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Abstract

We introduce quaternionic Gabor filters for the classifi-
cation of local image structure. These filters are constructed
as windowed basis functions of the quaternionic Fourier
transform. We show that – in contrast to the 2D complex
Gabor filters – the quaternionic Gabor filters are intrinsi-
cally 2D filters. A generalized phase concept is introduced
and compared to the classical one. It is shown how local
image structure can be classified by the value of the local
quaternionic phase.

1. Introduction

Gabor filters (GFs) were first introduced in the field of
1D signal processing by D. Gabor [6] for a joint time-
frequency analysis. They have the advantage of being opti-
mally localized in the time and in the frequency domain, si-
multaneously. In recent years GFs have found applications
in several different PR and CV tasks such as local phase
and frequency estimation for texture segmentation [2] and
stereo disparity estimation [7], to name only two possible
applications.

There is a close relationship between the local structure
of a signal and its local phase. The latter can be estimated
as the angular argument of the GF response to the signal
[13]. Here the term local structure mainly refers to local
even/odd-symmetries.For another approach see e.g. [1].
Complex GFs are usually adapted from the analysis of 1D
signals to image analysis in an intrinsically 1D way. (For
details on intrinsic dimensionality see [11].) Consequently,
they are only suited to the detection and classification of 1D
features – i.e. lines and edges – in an image across a prede-
fined orientation. In this article we introduce quaternionic
GFs which turn out to be intrinsically 2D filters. Quater-
nionic GFs are defined as Gaussian windowed kernel of the
recently introduced quaternionic Fourier transform (QFT)
[3, 4, 5].
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section we give a brief review of the QFT and the quater-
nion algebra. A novel phase concept for 2D signals which
is based on the QFT is introduced in section 3. In section
4 the relation between local structure and local phase is ex-
plained and quaternionic GFs are defined. Before the article
is closed by a conclusion, results are shown which demon-
strate the local structure selectivity of quaternionic GFs.

2. The Quaternionic Fourier Transform

The QFT has recently been introduced in [5] and in [3,
4], independently. Like the Fourier transform (FT) and the
Hartley transform the QFT is a linear, invertible harmonic
transform. Although the QFT is restricted to 2D signals, its
concept can be extended to arbitrary dimensions as Clifford
algebra FT with the special cases of the complex FT in 1D
and the QFT in 2D [3]. The QFT of a 2D functionf(x) (real
or quaternion valued) is given byFq(u) = 1Z-1 1Z-1 e-i2�uxf(x)e-j2�vyd2x; (1)

wherex = (x; y) andu = (u; v). The difference between
the FT and the QFT is that the imaginary uniti in the second
exponential in (1) is replaced byj. The unitsi andj are el-
ements of the algebra of quaternions and obey the relationsi2 = j2 = -1 andij = -ji = k. Note that the quaternionic
multiplication is not commutative.

The quaternion algebra can be seen as a 4D real lin-
ear space together with the multiplication defined by the
relations given above. The magnitude of a quaternionq = a + bi + cj + dk is defined asjqj = pqq� whereq� = a - bi - cj - dk is called the conjugate ofq.
In the definition of the generalized phase concept we will
make use of the fact, that unit quaternions represent rota-
tions in IR3: Let x = ix1 + jx2 + kx3 represent the vectorx = (x1; x2; x3)T 2 IR3, then the rotation through the an-
gle� about the axis given by the unit vectorn 2 IR3 can be
performed asx 0 = qxq-1 with q = exp(n�=2). For more
details an quaternions see [9].

Using the QFT it is possible to generalize the concept of
the analytic signal – which stems from 1D signal processing



– to 2D in a well defined way which is impossible using
the 2D Fourier transform [4]. In [12] the QFT has been
proposed for the processing of color images.

3. A Novel Phase Concept

In polar representation a signal’s FT can be decomposed
in an amplitude and a phase component. In 2D the phase
component carries the main part of image information [8].
For the QFT the polar representation has to be extended.
Since the quaternions constitute a 4D algebra we can rep-
resentFq(u) in a polar representation of the form(jFq(u)j,�(u), �(u), (u)), wherejFq(u)j is the magnitude and the
angles(�(u); �(u);  (u)) represent a novel kind of phase
vector. Among several possibilities we choose the follow-
ing definition:Fq(u) = jFq(u)jei�(u)ek (u)ej�(u): (2)

The meaning of�, � and  has to be clarified below.
The angles2�(u); 2�(u) and 2 (u) are one of several
possible definitions of the Euler angles [10] whenFq=jFqj
is interpreted as a quaternion, representing a rotation in
3D as mentioned in section 2. Using this relation we
can recover the angles(�; �; ) which yield the repre-
sentationq = jqjei�ek ej� of a quaternion given asq = a + ib + jc + kd. Unlike the complex phase
which is unique in the interval[-�; �[ the quaternionic
phase(�; �; ) can only be evaluated within the interval[-�; �[�[-�=2; �=2[�[-�=4; �=4]. To clarify the mean-
ing of the quaternionic phase we present the QFT version
of the shift theorem:
Theorem(shift theorem): LetFq(u) andFqT(u) be the QFTs
of the 2D signalsf andfT, respectively. HerefT is a shifted
version off, namelyfT(x) = f(x - d) andd = (d1; d2)>.
Then,Fq(u) andFqT(u) are related byFqT(u) = e-i2�ud1Fq(u)e-j2�vd2 : (3)

