
Preattentive Colour Featuresby Steerable Filters?Udo Mahlmeister??, Bertil Schmidt, Gerald SommerInstitut f�ur InformatikChristian{Albrechts{Universit�at zu KielPreu�erstrasse 1{9, D{24105 Kiel, GermanyTel.: (0431) 56 04{33, Fax: (0431) 56 04{81email: uhm@informatik.uni-kiel.deAbstract. Visual search is the task of �nding objects in an image whichare described in a high dimensional space, spanned by preattentive fea-tures, e.g. orientation, scale, and colour. By using steerable �lters thissearch space may be scanned continouosly, though spanned by discretefeature detectors. Based on this idea, we will show a method for detectingarbitrarily oriented bars from steerable �lter responses. Detection per-forms rather invariant to illumination colour, exploiting the propertiesof the CIE{Lab colour space.1 Introduction1.1 Selective Attention in Arti�cial Visual SystemsVisual attention is the capability of a visual system to sequentially focus itsprocessing resources to a selected part of the visual �eld. This selection process isguided by the degree of interest of image locations with respect to a current visualtask. The degree of interest is de�ned in terms of few local feature dimensions,say scale, orientation, motion, texture and colour. These preattentive features aresupposed to re
ect the most important aspects of object surfaces and boundaries.According to the basic model of visual attention by Koch and Ullman[10], thefocus of attention (FOA) is moved to the maximumof the saliency map which isa task guided combination of preattentive feature maps. The degree of interestassigned to an image structure may then be controlled by the weighting of thepreattentive feature maps. This processing scheme is supposed to reduce thecomplexity of a visual task[14].The spatial coordinates of an image structure may be considered as two ad-ditional feature dimensions in the preattentive feature space. Then the task of�nding all structures in an image with a speci�c feature combination in speci�cspatial relations means to perform a full search in this space. Clearly, the com-plexity of this search explodes as the number of feature dimensions increases.Despite this, in an attention architecture the search is broken down into twostages. In the �rst preattentive stage a search is performed for a �xed featurecombination in the whole visual �eld. The dimensionality of the search spaceis reduced to two spatial coordinates. The result of this spatially parallel pro-cess is a set of potentially interesting locations. In the second, attentive stagethe suggested locations are attended and are analyzed within the orthogonalcomplement of the spatial subspace. This way the e�ort of searching along thespatial dimensions is shifted to time. The information 
ow in this processingscheme is not strictly linear. The features registered at one FOA may in
uencethe guess for the next FOA. Hereby its goal is to maximize the evidence for a? in Mustererkennung 1995, 17. DAGM{Symposium, Bielefeld, Springer{Verlag?? partially supported by DFG, grant So 320/1-1



known object[7] or, equivalently, to minimize the number of FOA necessary inorder to recognize an object or situation. Also, the behaviour of the system maybe in
uenced by long time experience. Applied to the task of face recognition,the eyes, the nose, and the mouth of a face are to be located. As recently wasshown by Herpers[8], the second eye in a face image is located more easily, if itsposition and features are predicted by features of the �rst eye.The neurological grounding of natural attention systems becomes apparent atthe the inhomogeneous receptor distribution of the mammalian retina. While theperiphery of the retina covers the whole visual �eld with rather low spatial andtemporal resolution, its central part, the fovea, o�ers high resolution althoughin a rather small area. This way the preattentive task of localizing interestingpoints is supported mainly by the periphery. On the other hand, the featureanalysis in order to recognize objects needs the high resolution of the fovea.The second main advantage of attentional strategies happens to be impor-tant in general purpose vision architectures. Since behaviour is the interactionwith objects, most vision tasks are set in an object related form, and objectsare mostly described by means of surface properties. Despite this, at an earlyrepresentation level objects are represented as spatio{temporal feature distri-butions directly derived from the 2D{sensory input. The attention mechanismserves as the glue between these two description levels. It allows object surfacesand boundaries to be described by combinations of preattentive features. Thegeometry of objects is inferred from the scan path, i. e. the sequence of FOA co-ordinates. Furthermore, if tracking is considered as a special form of attention,object motion may be derived directly from the camera movement signal of atracking system.The linking between high and low{level information can only be achieved, ifpreattentive features correspond with object surface properties. Therefore sur-face properties have