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Abstract

In this article we want to introduce first the Gabor waveldtoek as a model
based approach for an effective and efficient object reptaien. The Ga-
bor wavelet network has several advantages such as ingartarsome de-
gree with respect to translation, rotation and dilationrtfrermore, the use
of Gabor filters ensured that geometrical and textural alfgstures are en-
coded. The feasibility of the Gabor filters as a model for latgect fea-
tures ensures a considerable data reduction while at the 8ara allowing
any desired precision of the object representation ranging facsparse to a
photo-realistic representation. In the second part of #pepwe will present
an approach for the estimation of a head pose that is baseldeoBabor
wavelet networks.

1 Introduction

Recently, model-based approaches for the recognitiontenithterpretation of images of
variable objects, like the bunch graph approach, PCA, é&ges and active appearance
models, have received considerable interest [24; 14; 4;Télese approaches achieve
good results because solutions are constrained to be wabahces of a model. In these
approaches, the term “model-based” is understood in theestrat a set of training ob-
jects is given in the form of gray value pixelimages whilethedel “learns” the variances
of the gray values (PCA, eigenfaces) or, respectively, thbds filter responses (bunch
graph). With this, model knowledge is given by the variarafgsixel gray values, which
means that the actual knowledge representation is giverporebbasis, that is indepen-
dent from the objects themselves.

In this work we want to introduce a novel approach for objegprresentation that is
based on Gabor Wavelet Networks. Gabor Wavelet NetworksN§&ve combining the
advantages of RBF networks with the advantages of GaborletaveGWNs represent
an object as a linear combination of Gabor wavelets wherpdh@meters of each of the
Gabor functions (such as orientation and position and seaéeoptimized to reflect the
particular local image structure. Gabor wavelet networkgetseveral advantages:

1. By their very nature, Gabor wavelet networks are invatiasome degree to affine
deformations and homogeneous illumination changes,



2. Gabor filters are good feature detectors [13] and the apditparameters of each
of the Gabor wavelets are directly related to the underliyimage structure,

3. the weights of each of the Gabor wavelet are directlyedl&t their filter responses
and with that they are also directly related to the undegyical image structure,

4. the precision of the representation can be variethyalesired degree ranging from
a coarse representation to an almost photo-realistic osenply varying the num-
ber of used wavelets.

We will discuss each single point in section 2.

The use of Gabor filters implies a model for the actual repradion of the object
information. In fact, as we will see, the GWN represents obijeformation as a set of
local image features, which leads to a higher level of ab8tma and to a considerable
data reduction. Both, textural and geometrical informat®encoded at the same time,
but can be split to some degree.

The variability in precision and the data reduction are thsiimportant advantage
in this context, that has several consequences:

1. Because the parameters of the Gabor wavelets and thetweigtne network are
directly related to the structure of the training image drelGabor filter responses,
a GWN can be seen as a task oriented optimal filter bank: ghvemtmber of
filters, a GWN defineshat set of filters that extracts the maximal possible image
information.

2. For real-time applications one wants to keep the numbélt@tions low to save
computational resources and it makes sense in this comtestate the number of
filtrations to the amount of image information really neeéleda specific task: In
this sense, it is possible to relate the representatiorigiwacto the specific task
and to increment the number of filters if more informationégded. This, we call
progressive attention [26].

3. The training speed of neural networks, that correlatdls thie dimensionality of
the input vector.

The progressive attention is related to thancremental focus of attention (IFA) for
tracking [19] or the attentive processing strategy (GAZar)face feature detection [8].
Both works are inspired by [20] and relate features to scajessing a coarse-to-fine
image resolution strategy. In contrary, fhregressive attention should not relate features
to scale but to the object itself that is described by theagifes. In this sense, the object
is considered as a collection of image features and the mémamation about the object
is needed to fulfill a task the more features are extractad the image.

In the following section we will give a short introduction @WNs. Also, we will
discuss each single point mentioned above, including tharignce properties, the ab-
straction properties and specificity of the wavelet paransdbr the object representation
and a task oriented image filtration.

In section 3 we will present the results of our pose estimatixperiment where we
exploited the optimality of the filter bank and tpeogressive attention property to speed
up the response time of the system and to optimize the tigfithe neural network.

In the last section we will conclude with some final remarks.



Figure 1: The very right image shows the original face imag#he other images show
the imagel, represented with 16, 52, 116 and 216 Gabor wavelets (leifltd)

2 Introduction to Gabor Wavelet Networks

The basic idea of the wavelet networks is first stated by [278, the use of Gabor func-
tions is inspired by the fact that they are recognized to lmldeature detectors [13].

