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Abstract

We introduce a low-level image representation using lo-
cal orientation on a steerable pyramid. Its performance
is demonstrated for a purposively progressive image coder
which transmits and reconstructs parts of an image guided
by their similarity to a given sample image. Like human
visual attention, the image is scanned in a most-important-
first order to gain a maximum of visual information with
minimum code.

1. Introduction
Browsing in a remote image database is often hampered

by the considerable delay of transmission. As long as this
delay is noticed by the user, he would like to abort the trans-
mission of the current image and skip to the next when his
task (e.g. recognizing a face) is just accomplished or – per-
haps the more interesting case – is not expected to be ac-
complished with additional information. If the relevant part
of visual information is limited to a small part of the image
(e.g. the eyes of a face) and located at the beginning of the
code this method could substantially save time and trans-
mission costs. This idea is illustrated by the reconstruction
sequences in fig.1 and 8 which are observed at the receiver.
In a strategy called Purposively Progressive Image Coding
(PPIC), we propose to re-arrange image parts according to
their relevance for the user’s task. By sending most relevant
parts before others, transmission could be aborted as early
as possible whereas delivering a maximum of relevant infor-
mation. PPIC is strongly inspired by visual attention which
enables humans to purposefully scan a scene by means of
proper eye movements.

A successful technical realization of PPIC depends on
four factors: 1) a precise task specification by the user, 2)
an efficient and robust localization of the visual information
relevant to this task, 3) a partial but perceptually complete
reconstruction, and 4) a sparse code thereof. Whereas there

Figure 1. Reconstruction sequence. Left to right: a) 4th� 2.5%, b) 12th � 7.5%, c) last step from 158.

are some results for 3) and 4), there are barely solutions to
1) and 2), because they are considered unrelated to 3) and
4). This has also been realized by some authors[5, 9], who
sketch Visual Information Management Systems (VIMS)
for browsing image databases. These systems are intended
to purposively stratify the images in a data base for a lim-
itation of the users search space. Analogously we pro-
pose a PPIC to purposivelystratify the parts of an image
to minimize the number of transmission steps for a given
task. Using an image representation common to the four
points is not merely to minimize time consuming low level
operations[9]. As we will show in the rest of this paper, it is
the key issue of PPIC.

In the next section we introduce the local orientation
pyramid (LOP) as this common representation. Section 3
discusses the localization and coding aspects of LOP. In sec-
tion 4 we provide results from experiments with a prototype
PPIC system applied to face images.

2. Local Orientation Pyramid

To provide the user with an expressive language for a
convenient description of his task (point 1) a representa-
tion should support an effortless translation to and from real
world concepts, e.g. orientation, contrast, color. Though
this point is important for VIMS we do not address it here.
Instead, we confine our discussion onprogression by sam-
ple which requires the user to provide a small sample im-
age. Then the system partitions and transmits image parts
in a best-match-first order. For this purpose we need to de-
fine a distance between an image part waiting for transmis-



sion and the sample image. This distance has to be robust
to variations of viewing angle, illumination intensity, and
color to guarantee a reliable localization of relevant image
parts. Robustness to these image formation parameters is
gained by two unrelated mechanisms. First, local orienta-
tion is extracted at multiple scales. It provides robustness to
photometric distortions since the component of illumination
in the signal is suppressed by bandpass filtering[7]. Fea-
tures with further, especially geometrical, invariants have
attracted major interest in pattern recognition theory. How-
ever, they are not desirable here since their complexity of
computation makes human interaction difficult. Further-
more, they are too lossy for a stable discrimination of simi-
lar objects. In order to achieve robustness to additional pa-
rameters, we propose local feature histograms as the second
mechanism[13]. Similarity between histograms of simple
features have proved to be computationally very efficient
and robust to geometrical distortions.

For an efficient coding architecture we would like to use
the same representations for localization and reconstruc-
tion. However, there are contradicting requirements arising
from the two problems. Localization relies on useful redun-
dancy in the signal in order to gain robustness to distortions
– the basic idea of error correcting codes. As opposed to
this, in image compression the aim is to remove redundancy
by concentrating most of the information on few active ele-
ments. This is Barlow’s principle of sparse coding. By us-
ing the steerable pyramid we meet both requirements since
we may control how much redundancy the representation
contains.

TheLocal Orientation Pyramid (LOP) as introduced in
the sequel is based on the steerable pyramid[11]. It provides
joint steerability in orientation and position. Steering posi-
tion serves to interpolate missing samples in the pyramid,
that is to convert the pyramid into a heap. Thus, inter-scale
vectors may be constructed at the lowest pyramid level, pro-
viding highest resolution for localization. Steerability in
orientation, on the other hand, is required for calculating
local amplitude/orientation as shown below.

