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Abstract. The estimation of the local phase and local amplitude of 1-D signals
can be realized by the construction of the analytic signal. This includes the evalu-
ation of the signal’s Hilbert transform, which performs a phase shift. In the past,
different definitions of the analytic signal of multidimensional signals have been
proposed, all of which are based on different combinations of partial and total
Hilbert transforms. None of these approaches is isotropic.We propose the use
of Riesz transforms which are known to mathematicians as appropriate gener-
alizations of the Hilbert transform ton-D. This approach allows the isotropic
estimation of the intrinsically 1-D local image phase. Applications to Moiré in-
terferograms are shown.

1 Introduction

The estimation of the local phase and the local amplitude is an important step in many
signal and image processing tasks. A second crucial task in image processing is the
estimation of the local orientation. Usually these two tasks are treated separately. The
methods used for the phase and amplitude estimation are based on the evaluation of
the analytic signal of the input signal1 which involves the calculation of the signal’s
Hilbert transform. In practical problems either the analytic signal itself is evaluated, or
the analytic signal of a band-pass filtered version of the input signal is considered. The
latter can be constructed by the application of quadrature filters or, approximately, by
using Gabor filters.

2-D Gabor filters are now widely used in image processing. These filters are ori-
entation selective and allow the estimation of the local phase provided that the local
orientation is known or has been estimated in a previous processing step. Actually, 2-
D Gabor filters, like their 1-D correspondents, rely on an analytic signal, thepartial
analytic signal, which is defined as the line-wise evaluation of the 1-D analytic signal
wrt. a predefined orientation. This presents, besides others, one possible extension of
the analytic signal to 2-D. Unfortunately, none of these extensions allows the estimation
of a smooth phase map of images containing arbitrary orientations.

1 We assume all signals to be real-valued.



In this article we propose to replace the Hilbert transform by the Riesz transform
in 2-D (and generally inn-D). We will show how the analytic signal constructed using
the Riesz transform allows the estimation of the local orientation, local phase and lo-
cal amplitude at the same time. Evaluation of the local phasefrom the partial analytic
signal leads to an undesirable effect. At the positions where the local orientation flips
from ��=2 to �=2 the phase is inverted:�(x) ! ��(x). We call this effectsudden
phase inversion. This is not to be confused with the2� wrap arounds, which are typical
for phase images. We will apply the Riesz transform to the phase estimation of Moiré
interferograms and provide a way to obtain smooth phase mapswithout sudden phase
inversions. This is possible if we use the additional orientation information given by the
Riesz transform.

In Sect. 2 we first shortly recap the notions of the Hilbert transform and the analytic
signal. Afterwards the Riesz transform is presented along with a way of combining
it with the original signal to a kind of analytic signal. In Sect. 3 we deal with two
technical aspects concerning the orientation map as provided by the Riesz transform.
These aspects are crucial for the estimation of really smooth phase images without
sudden inversions. Experimental results on Moiré interferograms are demonstrated in
Sect. 4.

2 Isotropic Phase Estimation in 2-D

2.1 The Hilbert Transform and the Analytic Signal

The 1-D analytic signal is derived from the input signal by suppressing its negative fre-
quency components, while multiplying the positive ones by two [5]. This transforms a
real-valued signalf into a complex-valued signalfA. The real part offA is identical
to the input signal, while the imaginary part is a(��=2)-phase-shifted version (or the
Hilbert transform fHi) of f . In the frequency domain the Hilbert transform is defined
by FHi(u) = �iu=jujF (u), whereF andFHi are the Fourier transforms off andfHi, respectively. The analytic signal can be written asfA(x) = jfA(x)j exp(i�(x)).
HerejfA(x)j is called the local amplitude and�(x) the local phase off . E.g.f(x) =
os(!x); ! > 0 yieldsfA(x) = exp(i!x) and thus the local amplitude off is jfA(x)j �1 and the local phase is�(x) = !x.