to be extracted invariant with respect to some environmen-tal conditions, e.g. perspective transformations or lighting.1.2 Colour ConstancyProbably the most important surface property is colour. Because humans areable to roughly discriminate between spatial variations in illumination and vari-ations in surface colour, they are able to perceive the colour of a surface ratherindependent from the prevailing illumination. This competence, termed as colourconstancy enables humans to use colour as a feature to distinguish many objectsin a large variety of environments.The early stages of the Human Visual System employ a multiscale multiorientation representation of the sensory input. It is commonly agreed, that thiskind of representations are also appropriate for the majority of computer visionproblems [3]. We will exploit the properties of these representations for the colourinvariant extraction of preattentive features. Though orientation selectivity isan essential property of these scheme, it is not used in other approaches tocolour constancy. Neither Horns classical retinex{based algorithm[9, 11], normore recent colour constant colour indexing techniques[6] use the information oforientation.1.3 Visual Search in Continuous Feature Spaces by Steerable FiltersVisual search is the most important subtask of visual attention, since it is aninherent part of many vision problems. It is also the most employed task inpsychological experiments to examine visual attention[13]. A typical test patternin these experiments contains coloured rectangles on a homogenouos background(Fig. 2a) which are completely speci�ed by their colour, size, and orientation.A pattern also shows a single search target, which di�ers from the surroundingdistractors in at least one feature. The time it takes for the subject to detect thetarget is measured for a varying number of distractors. If the target is uniquely



distinguished from all distractors by at least one feature, the search time doesnot depend on the number of distractors. Therefore, the task is assumed to bedone in parallel. Otherwise, if the target shares some features with distractors,i.e. it is uniquely described only by a conjunction of features, the search timeusually grows linearly with the number of distractors. In this case the task isthought of requiring a sequential scan of all objects, until the target is found. Thisprocedure, described in Treisman's feature integration theory[13] may go backto architectural constraints of the human visual system, but bears no obviouscomputational advantages for an arti�cial system. Therefore we consider visualsearch in the concrete form as "fast conjunctive search" i.e. the task of �nding allobjects speci�ed by a conjunction of at least one preattentive feature in parallel.The attention system we use to demonstrate our procedure is based on Ah-mad's VISIT[1] which was designed to simulate visual search experiments de-scribed above. Objects are localized by a maximum detection on the saliencymap which is a weighted sum of the output of linear �lters at several scales andorientations on three colour signals. Of coarse, a target is most easily detected,if the weights match the objects description in the feature space of scale, ori-entation, and colour. Referring to orientation, the weight of the �lter with thedesired orientation is set to one, while all other weights are set to zero. Twoquestions arise in this context. First, how are the weights adjusted, if the targetsorientation doesn't match with one of the �lters orientation? Secondly, how arethe weights adjusted, if the orientation of the target is not speci�ed by the searchtask? The �rst question is answered most naturally by the theory of steerable�lters[4] which provides a calculus to synthesize an arbitrarily oriented �lter bythe linear combination of some �xed set of basis �lters. This way any orientationcould be searched for by the small e�ort of interpolating few �lter responsesinstead of applying the matching �lter to the whole image. The second problemwill be solved readily, if there exists a linear combination of this basis �lter setwhich synthesizes an isotropic �lter. On this condition equal �lter outputs for allorientations are guaranteed. We will use Andersson �lters[2] which ideally meetboth conditions.In the next section we will provide a computational model for colour invariantpreattentive feature extraction and integration based on the responses from a setof steerable �lters. The assumptions underlying colour constancy are describedin section 3. Finally, we will give some preliminary experimental results in section4.2 The Feature Integration ProcessGiven an input image, the following three step algorithm (Fig. 1) yields a saliencymap according to the prespeci�ed target feature combination.Step 1: approximates the nonlinear characteristic of colour sensors by convert-ing the sensory input from RGB{ to Lab{colour space.Step 2: provides the basis �lter outputs by convolving Lab{images with a setof scaled and rotated Andersson �lters.Step 3: combines these these linearly outputs to synthesize a �lter matching tothe speci�ed feature conjunction.2.1 Colour Space ConversionThe triple (rR(x); rG(x); rB(x)) denotes the tristimulus values of the inputcolour image as a function of the spatial coordinate vector x = (x; y)T . Thistristimulus is converted to the well known CIE{Lab{colour space by:qL = 25 (100 qY =qY 0) 13 � 16 if 110 � qY =qY 0 � 1 (1)