To define a GWN, we start out, generally speaking, by takirenailfy of N odd Ga-
bor wavelet function® = {9y, ,... ,¥n, } Of the formyn (z,y) =

= exp (f% [eT ((z — cz)cosB — (y — cy)sinﬁ)]2+[sy ((z — cz)sin B + (y — cy) cos 9)]2) X

sin (sz ((x — cz)cosf — (y — cy) sin 9)) , Withn = (cz,¢,,0,5:,8,)". Here,c,, ¢, de-
note the translation of the Gabor wavelet, s, denote the dilation ané denotes the
orientation. The choice olV is arbitrary and is related to the maximal representation
precision of the network. The parameter vegcidtranslation, orientation and dilation) of
the wavelets may be chosen arbitrarily at this point. In otddind the GWN for image

I, the energy functional for wavelet networkg: = ming, w, forani [|[I — >, withn, ||2

is minimized with respect to the weights, and the wavelet parameter vectoyr. We
therefore define a Gabor wavelet network as follows:

Definition: Let ¢n,, i = 1,...,N be a set of Gabor wavelet$, a DC-free image
andw; andn; chosen according to the above energy functional. The twtowec
U = (Yny,--%ny)" andw = (w,...,wy)" define then the&Sabor wavelet
network (¥, w) forimagef.

The parameter vectors are chosen fromontinuous phase spac®® [5] and the Ga-
bor wavelets are positioned with sub-pixel accuracy. Thigecisely the main advantage
over the discrete approach [5; 12]. While in case of a discpbiase space local image
structure has to be approximated by a combination of was/edesingle wavelet can be
chosen selectively in the continuous case to refbeetisely the local image structure.
This assures that a maximum of the image information is emtod

Using the optimal wavelet¥ and weightsw of the Gabor wavelet network of an im-
agef, I can be (closely) reconstructed by a linear combinationefithighted wavelets:
I= Zi]il wihn, = ¥Tw. Of course, the quality of the image representation and of
the reconstruction depends on the numNenf wavelets used and can be varied to reach
almost any desired precision. In section 2.2 we will disg¢hssrelation between and/
in more detail. An example reconstruction can be seen in fig. family of 216 wavelets
has been distributed over the inner face region of the veytimagel by the energy
functional. Different reconstructioriswith variableN are shown in the first four images.

A further example can be seen in fig. 2: The left image showseansruction with
16 wavelets and the right image indicates the correspondavglet positions. It should
be pointed out that at each indicated wavelet position,gossingle wavelet is located.



N e Figure 2: The images show a Gabor wavelet network

-
=4 with N = 16 wavelets after optimization (left) and

- the indicated positions of each single wavelet(right).

b Figure 3: The figure shows images of a wooden toy

'i”—";..'-’i ™ block on which a GWN was trained. The black line

WS S | 4 § . . . .
oly 3%’.}1 PR 3= segments sketch the positions, sizes and orientations
\‘t\l\‘ s 27 ‘~‘ vid of all the wavelets of the GWN (left), and of some

automatically selected wavelets (right).
2.1 Feature Representation with Gabor Wavelets
It was mentioned in the introduction that the Gabor wavede¢srecognized to be good
feature [13] detectors, that are directly related to thallimage features by the energy
functional. This means that an optimized wavelet has e.gallg the exact position
and orientation of a local image feature. An example can ba gefig. 3. The figure
shows the image of a little wooden toy block, on which a Gabavelet network was
trained. The left image shows the positions, scales andtatiens of the wavelets as
little black line segments. By thresholding the weight® thore “important” wavelets
may be selected, which leads to the right image. Ideallyh &abor wavelet should be
positionedexactly on the image line after optimization. Furthermore, sincgdaveights
indicate that the corresponding wavelets represents am sslment (see sec. 2.2), these
wavelets encode local geometrical object information. dality, however, interactions
with other wavelets of the network have to be consideredaontiost wavelet parameters
reflect the position, scale, and orientation of the imagedisely, but not precisely. This
fact is clearly visible in fig. 3. As it can be seen in fig. 1 anemijcan be represented
almost perfectly with a relatively small set of waveletseTonsiderable data reduction is
achieved by the introduction of the model for local imagengtives, i.e. the introduction
of Gabor wavelets.