If we denote the phase ofFq(u) by (�(u); �(u);  (u))
then, as a result of the shift, the first and the second com-
ponent of the phase undergo a phase-shift and the phase ofFqT(u) is given by(�(u) - 2�ud1; �(u) - 2�vd2;  (u)).
This result shows that the�-component (�-component) of
the phase corresponds to the horizontal (vertical) Fourier
phase while the -component represents a new entity,
which is not effected by a mere shift of the image. The
meaning of will be demonstrated in section 5.

4. Local Structure from Local Phase

The local phaseof a signal can be computed from the
filter response of a complex GF. The impulse response of a
1D GF as shown in figure 1 is given byG(x) = e-x2=2�2eicx=�; c = �!; (4)
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Figure 1. A complex GF with c = 3 (real part solid, imag-
inary part dashed).

i.e. it is a windowed basis function of the FT. To differ-
ent local structures there correspond different values of the
local phase as shown in table 1. E.g. forlocal phase= 0
the local structure is a positive peak, while forlocal phase= �=2 the local structure is a falling step edge and so on.

local structure

local phase -� -�=2 0 �=2
Table 1. Local structure and local phase in 1D.

For tasks of image analysis, the 1D GF (4) usually is
extended to 2D in the following way:G(x) = e(-x2=2�21-y2=2�22)eixc=�1 ; c = �1!: (5)

A rotated version of (5) is given byG�(x; y) := G(x 0; y 0)
with x 0 = x cos(�) + y sin(�) and y 0 = -x sin(�) +y cos(�). Analogous to the 2D complex GF we define the
quaternionic GF as the windowed kernel of the QFT:Gq(x) = e(-x2=2�21-y2=2�22)ei(c1x=�1)ej(c2y=�2); (6)

with ci = �i!i. Again, we can construct rotated versions
of the quaternionic GFs asGq;�(x; y) := Gq(x 0; y 0) with(x 0; y 0) like given above. SinceGq contains two orthogo-
nal frequencies it depends on one more parameter thanG.
In figure 2 a complex and a quaternionic GF are shown with�1 = �2, c = c1 = c2 = 2 and� = 0. The 2D com-
plex GFs suffer from the disadvantage that they can only
distinguish elongated versions of the structures shown in ta-
ble 1, i.e. straight lines and edges. In the following section
it will be shown how this restriction can be overcome using
quaternionic GFs.

5. Results

Table 2 shows, as an 2D-analogue to table 1, the relation
between the local 2D structure and the local quaternionic
phase. The local quaternionic phase of the shown structures
is computed from the response of a quaternionic GF. Ta-
ble 2 shows four of sixteen primitive structures that can be
discriminated from their local phase. The value = ��=4
indicates that the patterns respond optimally to a linear com-
bination of two components of the quaternionic GF. These



Figure 2. A complex and a quaternionic GF. The rows
show from left to right: Real and imaginary part, mag-
nitude and phase of the complex GF (top), real, i–, j–
and k–imaginary part of the quaternionic GF (middle) and
magnitude, �-, �- and  -phase of the quaternionic
GF (bottom).

are either thei- and thej-imaginary part (1st pattern) or the
real and thek-imaginary part (2nd pattern). Lines and step
edges can be discriminated in analogy to the 1D case where� + � corresponds to the 1D phase (compare to table 1.).
The value = 0 in the other cases indicates that the pat-
terns respond only to one component of the quaternionic GF
(e.g.k-imaginary part for the chess-board structure). Thus, = 0 corresponds to intrinsically 2D structures. Inverting
a pattern always results in a shift of the�-component by��. " 0�=2�=4 # " -�0-�=4 # " -�=2-�=20 # " 0�=20 #

Table 2. Local structure and quaternionic phase in 2D.

The  -component of the quaternionic phase provides
new information which is not given by the phase when esti-
mated with two complex GFs. This is clarified in figure 3.
We regard a class of structures which have all the same hor-
izontal and vertical local phase (� = � = 0), independently
of the way it is computed: with two complex GF or with
one quaternionic GF. This class is parameterized by�. The
additional phase value resulting from the quaternionic fil-
tering allows the distinction of the patterns.

6. Summary and Conclusions

In this article we introduced quaternionic GFs. It could
be shown, how a local phase concept can be defined based
on these filters. By evaluating the quaternion phase of the
filter response intrinsically 1D and 2D structures can be dis-
tinguished applying only one quaternionic GF. Whereas in
this article we presented only the basic ideas we see many
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Figure 3. Five structures and the  -component of their
local quaternionic phase. The dots indicate the positions
of the structures shown above.

potential applications such as texture segmentation or image
matching.
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