The block diagram of the steerable pyramid architec-
ture is depicted in fig.2. By replacing the filled dot with
the dashed box a new level of the pyramid is constructed.
Four pyramid levels are used withK orientation selective
filters Bi; i = 0 : : : K - 1 each. The corresponding ker-
nelsbi(x; y) are designed as rotated copies at orientations�i = i � 180�=K. Thus a filterb(�)(x; y) at arbitrary orien-
tation� may be synthesized by the linear combination[2]b(�)(x; y) = K-1Xi=0 ki(�) bi(x; y) (1)

UsingK = 4 filters at orientations�i = i � 45� we obtain

interpolation functions[2]ki(�) = 12 (cos(� -�i) + 2 cos3(� - �i)) (2)

Because the limited spectral support of the filters is not ex-
ploited for further sub–sampling, the representation is over-
complete[12, 11] by a factor16=3.H0 H0L0Bi BiL1 L12 2

L0
1

Figure 2. Steerable pyramid[11]: initial high-pass H0,

low-pass L0, recursive subsystem (dashed) with low-
pass L1, sub-sampling, and orientation selective band-

passes Bi.
In order to convert the pyramid into a heap the outputs

of theBi at each level have to be up-sampled by a factor2.
This is achieved by inserting an up-sampling operator and
a low pass filterL1 at position 1 of fig.2. TheL1 serves to
interpolate the missing samples, that is to steer position.

Besides continuous position and orientation a continuous
scale space could be constructed by steering scale. Actu-
ally, this approach seems theoretically quite appealing since
objects at arbitrary viewing distances appear at continuous
scale. However, there are two arguments against steerable
scale in PPIC. First, it is numerically considerably more
complex than steering position or orientation due to the sin-
gularity at scale infinity[8]. Second, the energy of most
image patterns is distributed over multiple scales. This re-
quires inter-scale feature vectors for representation which in
turn require a discrete scale. Probably these constraints are
also valid for mammalian visual systems which do not steer
scale either[1]. Orientation behaves completely different.
As indicated in fig.3, at most one orientation is sufficient
for the description of most frequent patterns (plan and lin-
ear) in natural images. Inter-orientation vectors which are
used in sub-band coders are therefore redundant. We prefer
thesingle orientation model which provides a more concise
representation for classification and reconstruction.
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Figure 3. Plan(l), linear(m), complex(r) shaped points.

The single orientation model assigns to each point of the
image a local amplitudea and a local orientation# which
are related to the contrast and the angle of predominant ori-
entation of the pattern, respectively[4]. Given theK outputshi of LOP filtersBi we define:
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a := ����� KXi=0 jhij e-j2�i ����� # := arg
KXk=0hi e-j�i (3)

Closely related with local amplitude/orientation is the
concept of local amplitude/phaseA and'. Its motivation is
to decouple the detection and classification of oriented pat-
terns by segregating contrast and shape[4]. As explained in
the following, this strategy is controversial if the statistics of
natural images is considered. DisregardingA the marginal
distribution of' is flat (due to its linearity). Thus, the role
of ' as an own feature dimension is justified. However,
the correlation between' and the symmetry of a pattern is
valid just at the center of symmetry which coincides with
the maximum ofA. If ' is considered exclusively there its
distribution shows peaks at�=2 and3�=2 – the phase values
of positive and negative odd symmetric edges, respectively.
Other values of' are mostly faked due to a dislocated
maximum ofA. To suppress this irrelevant information,
we exclusively use odd symmetric filters in (3). The cor-
responding phase values�=2 and3�=2 are represented by
local orientation intervals[0; 180�) and[180�; 360�). Thus,
our local orientation as defined in (3) spans the full circle[0; 360�) as opposed to Granlunds[4] which spans the half
circle, only. The implications of this definition for the local
orientations of a square are depicted in fig.4.

a b

Figure 4. Local orientation defined for a range of value[ 0; 180�) in (a) and [ 0; 360�) in (b).