The use of Gabor filters as a model for local object primitieagls to a higher level
of abstraction where object knowledge is represented by af $ecal image primitives.
The Gabor wavelets in a network that represent edge segitemtse easily identified.
How to identify wavelets, however, that encode specificumed is not really clear, yet,
and subject to future investigation.

2.2 Direct Calculation of Weights and Distances
As mentioned earlier, the weighis of a GWN are directly related to the filter responses

of the Gabor filters),, on the training image.

Gabor wavelet functions are not orthogonal. For a givenlfamiof Gabor wavelets
it is therefore not possible to calculate a weightdirectly by a simple projection of
the Gabor wavelet),,, onto the image. Instead one has to consider the family of dual
wavelets? = {¢n, ...y }. The waveleth,, is the dual wavelet to the wavelet,,

iff (Y, n,) = 05 With & = (fin,,. .. ,0hny)7, We can Write[(\I!,\il)] — 1. In
other words:w; = (I, ¢n,) . We findejn, to begn, = 3, (T, ¥n,, wherel; ; =
(tn;,n;).

The equationw; = (I,4y,) allows us to define the operat@g : L?(R?) —s<
(¥n,,--- ,¥ny) > as follows: Given a se¥ of optimal wavelets of a GWN, the operator



Tw realizes an orthogonal projection of a functidronto the closed linear span Wfi.e.
J=Te(J) = JU¥ = SN ‘wihy, ,with w = JU.

2.3 Reparameterization of Gabor Wavelet Networks
The “reverse” task of finding the position, the scale and thentation of a GWN in a

new image is most important because otherwise the filteoresgs are without any sense.
Here, PCA, bunch graphs and GWN have similar properties:abe ®f the PCA and
bunch graph it is important to ensure that correspondinglpire aligned into a common
coordinate system, in case of the GWN, local image prinstivave to be aligned. For
example, consider an imagkthat shows the person of fig. 1, left, possibly distorted
affinely. Given a corresponding GWN we are interested in figdhe correct position,
orientation and scaling of the GWN so that the wavelets aséipaed on the same facial
features as in the original image, or, in other words, howughthe GWN be deformed
(warped) so that it is aligned with the coordinate systerheftew object. An example for

a successful warping can be seen in fig. 2, where in the rigggénthe wavelet positions
of theoriginal wavelet network are marked and in fig. 4, where in new imagestvelet
positions of theeparameterized Gabor wavelet network are marked. Parameterization of

Figure 4: The images show the positions of each of the 16 wts/after reparameterizing
the wavelet net and the corresponding reconstruction. &benstructed faces show the
same orientation, position and size as the ones they weaea@eterized on.

a GWN is established by usingsaperwavelet [18]:

Definition: Let (¥, w) be a Gabor wavelet network with = (¢y,,,... ,%ny )7, w =
(wy,...,wn)T. A superwavelet ¥,, is defined to be a linear combination of the
wavelets)y,, such that, (x) = Y, w;¥n, (SR(x — c)) , where the parameters of
vectorn of superwavele¥ define the dilation matri$ = diag(s,, s, ), the rotation
matrix R, and the translation vecter= (c,, c,)”

A superwaveletr,, is again a wavelet (because of the linearity of the sum) apaiticu-

lar a continuous function that has the wavelet parametkziati, translation and rotation.
Therefore, we can handle it in the same way as we handled é@zgle svavelet in the
previous ssection. For a new imagave may arbitrarily deform the superwavelet by op-
timizing its parametera with respect to the energy function&l £ = min, ||J — ¥, |3
The above energy functional defines the operd@ter: 1.2(R?) — R®, g — n =
(cz,¢y,0, s2,5,), wheren minimizes the energy functiond of the above equation. In
the eq. of the operatd? ¥ is defined to be a superwavelet. For optimization of the
superwavelet parameters, the same optimization procedufice the optimization of the
GWNs may be used. An example of an optimization process cardaein fig. 5: Shown
are the initial values oh, the values after 2 and 4 optimization cycles of the gradient
decent method and the final values after 8 cycles, each maikethe white square. The
square marks the inner face region and its center positiokalae center position of the



corresponding superwavelet. The superwavelet used in figthe one of fig. 2, i.e. itis
derived from the person in fig. 1.

Figure 5: The images show the 1st, the 2th, the 4th and thdiB#)(step of the gradient
descent method optimizing the parameters of a superwavBhet top left image shows
the initial values with 10 px. off from the true position, atéd by10° and scaled b20%.
The bottom right image shows the final result. As superwéayviie GWN of figure 1 was
used.