search taskRGBtoLab �step 3step 1 step 2 sw`; p�; t�kqRGB qLab g`;�;�;�Fig. 1. Three step algorithm: colour space conversion, linear �ltering and feature inte-gration. qa = 500 h(100 qX=qX0)13 � (100 qY =qY 0) 13 iqb = 200 h(100 qY =qY 0) 13 � (100 qZ=qZ0) 13 iwhere (qX(x); qY (x); qZ(x)) are the nonnegative CIE{XYZ tristimulus values,obtained by a linear mapping from the NTSC{RGB values: qXqYqZ ! =  0:607 0:174 0:2010:299 0:587 0:1140:000 0:066 1:117!  qRqGqB ! (2)The values (qX0; qY 0; qZ0) denote the reference white.2.2 Filtering and Steering OrientationEach component of the Lab{colour{signal q`; ` 2 fL; a; bg is now convolved (�)with a set of Andersson basis �lters tuned to speci�c scales �i = �b2i; i = 0; 1; 2,orientations �k = k�=4; k = 0; : : : ; 3 and phases � 2 feven; oddg: gL;�;�;�ga;�;�;�gb;�;�;� ! =  qLqaqb ! � h�;�;� (3)The odd and even symmetric versions g`;�;�;e(x) and g`;�;�;o(x) constitute aHilbert pair. Since the Andersson �lter is de�ned in the frequency domain, wewill consider its transfer function H�;�;�(u; v). Rewritten in polar frequencies(�; #) = (pu2 + v2; arg(u; v)) the Andersson transfer function becomes separa-ble: H�;�;�(�; #) = R�(�) �A�;�(#) Its radial component is:R�(�) = cos2 � ln(��)2B ln 2 f�ur 2�B��1 � � < 2B��1 (4)with a constant logarithmic bandwidth B. The angular component of the �rstorder Andersson �lter is de�ned as:A�;�(#) = � cos2(#� �) if � = evenj cos2(#� �) sgn(cos(#� �)) else (5)The Andersson �lter is steerable[2] with respect to orientation �, since the angu-lar component to an arbitrary orientation can be written as a linear superpositionof rotated copies of itself:A�;�(#) = M�1Xk=0 b�k (�) A�k;�(#) (6)The minimum number M0 � M of basis functions to steer the functionA�;�(#) is equal to the number of nonzero coe�cients an of its Fourier expansion:A�;�(#) = NXn=�N anejn# (7)



While the even symmetric componentA�;e(#) needs 3 basis functions, the oddcomponent A�;o(#) corresponds to an in�nite series and would require in�nitelymany basis functions. A �nite series for n = �3; : : : ; 3 with four nonzero coe�-cients yields a good approximation of A�;o(#). Therefore four basis functions atorientations �k = k�=4; k = 0; : : : ; 3 su�ce to steer A�;o(#) approximately. Inorder to get four Hilbert pairs of basis functions, we have to supplement the evenbasis �lter set by one additional �lter. This expansion is redundant with respectto steerability but useful, if basis �lter outputs are to be interpreted withoutsteering.The interpolation functions b�k (�) can be derived by applying the steerabilityeq. (6) to eq. (7).Due to the properties of the cos2 function, an isotropic �lter could be ob-tained simply by summing up basis �lters for all orientations:H�;iso(�; #) = 3Xk=0 12R�(�) �A�k;�(#) = R�(�) (8)The same principle yields isoscale �lter within the scale interval [�0; �2]:Hiso;�;�(�; #) = 3Xi=0 R�i(�) �A�;�(#) = A�;�(#) (9)2.3 Feature IntegrationOnce, the �xed step of convolution with the basis �lters is completed, the ob-tained outputs gk;�;�;�(x) are linearly combined to obtain the saliency map c(x):c(x) = X̀Xk X� X� w` p� t�k g`;�;�k;�(x) (10)If the weights w`; t�k ; p� are set according to the speci�ed target feature com-bination as listed in table 1, the resulting saliency map is supposed to have itshighest local maxima at target locations.colourw`; ` = L a bred 0 1 0green 0 -1 0yellow 0 0 1blue 0 0 -1bright 1 0 0dark -1 0 0 orientation/phaset�k � = even even even even odd odd odd oddk = 0 1 2 3 0 1 2 3�/even be0(�) be1(�) be2(�) be3(�) 0 0 0 0�/odd 0 0 0 0 bo0(�) bo1(�) bo2(�) bo3(�)NN 1/2 1/2 1/2 1/2 0 0 0 0 scalepi; i = 0 1 10 1 0 01 0 1 02 0 0 1NN 1 1 1Table 1. Feature weights according to a target feature speci�cation. The b�k are theinterpolation functions.3 Colour Constancy3.1 Re
ection and SensingFirst, we have to recall the physical process of re
ection which mainly in
uencesthe light passing the lens of the camera. A single point on a Lambertian surfacewith spectral re
ectance distribution S(�) receives light from an illuminant withspectral energy distribution E(�). The spectral distribution I(�) of the lightre
ected by the surface is obtained as the product



S(�)E(�) I(�) = E(�) � S(�)This process is referred to as subtractive colour mixture. After the spectral lightI(�) has passed the lens, it hits three colour sensors with spectral sensitivitiesQ`(�). The responses of the sensors, termed tristimulus values, are obtained byprojecting the density I(�) to each of the sensitivity functions Q`(�): qRqGqB ! = 1Z0 I(�)  QR(�)QG(�)QB(�)! d� (11)How do the values q` relate to surface re
ectance? In order to answer this ques-tion, we �rst make the following assumptions[15, 12]:1. The spectral re
