Geometric Method for
Projective Reconstruction of
Shape and Motion Using n
Unecalibrated Cameras

Fenarde Maym-Corrochano and Yiadimic Banarer

Christian Albrechts Universily,
Clomputer Science Tnstitute,
PPrevderstrade -8, 24105 iKiel, Germany,

pdl vIL@ks informatik uni-kiel.de

Abstract

The paper focug on the analysis and computing of the
projective structure and molion nsing promeirie in-
varionts. This worle relaley current approsches in the
geometric algebra framework as a resuli the approach
gaine geomelric transparcucy and elegance. The pa-
pers presents experimends regarding projective recon
struction of shape and motion using both simulated

and real images.

1 Introduction

In this paper we present a geometric approach for the
computation of shape and motion using invariant the-
ory in the geometric algebra framework. in the last
years researchers have developed methods to compute
projective invariants using n uncalibraied cameras
[, 5, 3, 1]. Projective reconstruction has been done
using the projective depth [7], the kinematic depth
8], prajectlive iuvariants [B] and factorization meth-
ods [9, 8, 10]. Since the projective [actorization meth-
ode require the scalar factor of projective depth, the
nse of projective invariants lo compute these scalars
can help to initialize the projective reconstruction of
shape and motion. In this paper we preacnt a method
Lo compute the projective depth using projective in-
variants depending of the trifocal tensor. With these
projective depth we can initialize the projective recon-
siruction of structure and motion. The paper presents
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cxperimaenis for projective reconstruction of shape and

maotion using both and sinlated and real iages.
2 Computing Projective Invari-
ant of Points Using Two Un-

calibrated Cameras
A 3D projective invariant can be fonuael fron a set of
six pointa ag follows
Iy = I_legx_qz(‘_ﬂ.[x;; Kij.xtsf (l}
[ KX X[ XaXa X X))
In [3] it 1s shown that the bracket of these 4 points (in

24 ean be equated ag
Sraas = (X XoXaXa] = [AoBoAizaBload.  (9)

Bxpanding the brackel in equation {2} by sxpressing
the intersection points in terms of the A's and B’y
(Al == ni; A and B = §;;B;) and defining & matsix
F such thal

Fij = [AcBoABy] )
snd the vectors couaa = (@1234,1, @ 1204,2, 11234 0) and

Bigaq = (Oiauer, Brasa,s Fruaaaa) we can write Siyge =
ol 1934 F B 254 {4]. The ratio

Iny — ‘(‘E?_:ngd:"'.&l?34)(&7'4525%')34525) (4)
(0T 1245 F Brags)(aT 2426 F Bau36)

ig therefore asen to be an invariant using two cameras.

Nole that equation (4} 19 invariant whatever values of
the 14 componenta of the vectors Ay, By, X etc. ate
chosen. A conlusion arises if we attempt to express the
Inv of Eq. (4) in terms of what we actually observe,
ie. the 3D image coordinates and the fundamental
matrix calculated from these image coordinates. In
order to avoid that il is necessary to transfer the com-
putations of q. (4) carried out in A* to 31). Let us
axpluin now this procedurc.
If we define F by

Py = {Ag 1a) (Bryva} i, {8)
then it follows using the relationships ai; = %:%’{-6”
and Ji; = gj:_ieij that

cvix Feflin = (AL} (Bi-va)din Fae (6)
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According to the above, we can write the invariant as

fd' 1234Fﬂ?34}r5 4J25F61'20J¢1234¢452u
Iy = Lo

(7}
(8T pas Ferzas )5 a42e Féruze )p1oar daae

where duere = {Amr' Y1) (B}, pors 4}, Wesee therefare
that the ratio of the terms & Fe which resembles the
expression for the invariant in B, but uses only the
ohseeved coordinates and the estimnated fundamental
matrix, will not be an invariant. Instead, we need to
include the factors ¢iaas ele., which de not cancel. It
is relatively easy to show [J] that these factors can be
lormed as follows. Since af, ay and afyqy are coliinear
we can write af,a, = o3y +{1—jeag)ay. Then, by
expressing Al,g, as the intersection of the line joining
Al and Al with the plane through Ag, A3, Aj we can
use the projective split and equate terms to give
{Adoaa ¥ ){Aldsze14) _ M2 (#3126 — 1) . (8
(Abaog 74 )(Al2as - ¥a)  ptasze(piizas — 1)
The values of g are readily obtainable from the im-
ages. The factors By, -vq are found in a similar way
so that if 611334 = )\lggqb; + (1~ )\1234}b§3 etc., the
overall expression for the invariant becomes