Generalizations of the analytic signal to higher dimensions are based on the same
construction principle: Instead of one half-axis in the frequency domain, one half-space
which is chosen wrt. a reference orientation of then-D frequency domain can be sup-
pressed. The resulting complex-valued signal is the sum of the original signal and its
partial Hilbert transform [6]. Evaluating the local phase from the partial Hilbert trans-
forms directly leads to undesirable sudden phase inversions as shown in Fig. 5 (b). More
recently, it has been suggested to construct ann-D extension of the analytic signal by
keeping merely one orthant (in 2-D = quadrant) of the frequency domain and suppress-
ing the rest. Depending on the type of Fourier transform usedthis leads either to a
complex-valued signal [6] or a Clifford-algebra-valued signal [1, 2]. These approaches
show advantages in the analysis of intrinsically multidimensional signal. However, they
suffer from the fact that they do not yield isotropic results.



2.2 The Riesz Transform

As shown above, the 1-D Hilbert transform has the transfer function2 H(u) = �iu=juj.
A surprisingly straightforward extension yields the transfer functionR(u) of then-D
Riesz transform [10]:R(u) = �iu=juj; with u = (u1; : : : un)T : In this compact no-
tation we combined the transfer functions of thenRiesz transformsRk(u) = �iuk=juj
into the vectorR = (R1; : : : ; Rn)T . In Riesz transform of a 2-D signalf is given by�fr1(x)fr2(x)� =: fr(x) Æ�� R(u)F (u) = �i�
os(�)sin(�)�F (u); (1)

where� is the angle between theu and thex-axis andF is the Fourier transform off .
A simple example reveals the key properties of the 2-D Riesz transform. Consider an
arbitrarily oriented straight cosine-grating:f(x) = 
os(ju0j(x1 
os�+x2 sin�)). The
Riesz transform off is then given byf r(x) = � 
os(�)sin(�)� sin(ju0j(x1 
os� + x2 sin�)): (2)

Thus, the Riesz transform off can be expressed as a unit vector multiplied by the
intrinsically 1-D Hilbert transform off . Furthermore, the unit vector points into the
normal direction of the oriented structure!

We obtain a�=2-phase shifted ver-

fr(x)
fA(x)

�(x)�(x)e1
ef eff(x)e2

Fig. 1.The combination of the input signalf and its Riesz transformfr into the
vector-valued functionfA.

sion of the signal and the orientation in-
formation at the same time. Because of
the linearity of the transform this applies
as well if the image contains more than
one frequency component. As long as the
image is locally straight and coherent, we
will find a �=2-phase shift normal to the
local orientation.

As shown in the above example,fr(x)
contains the local orientation information
and the 1-D Hilbert transform of the in-
trinsically 1-D structure normal to its ori-
entation at the same time. However, the
splitting offr(x) into the orientation com-
ponent and the Hilbert transform compo-
nent is not as straightforward as it may
seem at the first sight. If we factorize thefr as fr(x) = f̂r(x)jfr(x)j; (3)

wheref̂r(x) is a unit vector representing the orientation andjf r(x)j is supposed to
be the Hilbert transform component, we do not get the desiredresult: In the above
example the factorization (3) yieldsj sin(: : : )j as the Hilbert transform component of
the cosine-function and not the sine-function as we should expect.

2 We can saytransfer function of a transform since the Hilbert and the Riesz transform are linear
and shift-invariant and thus can be considered as LSI-filters.



Furthermore, according to (3)̂f r(x) is uniquely defined on the unit circle and thus
represents orientations in the range[��; �[ although the orientation of a straight struc-
ture is merely defined in the interval[��=2; �=2[. Defining the local phase on this stage
leads to ~�(x) = atan2(jfr(x)j; f(x)); (4)

where atan2 is the sign dependent arc-tangent function withrange[��; �[. Figure 2
illustrates the results of (3) and (4). Obviously, Fig. 2 (c)does not represent the local

(a) (b) (c) (d)

Fig. 2. Effects of the Riesz transform factorization according to Eqs. (3).(a) A synthetic test
image.(b) The Hilbert transform component̂fr(x) according to (3).(c) The local phase ac-
cording to (4).(d) The orientation vectorjfr(x)j. The angular component of the vector (i.e. the
orientation) is coded by gray values representing orientations between�� (black) and� (white).

phase of Fig. 2 (a). Before we deal with this problem in the following section, we
show how the Riesz transform and the original signal can be combined into a kind of
multidimensional analytic signal.