ectance distribution S(�) of the surface and the energydistribution E(�) of the illuminant is smooth and is well approximated bythe weighted sum of spectral sensitivities Q`(�):E(�) = X`2fR;G;Bg e`Q`(�); S(�) = X`2fR;G;Bg s`Q`(�); (12)2. The sensor sensitivity functions are orthogonal i.e.1Z0 Qk(�) Q`(�) d� = � 1; k = `0; k 6= ` (13)Then each sensor response q`; ` 2 fL; a; bg is obtained as a product of theilluminant value e` and the re
ectance value s`: qRqGqB ! =  eR � sReG � sGeB � sB ! (14)By this, the potentially in�nite dimensional illuminantand surface re
ectancefunctions are represented jointly in a three dimensional space spanned by thesensitivity functions Q`(�). This is a reasonable assumption for most naturalsurfaces and illuminants. In fact, the principle component analysis applied toa large set of natural surfaces which Maloney[12] performed, roughly yields thespectral sensitivities of retinal photoreceptors as the most important three eigen-functions.The second assumption mentioned above, the orthogonality of the Q`(�), isa stronger restriction of the model.3.2 Properties of Lab{Colour SpaceColour constancy is equivalent to get rid of the factors e` of eq. (14) which comefrom illumination. Now we transform the sensor responses q` to the Lab{colourspace. Due to its resemblance with the logarithmic function, the cubic root func-tion in eq. (1) approximately maps products to sums, and factors to summands.Consequently, the Lab{coordinates q` of the re
ected light are obtained by: qLqaqb ! =  eLeaeb !+ sLsasb ! (15)



where ej and sj are the Lab{coordinates of e` and s`, respectively.As in an earlier colour vision model by Frei and Baxter[5], we could haveused the logarithmic characteristics, but we preferred the Lab{space because ofits uniform colour distance measure. We will exploit this property for attentionand coding in future work.3.3 Linear FilteringThe subtractive colour mixture, we observe in the physical world has turned outto be an additive colour mixture in the perceptual world.The task is now to extract the summands s` from eq. (15). If we assumethat spatial variations in illumination are slower than those in re
ectance[15],the problem is solved with a linear �lter. Looking then at the spatial frequencydomain, the low frequency components come from the slowly varying illuminant,while the high frequency components are due to changes in surface re
ectance.By means of band{pass Andersson �lters, described in section 2, the low fre-quency components are suppressed. The �lter outputs only carry the re
ectancecomponent s`(x) of the colour signal.4 Experimental ResultsWe tested our algorithm in the framework of a visual attention system, thatwas inspired by Ahmad's[1] VISIT. The purpose of VISIT was to simulate somepsychological experiments upon human visual search. A typical test pattern inthese experiments contains coloured rectangles on a homogenouos background.The rectangles are either in vertical or in horizontal orientation. A visual searchtask is de�ned uniquely by colour and orientation of the search target.The aim is to detect the target by means of the output of an oriented Ander-sson �lter[2] on Lab{values which is matched to the orientation, scale and colourof the target. The more powerful scheme of multiscale multiorientation analysishere degrades to a template matching. Colour invariant detection is achieved,if the �lter responses at the center of each object is independent of the illumi-nant colour. To test also the physical part of our model, we did not simulatethe coloured illumination on the computer, but realized it with a colour �lter infront of the spot lights.Figure 2 shows the a component of the original image under white (2a) andred illumination (2b). In �gure 2c) the �lter response to the a component of thewhite illuminated image is depicted. We have left out the response to the redilluminated image, because it is indistinguishable from the white illuminationresponse, when printed on paper.5 SummaryWe presented a multiorientation multiscale representation for colour image sig-nals which is largely invariant with respect to intensity and colour of illumination.Many computer vision problems have been done without colour information.Therefore colour processing issues are often neglected or considered as a byprod-uct of luminance processing. In attentive architectures however, colour process-ing is essential, because it is one of the most important features in preattentivevision. Since attention is mostly attracted by re
ecting objects, not by illumina-tion, preattentive features have to work colour and lightness constant. On theother hand there are many retinex{like colour constancy algorithms which in-volve isotropic �lters and thus discard orientation. In our approach, both colourconstancy and lightness constancy is achieved by the same unifying steerable�lter approach while preserving the information of local orientation.References1. S. Ahmad. VISIT: An E�cient Computational Model of Human Visual Attention.Phd thesis, University of California, Berkeley, 1991.
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