(87 1234 F€1234){ 0T ws28 Feaszes ) tazss{pmaaza — 1)
(8T 1205 F €124 ){ 6T 3428 Féaaze ) stases {1201 — 1)
Miz2as(Aaare — 1)
Jaszs [Mizas — 1)

{y =

fnuz — fg

(9

Concluding given the coordinates of a set of 6 corre-
sponding points in the two image planes (where these
§ points are projectione from arbitrary world points
but with the assumption that they are not coplanar)
we can form 3D projective invariants provided we have
some estimate of F'. See [1] for 2 more detailed dis-

chgsion on this issue.
3 Projective Invariant of Points
Using Three Un—calibrated

Cameras
The technique used to form the 3D projective invari-

ants for two views can be straightforwardly extended

to give expressions Tor invariants of three views. Con-
sider four world points, {X,, X2, X3, X4} (or two lines

78

Tape =

and X3R4 == [Agdl ag) VLol 3q). WUNCE aZain, we
can combine the above expressions to give an equation
for the d-vector X1 AXoAXan Xy

KpaXoaXanXy =

= AA L) v {Byal? 1)) Al{ A0 AL ) v (CAlTay)

= (Aoa Az M Baa L P 12) v (Can L34 (i)

Writing the lines LI, and L&, in terms of the line
My ;L8 and LY, =15, LY.

1L has een shown 1o section two thatl the components

coordinales we have L” =

of the Lrilinzar tensor (which plays the role of the fun-
damental matrix for § views), can be written in geo-

mebric algebra as

Tigs = (AoARIA[BoA L) Vv (Con L) (1)
50 that equation (10) reduces to

Xy AXoAXAXs = Tijeraanid P 12,5030k (12)
The invariant Jrvy can then be expressed as

(Tajkﬂlﬁ.?‘i,i;sl?,;Ib:ﬂ,k)(Tmnpﬂ‘-lﬂs,m!ﬂ26,n!c45,p)
1 '

Inwy = 5
12,145, {Tewveraazs, o7 20,0 %00

(13
noting that the factoring must be done so that the
same line factorizations occur in both the numera-
tor and denominator - as discussed in section 2. We
therefore have an expression for invariants in {hree
views which is a direct extension of the invariants for
2 views. When we form the above invariant from ob-
served quantities we note, as before, that some correc-
tion factors wiil be necessary - equation (13) is given
above in terms of R quantities. Fortunately this is
quite stralghtforward Regarding the results of sec-
tion 2'we can simply consider the o’s terms in equa-
tion {13) as not chservable quantities, cofiversely the
line terms like "12 s asx are indeed observed quanti-
ties. As & result, the expression has to be modified
using partially the coefficients computed in section 3
and for the unique four combinations of three cameras
their invariant equations read
{ l‘;‘fcd‘msq By 1P HTAE  oasas miF20,01%8,p)

(TAEC o245 41812019 45,0 (TEAT “ va426,61%28 w1 4,0

(Tyrsct1245 4

p1245 (paszs — 1) (1)

Invime = Iape .
Has2e (b1254 — 1)

similar expressions for Ixgp, fean, {pep. We no-
ticed that first two have the same scalar coefficient
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Extensive sirnulations with Maple confirined that the
use of this kind of coefficients in the four invariants is
Tally correct.

4 Camera Self—localiiation

Using the invariant theory approach we can determine
the changes of the 3-D coordinates of a moving uncal-
ibrated camera. According three invariants we can
determine the coordinates of a 3-DI) point [5]. We se-
lect as a projective basis five fixed points in the 3-
D space X, X2, X3, X4, X5 and consider the un-
koown point X as the oplical center of the moving

camera, sce Figure 4.