3. Localization and Coding with LOP
Progression by sample requires an image to be parti-

tioned into spatially independent components which are
sorted in decreasing similarity to the sample image. A ro-
bust similarity metric as claimed in section 2 is realized by
two operators with different region of support. Illumina-
tion changes are suppressed by the lateral inhibition of the
LOP filters. They realize a local Retinex–like[6, 3] mech-
anism for an approximate color constancy. Additional in-
sensitivity to illumination is achieved by a coarse quanti-
zation of local amplitude which carries the contrast infor-
mation. Thus, the color constancy of our method is su-
perior to those using filter responses directly[10, 3]. Ro-
bustness to geometrical distortions is achieved by the larger
local context of the sliding histogram window whose size
is adapted to the size of the sample image. Though rather
sensitive to changes of illumination, histogram similarity

of RGB-vectors has been proved to be robust to geometri-
cal distortions i.e. changes of scale, rotation, viewing angle
and even partial occlusion[13, 3, 10]. This property is suc-
cessfully combined with color constancy if histograms are
calculated from inter-scale local orientation vectors. These
vectors are constructed from three quantized pairs(a; #) of
the first three levels of LOP. Quantizers contain five code
vectors each: a “null orientation” which is assigned to pat-
terns with contrast below a certain perceptual thresholdathr,
and another four code vectors corresponding to patterns
with significant contrast at orientations# = 0�, 90�, 180�,270�. In fig.5a the quantization for the complex plane ofz = a(cos#+ j sin#) is illustrated. Code vectors are repre-
sented by grey values.
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Figure 5. Quantization of local orientation z = a(cos#+
j sin#) using L code vectors (represented by grey val-

ues), for (a) localization L = 5, (b) coding L = 14.

In the following we describe four distance metrics (INT),
(CHI), (MAP), and (BPR) between the sample image and each
local neighborhood of the input image by the using quan-
tized orientations described above. The former two meth-
ods involve the calculation of histogramsM` andI`; ` =1 : : : L of the sample image and a window scanning the input
image. Using three LOP-levels with five code vectors each
the number of histogram bins amounts toL = 53 = 125.
The distance betweenM` and I` calculated by (INT) or
(CHI) yields an estimate for the similarity between the cor-
responding images. Histogram intersection (INT) as defined
in [13] is said to need sparse histograms for sufficient dis-
crimination performance[13, 10].�(I;M) = LX̀=1 min(I`;M`) (INT)

Since histograms of multi–scale orientation vectors are
hardly sparse, we apply the�2–test (CHI) as an alternative
metric. The value of (CHI) indicates how different two his-
togramsI andM (supposed to be distributed normally) are:�2(I;M) = LX̀=1 (I` -M`)2I` +M` (CHI)

Sliding histogram techniques are rather complex if they are
performed in parallel. On a sequential computer, however,
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a meandering sampling leads to a very efficient updating
strategy. The following two methods completely avoid to
calculate the histogram of a sliding window. Based on the
global histograms of image and sample they require the ap-
plication of a point operator, followed by a low pass filter
whose support is determined by the size of the histogram
window. The first of these methods applies Bayes’ for-
mula(MAP) to yield the maximum a–posteriori probability
that a specific position belongs to an objectO if a featureF`
is present there.p(OjF`) = p(F`jO)p(O)p(F`jO)p(O) + p(F`jB)p(B) (MAP)

The probabilitiesp(F`jO) andp(F`jB) are to the normalized
feature histograms of the sample objectO and the back-
groundB. The a–priori probabilitiesp(O) andp(B) corre-
spond to the relative area occupied byO andB in the image.
For a single objectp(B) equals1 - p(O).

The other method, histogram back-projection as defined
in [13] is a straight simplification of (INT).R` = min

�1; M`I` � ` = 1 : : : L (BPR)

It is also a special case of (MAP), sinceM` andI` are esti-
mates ofp(F`jO)p(O) = p(F` \ O) andp(F`jO)p(O) +p(F`jB)p(B) = P(F`) for the current image.

In contrast to the rest the Bayes formula (MAP) includes
the additional quantitiesp(O), p(B), andp(F`jB). Whereas
there are no problems in estimating the former two, errors
in the estimation of the background histogramp(F`jB) in-
duce misleading biases for localization. In addition, these
quantities have to be determined at query time.

Whereas the pairs(a; #) are quantized quite coarsely for
localization, the reconstruction from sub-LOPs requires a
finer quantization which is specificly tuned to perceptual
resolution of each pyramid level. As in the former case,
a dead zonea < athr representing the null orientation ac-
counts for contrast threshold observed in the human visual
system. Its size is set to a small value for the highest pyra-
mid level and to a large value for the lowest level. As il-
lustrated in fig.5b, the number of orientation bins is coupled
to the number of amplitude levels and the actual amplitude
level. This procedure accounts for the phenomenon that the
orientation of high contrast patterns is resolved more accu-
rately by humans than those of low contrast patterns. Note
that unlike quantizing coefficients of orthogonal wavelet
transforms our quantization scheme doesn’t induce any di-
rectional preferences thus enabling real2D-quantization.
The low–passL1 of the last LOP-level (see fig.2) is quan-
tized separately by a scalar quantizer. It is sent first to give
the user a coarse impression of the image. The remaining
high–passH0 is discarded.