The image distortions of a planar object that is viewed undirographic projection
is described by six parameters: translatignc,, rotationd, and dilations,, s, ands,,.

The reparameterization (warping) works quite robust: gsire superwavelet of fig.
1 we have found in several experiments on the various suhjét ~ 60 pixels in width
that the initialization ofn, may vary from the correct parameters by apprexi0 px.
in z andy direction, by approx.20% in scale and by approx£10° in rotation (see
fig. 5). Compared to the AAM, these findings indicate a muchebabbustness [4].
Furthermore, we found that the warping algorithm conveiged0% of the cases to the
correct values when applied on teame individual, independently of pose and gesture.
The tests were done on the images of the Yale face databdsen@®n our own images.
The poses were varied within the range0-20° in pan and tilt where all face features
were still visible. The various gestures includeamal, happy, sad, surprised, sleepy,
glasses, wink. The warping on other faces depended certainly on the sityilaetween
the training person and the test person and on the numbeedfwavelets. We found
that the warping algorithm always converged correctlyar80% of the test persons
(including the training person) of the Yale face database Warping algorithm has also
been successfully applied for a wavelet based affine nead-face tracking application
[11].

2.4 Related Work
There are other models for image interpretation and obggmesentation. Most of them

are based on PCA [9], such as the eigenface approach [21]ei§beface approach has
shown its advantages expecially in the context of face neitiog. Its major drawbacks
are its sensitivity to perspective deformations and tanihation changes. PCA encodes
textural information only, while geometrical informati@discarded. Furthermore, the
alignment of face images into a common coordinate systetiilia problem.

Another PCA based approach is the active appearance mod@){A]. This ap-
proach enhances the eigenface approach considerablylbgimg geometrical informa-
tion. This allows an alignment of image data into a commornrdinate system while
the formulation of the alignment technique can be elegadtlye with techniques of the
AAM framework. Also, recognition and tracking applicat®are presented within this
framework [6]. An advantage of this approach was demorestrat [4]: they showed
the ability of the AAM to model, in a photo-realistic way, abst any face gesture and



Figure 6: The left image shows the original doll face
image I, the right image shows its reconstruction
IA476 using the reconstruction formula with an optimal
wavelet netd of just N = 52 odd Gabor wavelets,
distributed over the inner face region. For optimiza-
tion, the scheme that was introduced in section 2 was
applied.

gender. However, this is undoubly an expensive task and agletrask for which task
such a precision is really needed. In fact, a variation tfedéht precision levels in order
to spare computational resources and to restrict considesdo the data actually needed
for a certain application seems not easily possible.

The bunch graph approach [24] is based, on the other handheotiscrete wavelet
transform. A set of Gabor wavelets are applied at a set of baletted prominent object
points, so that each pointis represented by a set of filtporeses, callefet. An objectis
then represented by a set of jets, that encode each a singleédature patch of the object.
The jet topology, the so-calleédhage graph, encodes geometrical object information. A
precise positioning of the image graph onto the test imagpepsrtant for good matching
results and the positioning is quite a slow process. Thefeatetection capabilities of the
Gabor filters are not exploited since their parameters agel find a variation to different
precision levels has not been considered so far.

3 Pose Estimation with GWN

In this section we will present the approach for the estiomatif the pose of a head. There
exist many different approaches for pose estimation, dinlypose estimation with color
blobs [3; 17], pose estimation applying a geometrical appind7], stereo information
[25] or neural networks [1], to cite just a few. While in songpaoaches, such as in [17],
only an approximate pose is estimated, other approachesheyoal to be very precise
so that they could even be used as a basis for gaze detectioasin [23]. The precision
of the geometrical approach [7] was extensively tested anified in [15]. The minimal
mean pan/tilt error that was reached was$.6°. In comparison to this, the neural network
approach in [1] reached a minimal pan/tilt erroref).64°.

The good result in [1] was reached by first detecting the heathua color tracking
approach. Within the detected color blob regitr 4 sets of 4 complex Gabor filters with
the different orientations df, 7, and%w were evenly distributed. THE28 coefficients
of these64 complex projections of the Gabor filters were then fed intcearal LLM
network.