Figure 1. Computing the cenfer of views of a moving
camera

We can then compute the moving optical centers
using two cameras '

Xe _ (87 3346 F€3346){67 135 Fe1335) _

F = ==
i We = (87 2045 F €2345)(6" 1226 F'e1336)
_H2345A 2345 /1286 A 1238 (15)
Az3agAa346 2123541235

or using three cameras

Xo (T4 C oan,87 23,51 0 k)

? We  (TAPC0a345,4082a,01%45,5)
ABC B, ¢
(Tany @1236,ml” 12,01 36,p) przaaspt1206

. . (18
(T7a8C ar1296, P 12,ulC8,y) H23a6M1335 (18)

Similarly permuting the six points we compute If ) I;,F
and IF, I7. The compensating coefficients for the in-
varianis f, and I, vaty due to the permuted points.

P

positions of a moving camera. These curves show that

Mool Pt

Figure 2: Performance of the computing of any two
center of views using F and T

the trinocular computation renders more accurate re-
sults as the binocular case. The Euclidean coordinates
of the optical centers are gained applying the trans-
formation which relates the projective basis to its a
priori known Euclidean basis,

5 Projective Depth

In a geometric sense the projective depth can be seen
as the relation between the distance regarding the view
center of a 3—D point X; and the focal distance f. We
can derive the prajective depth from a projective map-
ping. According to the pinhole model this projective
mapping in a maftrix representation reads

[ =1
Ap o= Ty (17)
!
- Xi
£ Razz i3m0 Xz
= |0 f 0 [ 0’ l‘l Xs |
[0 0 1 )

where we call A a projective scale factor. Note that
the projective mapping is further expressed in ierms
of a f, rotation and translation components. Let us
attach the world conrdinates at the view center of the
camera, the resultant projective mapping becomes
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AjE = U of U UJ X =rA. {l3)
G 01 @ 1

We can lhen compute straightforward

A= X (19)

Using this result we can say Lhat the projective depth
a fulfills the following relation

af = A= Xq. (20}

"The way how we compute the projective dapth o of
a 3~D point appears simple using invariant theory. For
that we select a basis system taking four 3-D points n
general position X'y, X4, X3, X5, as the four point
X 4 the optical center of camera at the new position,
and as unknown 3-D point the point Xg. This is
depicted in Figure 3. N

For that we select as projective basis in P3 points
in general position X;, X, X3, Xy as X, the view
center of the moving camera and as the point to be
reconstructed X¢. Since we use the mapped points,
we consider as the four point the epipole or mapping
of the current view center and the mapped sixth point
as the point with unknown depth. The other mapped
basis points remain constant during the procedure.

Xft= Ay
Xf gy

Fipure 3: Computing the projective depths of n cam-
eras

The tensor based invariant expression for comput-
ing the third coordinate or projective depth of a point
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ABC B c
(Tmﬂp aza16,ml” 240" 16,p) H2al6H2415

’ ARG 3 j '
(TP anars sP 94 I 15,4) Hoatstogie

(21)

In this way we can successively compute the pro-
Jective depths A;; of the j—points referred to the i~
camera. The A;; will be used in next section for the
3-D reconstruclion using the join image concept and
the SVD method.

Sinee this kind of invariant can be also expressed
in terrs of the quadrifocal tensor [2], we can compute

the pro_]ecti\}e depth based on four cameras.

6 Shape and Motion

The orthographic and paraperspective factorization
method for structure and motion using the affine cam-
ers model was developed by Tomasi, Kanade and Poal-
man [9, 6]. This method works for cameras viewing
small and dislance scenes, thuy all scale factors of pro-
Jjective depth A;;=L. For the case of perspective im-
ages the scale factors A;; are unknown. According
Triggs [10] all Ay satisfly a set of consistency recon-
struction equations of the so called join image and
they can be computed using the epipolar constraint,

In the previous section we presented a procedure
for the computing of A;; using an invariant based on
the trifocal tensor. Since this kind of invariant can be
also expressed using the quadrifocal tensor [2] we could
also compute the projective depths via an invariant
involving the quadrifocal tensor.

6.1 The join image

The joint image .7 is nothing else as the intersections
of optical rays and planes at the points or lines in the
3D projective space. The interrelated geometry can be
linearly expressed by the fundamental tenscr, trifocal
and guadrifocal tensors.