Besides the quantized bands the positions of sub-images
have to be transmitted. This side information could amount

a substantial part of the transmission costs if progression
has to be available until the final reconstruction is reached.
But it is kept quite low (� 5bit per progression step) if pro-
gression is restricted to e.g. a quarter of the image.

4. Experiments
The performance of progression by example depends on

the graceful degradation of histogram similarity for dis-
tortions of the image with respect to the model. Ideally,
the sequence of reconstruction should not be corrupted by
such distortions. Each of the four histogram metrics re-
quires particular constraints on the histogram (e.g. sparse,
normal[13, 10]) in order to work robust. These constraints
can be guaranteed neither off-line, lacking a complete statis-
tics of the quantized coefficients for natural images, nor on-
line for reasons of coder efficiency. Therefore, we eval-
uate the discrimination performance of each method for
the test image in fig.1c and its distorted versions fig.6pan–texture.

Figure 6. Test images. From left to right: pan, roll,small, large, dark, bright, shady, texture
As is well known, the aim of image coding is to reduce

the data rate while maximizing the image fidelity with re-
spect to the original. Fidelity is usually measured in terms
of signal-to-noise ratio (SNR) which is obviously inappro-
priate for PPIC, since it ignores the unequal relevance of
image components for a specific task (e.g. the eyes in a face
for face recognition). Fortunately, progressive coding itself
provides an interactive method to evaluate PPIC sequences.
Presented with an equally partitioned sequence, a user is
asked to stop the process of reconstruction when his task
is accomplished. The number of image components recon-
structed so far is callednumber of steps to succeed (STS).
Given the set of all possible sequences obtained by a permu-
tation of components, the sequence with the minimal STS
is optimal since contains the most relevant image compo-
nents within the first STS steps. Nevertheless, the STSth
reconstruction step need not to be close to the original in
terms of SNR but it provides the highest compression ratio
with respect to the users task. For the particular task of face
recognition with LOP in particular, we define STS as the
number of sub-pyramids required for recognizing the eyes
as in fig.1b.

In our experiments we examined to what extent the STS
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match pan roll small large dark bright shady texture norm monkey blackboy Asiangirl glasses up-sampleCHI 26 26 26 27 28 18 18 31 17 20 38 15 19 23INT 15 15 18 17 13 9 7 15 8 9 27 6 6 11BPR 5 21 22 27 36 7 9 30 10 23 30 14 15 20MAP 20 47 46 37 37 4 16 78 12 77 31 39 28 27a b c d
Table 1. Number of steps to succeed (STS)

is affected if test or model image deviate from the origi-
nal. Two cases are of practical importance. First, the in-
put image differs from the model in perspective transfor-
mation or illumination. For this test the eight distorted test
images of fig.6 were reconstructed using the original eye
in fig.7original. In tab.1a the corresponding STS’s are
listed in comparison to the STS for a reconstruction of the
original portrait fig.1c. To sum up it can be said thatINT
outperforms its competitors. Though superior forpan andbright the local methodsBPR andMAP have to be regarded
as unreliable, due to their unsteady performance.

In the second practically important case the model image
is taken from an arbitrary sample of the object class describ-
ing the users task. In particular, we consider the reconstruc-
tion sequences of the original face image (fig.1c) with other
peoples eyes (fig.7monkey–glasses) as models. The re-
sulting STS’s in tab.1c confirm thatINT is clearly superior.
In the last experiment we show that steering position im-
proves progression. The STSs decrease by 26–55% if steer-
ing position (tab.1b) is substituted by a simple up–sampling
(tab.1d). Fig.8 indicates to the application of PPC on more
complex models like faces.

Figure 7. Model eyes original (from fig.1c), monkey,black boy, Asian girl, glasses.

5. Conclusions
We have demonstrated the strength of Local Orienta-

tion Pyramid as a general representation for sample-guided
progressive image coding. The discrimination performance
and color constancy of local orientation have been success-
fully joined with the graceful degradation of histogram in-
tersection. The number of steps to succeed (STS) was intro-
duced as a performance figure for progressive image cod-
ing. It replaces the SNR which is the performance fig-
ure for traditional coders. STS for a face image was very
low (7.5% of the total number of steps) and constant for

Figure 8. Reconstruction sequence. Left to right: a) 5th� 2.5%, b) 20th � 10%, c) 45th � 23% step from 196 using

a face as sample image.

a variety of photometric and geometric distortions. The
additional compression ratio> 10 encourages the use of
sample-guided progression for high-speed browsing of re-
mote image databases.
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