At this point, it is reasonable to assume that a preciseipasig of the Gabor filters
would result into an even lower mean pantftilt error. In ouperxments we therefore
trained a GWN on an imagk showing a doll's head. For the training of the GWN we
used again the optimization scheme introduced in sectioittf?2M = 52 Gabor wavelets
(see fig. 6). In order to be comparable with the approach iwgljised in our experiments
exactly the same neural network and the same number of training deampdescribed in
[1]. A subspace variant of the Local Linear Map (LLM) [16] wased for learning input
- output mappings [2]. The LLM rests on a locally linear (ficstler) approximation of
the unknown functiorf : R” — R* and computes its output as (winner-take-all-variant)
Y(2) = Appmu (T —Comu) +0pmu. Here,opm, € RF is an output vector attached to the best



matching unit (zero order approximation) adg,,, € R**" is a local estimate of the
Jacobian matrix (first oder term). Centers are distributea dustering algorithm. Due to
the first oder term, the method is very sensitive to noiseérirtput. With a noisy version
z' = x + n the output differs by4,,,.,n, and the LLM largely benefits from projecting to
the local subspace, canceling the noise componenioothogonal to the input manifold
M. As basis functions normalized Gaussians were used.

The doll's head was connected to a robot arm, so that theipanétund truth was
known. During the training and testing, the doll's head west fracked using our wavelet
based face tracker [11]. For each frame we proceeded in gps:st

1. optimal reparameterization of the GWN by using the positig operato®

2. calculating the optimal weights for the optimally regimsied GWN by using the
projection operatof¥ .

See fig. 7 for example images. The weight vector that was leatmiwith the operator

Figure 7: The images show different orientations of the’sihbad. The head is connected
to a robot arm so that the ground truth is known. The white sgjulicates the detected
position, scale and orientation of the GWN.

T was then fed into the same neural network that was used inThg training was
done exactly as it was described in [1]: We used 400 traimmagies, evenly distributed
within the range of:20° in pan and tilt direction (this is the range where all facdudess
appeared to be visible). With this, we reached a minimal npeauitilt error 0f0.19° for
a GWN with 52 wavelets and a minimal mean pan/tilt erro0@9° for a GWN with
16 wavelets. The maximal errors were6° for 52 wavelets ané.81° for 16 wavelets,
respectively. The experiments were carried out on an exyasrtal setup, that has not yet
been integrated into a complete, single system. A compiestesm should reach a speed
on a 450 MHz Linux Pentium ob= 5 fps for the 52 wavelet network ane 10 fps for
the 16 wavelet network

In comparison, for thgaze detection in [23], 625 training images were used, with a
14-D input vector, to train an LLM-network. The user was & to fixate & x 5 grid
on the computer screen. The minimal errors after trainimgpfm and tilt werd .5° and
2.5°, respectively, while the system speed was 1 Hz on a SGI (tndiggh Impact). A
direct comparison to geometrical approaches is difficeitause, by their very nature, the
cited ones are less precise, less robust but much faster.

4 Conclusions

The contribution of this article is twofold: First, we inttaced the concepts of tit&abor
wavelet network and theGabor superwavelet that allow a data reduction and the use of
theprogressive attention approach:

1This is a conservative estimation, various optimizatidmsutd allow higher frame rates.



e The representation of an object with variable degree ofigpi@mt, from a coarse
representation to an almost photo-realistic one,

¢ the definition of an optimal set of filters for a selective fiitg
¢ the representation of object information on a basis of lonage primitives and
¢ the possibility for affine deformations to cope with perspecdeformations.

In the second section we discussed these various propiertiesail. In [10; 11], GWNs
have already been used successfully for wavelet based edfihéime face tracking and
pose invariant face recognition. It is future work, to fudlyploit the advantages of the
data reduction by reducing considerations to the vectarespeer the set of Gabor wavelet
networks. And second, we exploited all these advantagdwedBiVN for the estimation
of the head pose. The experimental results show quite irspedg that it is sensible for
an object representation to reflect the specific individuapprties of the object rather
than being independent of the individual properties sucheseral representations are.
This can especially be seen when comparing the presentedaabpwith the one in [1]:
While having used the same experimental setup and the samae®tyeural network, the
precision of the presented approach is twice as good with bhikcoefficients (vs. 128),
and three times as good with only about half the coefficiehtgthermore, the experi-
ment shows, how the precision in pose estimation and thersyspeed change with an
increasing number of filters. A controllable variabilitymfecision and speed has a major
advantage: The system is able to decide how precise theaggtimshould be in order
to minimize the probability that the given task is not fuffdl satisfactorily. It is future
work to incorporate the experimental setup into a complgséesn. An enhancement for
the evaluation of the positions of the irises for a preciseregion of gaze is about to be
tested.
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