In order to take into account the interrelated geom-
etry, the projective reconstruction procedure should

L0
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Figure 4: The geometry of the join image

pul together all the data of the ndividual Images in a
geometrically coherent manner. The way to do thal is
constdering the observations of Lhe ponts X ; regard-

ing each i-camera
Aymj <« X (22)

uas lhe i-tow of a matrix of rank 4. Far m cameras

and 1 points the 3mxn matrix |7 of the joint image is

given by
f AnZEr A®ia AMnin
A21®21  Aza®on AznEa,
Ag1 2y A3z®3a . Agn®3n
o = . . .o X (23)
\ AmiTm)  Am2®ma AmnEmn . )

TFor the affine reconstruction procedure the matrix is
of rank 3. The matrix 7 of the joint image is amenable
to a singular value decomposition for finding the shape

and motion.

6.2 The SVD method
The application of SVD to 7 gives
jﬂm xn = Uam *%r erf VnTxr: (24)

where the columns of matrix for and {/a,, 4 are or-
thonormal hase for the input {(co-kernel) and outpui
(range) spaces of J. In order to get a decownposition

1 1
. _ =3 T Ty -
-J:imxn - KUamxr‘Srzxr)( r2><rV;1><r} o

(PEPIPE . PIVd X1 X2 X5 X ). (25)

This way to divide 9y« 18 not unique. Since the rank
of 7 is 4 we should take for 5, .~ the first four biggest
singular values. ‘The matrices F; correspond to the
projective mappings or “wotion” from the projective
space to the individual images and the point structure
or “shape” is given by the X ;. We test our approach
using a sunuilations program writfen in Maple. Using
the method of section 5 firstly we computed the pro-
jective depth of the points of a wire house observed
with Y cameras and then using the SVD projective re-
construction method we gained the shape and motion.
The recoustructed house after the Euclidean readjust-

ment for the presentation is sliown in Figure 8.

- RN
saaWLY

Figure 5: a) One of the three images, b} reconstructed
incomplete house using 3 images c) extending the join
image d) completing in the 3-D space

We notice that the reconstruction keeps quite well
the original form of the model. The next section will
show how using geometric expressions in terms of the
operators of algebra of incidence v (meet) and A (join)
and particular tensor based invariants we can improve

the shape of the reconstructed model.
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Figure 6: Recoustructed house using a) noise-free ob-

servations and b) noisy observations

6.3 Completion of the 3—1 shape using
geometric invariants

The projective structure can be improved in two ways:
completing points on the images, expanding the join
image and and then call the SVD procedure or af-
ter the reconstruction complete points like occluded
points in the 3D space. Both approaches can use on
the one hand geometric inference rules based on sym-
netries or concrete knowledge about the scene. Us
ing three real views of a similar model house with its
most right lower corner missing, see Figure 7.b, we
compute in each image the virtual image point of this
3-D point. Then we reconstruct the scene as shown in
Figure 7.c. As opposite using geometric incidence op-
erations we completed the house employing the space
points as depicted in Figure 7.d. We can see that cre-
ating points in the images yields a hetter reconstruc-
tion of the occluded point. Note that in the recon-
structed image we transformed the projective shape

to an Buclidean one for the presentation of the re-
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Figure 7. a) Que of the three Iimages, b) reconstrucled
incomplete house using 3 images ¢) extending the join

image d) completing in the 3-D space

Similarly we proceeced using Y images, as presented
in in Figure 8.2 -d. We can zee that the resulting recon-
structed point is almost similar in both procedures. As
a resull we can draw the following conclusion: when
we have few views we should exiend the join image
using virtual image points and in the case of several
images we should extend the point structure in the
3-D space.

we-EIET

FewRTEE
Leed TR

Figure 8: a) One of the nine images, b) reconstructed
incomplete house using 9 images ¢) extending the join
image d) completing in the 3-D space



variants based on the trifocal tensor. We developed
a method to cormpute Lhe projective depth using this
kind of invariants. With these projective depth we
can initialize the projeclive reconstruction of strue-
ture and matian. The papers presents experiments
regarding projective reconsiructinn of shape and mo-
tion using both simulated and real images. This work
relates current approaches in the geomebric algebra
framework, as a result the approach gains in geometri-
cally transparency and elegance. However the aulhors
believe that more work have to be done in order fo im-
prove the computational algorithrns so that the use of
projective invariants will be more and mere attractive
for real time systems with nolsy data.
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