while
the formulation of the alignment technique can be elegantlydone with techniques of the
AAM framework. Also, recognition and tracking applications are presented within this
framework [6]. An advantage of this approach was demonstrated in [4]: they showed
the ability of the AAM to model, in a photo-realistic way, almost any face gesture and



Figure 6: The left image shows the original doll face
image I , the right image shows its reconstructionÎ4;6 using the reconstruction formula with an optimal
wavelet net	 of justN = 52 odd Gabor wavelets,
distributed over the inner face region. For optimiza-
tion, the scheme that was introduced in section 2 was
applied.

gender. However, this is undoubly an expensive task and one might ask for which task
such a precision is really needed. In fact, a variation to different precision levels in order
to spare computational resources and to restrict considerations to the data actually needed
for a certain application seems not easily possible.

The bunch graph approach [24] is based, on the other hand, on the discrete wavelet
transform. A set of Gabor wavelets are applied at a set of handselected prominent object
points, so that each point is represented by a set of filter responses, calledjet. An object is
then represented by a set of jets, that encode each a single local texture patch of the object.
The jet topology, the so-calledimage graph, encodes geometrical object information. A
precise positioning of the image graph onto the test image isimportant for good matching
results and the positioning is quite a slow process. The feature detection capabilities of the
Gabor filters are not exploited since their parameters are fixed and a variation to different
precision levels has not been considered so far.

3 Pose Estimation with GWN
In this section we will present the approach for the estimation of the pose of a head. There
exist many different approaches for pose estimation, including pose estimation with color
blobs [3; 17], pose estimation applying a geometrical approach [7], stereo information
[25] or neural networks [1], to cite just a few. While in some approaches, such as in [17],
only an approximate pose is estimated, other approaches have the goal to be very precise
so that they could even be used as a basis for gaze detection such as in [23]. The precision
of the geometrical approach [7] was extensively tested and verified in [15]. The minimal
mean pan/tilt error that was reached was> 1:6Æ. In comparison to this, the neural network
approach in [1] reached a minimal pan/tilt error of> 0:64Æ.

The good result in [1] was reached by first detecting the head using a color tracking
approach. Within the detected color blob region,4�4 sets of 4 complex Gabor filters with
the different orientations of0, �4 , �2 and 34� were evenly distributed. The128 coefficients
of these64 complex projections of the Gabor filters were then fed into a neural LLM
network.

At this point, it is reasonable to assume that a precise positioning of the Gabor filters
would result into an even lower mean pan/tilt error. In our experiments we therefore
trained a GWN on an imageI showing a doll’s head. For the training of the GWN we
used again the optimization scheme introduced in section 2 with N = 52 Gabor wavelets
(see fig. 6). In order to be comparable with the approach in [1]we used in our experiments
exactly the same neural network and the same number of training examples as described in
[1]. A subspace variant of the Local Linear Map (LLM) [16] wasused for learning input
- output mappings [2]. The LLM rests on a locally linear (firstorder) approximation of
the unknown functionf : Rn 7! Rk and computes its output as (winner-take-all-variant)y(x) = Abmu(x�bmu)+obmu. Here,obmu 2 Rk is an output vector attached to the best



matching unit (zero order approximation) andAbmu 2 Rk�n is a local estimate of the
Jacobian matrix (first oder term). Centers are distributed by a clustering algorithm. Due to
the first oder term, the method is very sensitive to noise in the input. With a noisy versionx0 = x+ � the output differs byAbmu�, and the LLM largely benefits from projecting to
the local subspace, canceling the noise component of� orthogonal to the input manifoldM . As basis functions normalized Gaussians were used.

The doll’s head was connected to a robot arm, so that the pan/tilt ground truth was
known. During the training and testing, the doll’s head was first tracked using our wavelet
based face tracker [11]. For each frame we proceeded in two steps:

1. optimal reparameterization of the GWN by using the positioning operatorP
2. calculating the optimal weights for the optimally repositioned GWN by using the

projection operatorT .

See fig. 7 for example images. The weight vector that was calculated with the operator

Figure 7: The images show different orientations of the doll’s head. The head is connected
to a robot arm so that the ground truth is known. The white square indicates the detected
position, scale and orientation of the GWN.T was then fed into the same neural network that was used in [1].The training was
done exactly as it was described in [1]: We used 400 training images, evenly distributed
within the range of�20Æ in pan and tilt direction (this is the range where all face features
appeared to be visible). With this, we reached a minimal meanpan/tilt error of0:19Æ for
a GWN with 52 wavelets and a minimal mean pan/tilt error of0:29Æ for a GWN with
16 wavelets. The maximal errors were0:46Æ for 52 wavelets and0:81Æ for 16 wavelets,
respectively. The experiments were carried out on an experimental setup, that has not yet
been integrated into a complete, single system. A complete system should reach a speed
on a 450 MHz Linux Pentium of>� 5 fps for the 52 wavelet network and>� 10 fps for
the 16 wavelet network1.

In comparison, for thegaze detection in [23], 625 training images were used, with a
14-D input vector, to train an LLM-network. The user was advised to fixate a5� 5 grid
on the computer screen. The minimal errors after training for pan and tilt were1:5Æ and2:5Æ, respectively, while the system speed was 1 Hz on a SGI (Indigo, High Impact). A
direct comparison to geometrical approaches is difficult, because, by their very nature, the
cited ones are less precise, less robust but much faster.

4 Conclusions
The contribution of this article is twofold: First, we introduced the concepts of theGabor
wavelet network and theGabor superwavelet that allow a data reduction and the use of
theprogressive attention approach:

1This is a conservative estimation, various optimizations should allow higher frame rates.



� The representation of an object with variable degree of precision, from a coarse
representation to an almost photo-realistic one,� the definition of an optimal set of filters for a selective filtering� the representation of object information on a basis of localimage primitives and� the possibility for affine deformations to cope with perspective deformations.

In the second section we discussed these various propertiesin detail. In [10; 11], GWNs
have already been used successfully for wavelet based affinereal time face tracking and
pose invariant face recognition. It is future work, to fullyexploit the advantages of the
data reduction by reducing considerations to the vector space over the set of Gabor wavelet
networks. And second, we exploited all these advantages of the GWN for the estimation
of the head pose. The experimental results show quite impressively that it is sensible for
an object representation to reflect the specific individual properties of the object rather
than being independent of the individual properties such asgeneral representations are.
This can especially be seen when comparing the presented approach with the one in [1]:
While having used the same experimental setup and the same type of neural network, the
precision of the presented approach is twice as good with only 16 coefficients (vs. 128),
and three times as good with only about half the coefficients.Furthermore, the experi-
ment shows, how the precision in pose estimation and the system speed change with an
increasing number of filters. A controllable variability ofprecision and speed has a major
advantage: The system is able to decide how precise the estimation should be in order
to minimize the probability that the given task is not fulfilled satisfactorily. It is future
work to incorporate the experimental setup into a complete system. An enhancement for
the evaluation of the positions of the irises for a precise estimation of gaze is about to be
tested.
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