The 1-D analytic signal is constructed as a combination of the input signalf and
its Hilbert transformfHi. This combination is realized either as a vector-valued func-
tion fef + fHieH , wherefef ; eHg is an orthonormal basis ofR2 , or, more often, as
a complex-valued functionfA = f + ifHi. Analogously, the Riesz transform can be
combined with the original signal into a vectorfA = fef + fr1e1 + fr2e2, as visu-
alized in Fig. 1, wherefef ; e1; e2g is an orthonormal basis ofR3 . A combination into
a quaternion-valued function is possible as well. This was first proposed by Nabighian
[7] and more recently by Felsberg [4].

3 Improving the Orientation Map

There are two further effects that we should pay attention to. (I) As mentioned in Sect. 2
direct application of (3) does lead to the absolute value of the Hilbert transform compo-
nent rather than to the Hilbert transform component itself.As a consequence we cannot
use this definition for the extraction of the local phase.(II) The orientation vector is
not well-defined if the magnitude of the Riesz transform is zero, i.e.fA(x) k ef (see
Fig. 1).

In order to avoid(I) we apply an unwrapping to the orientation image. The situation
can be clarified as follows. The Riesz transformf r(x) of f is uniquely defined. How-
ever, the factorization offr(x) into a scalar part and a vector of unit length is defined



only up to a sign. Thus, at each position of the image, there are two possible definitions
of the orientation vector and the scalar part. This corresponds to the fact, that the local
orientation can only be known in an interval of length�. Problems occur at those po-
sitions where the orientation jumps from� to �� �. At those positions the sign of the
scalar component has to change in order to represent the samevaluefr(x). Thus, the
solution to our problem is to use the freedom in the factorization of f r(x) in order to
smooth out the�-jumps of the orientation. We call thisorientation unwrapping. We use
a simple procedure, processing the orientation-image line-wise. Each pixel is compared
to its already processed predecessor. The decision on whether to flip the pixel by� or
not is made such that the distance of the two pixels on the unitcircle is minimized. If
the orientation image is noisy it is more stable to compare each pixel to a whole neigh-
borhood which votes whether to flip the pixel or not. This method has been used in the
experiments in Sect. 4. The new orientation vector is denoted byn.

Each time an orientation values, during orientation unwrapping, is flipped by�, we
have to replacejf r(x)j by�jfr(x)j. The so modified scalar component off r will be
called the Hilbert transform component off r and is denoted byfH such thatf r(x) = fH(x)n(x): (5)

The local phase is now defined by�(x) := atan2(fH(x); f(x)): (6)

The results on our test image are shown in Fig. 3. In Fig. 3 (b) the Hilbert transform

(a) (b) (c) (d)

Fig. 3. Results according to the test image shown in Fig. 2 (a)(a) The unwrapped orientation
image (black= ��, white= �). (b) The Hilbert transform componentfH of fr. (c) The phase
image.(d) The local amplitude off .

componentfH is shown. On the first glance this looks very similar to the original signalf . However, careful consideration shows thatfH is phase shifted by�=2, from the
center of the circle outwards, againstf . Fig. 3 (d) shows the root of the squared sum off andfH which is the local amplitude off . This result also visualizes the isotropy of
the Riesz transform.

Due to effect(II) there occur instabilities in the orientation image, that have to
be smoothed out before orientation unwrapping is feasible.Felsberg [3] proposes to



smooth the orientation image via a weighted averaging:�smn = P(i;j)2N (m;n) sin2(�ij)�ijP(i;j)2N (m;n) sin2(�ij ) ; (7)

i.e. the more reliable an orientation value is, the strongeris its weight in the averaging.
We modify this method in order to cure one problem: In (7) there occurs smoothing
across�-jumps which leads to spurious orientation and furthermoremakes orientation
unwrapping infeasible. Thus, we proposecontrolled smoothing: Before averaging in a
neighborhoodN (m;n), we apply orientation unwrapping inN (m;n) with respect to
the pixel(i; j) 2 N (m;n) that maximizessin2(�ij ). Furthermore, we avoid smoothing
of reliable orientation values. The controlled averaging is only applied in those neigh-
borhoodsN (m;n) with sin2(�mn) < � for a certain threshold� 2 [0; 1℄. See Fig. 4
for results.

(a) (b) (c)

Fig. 4. (a) Detail from the very left part of Fig. 2 (d). Inaccurate orientation values near the�-jump are visible.(b) The same detail of the smoothed orientation image (according to (7),
neighborhood size was5 � 5.) The unstable orientation estimates are smoothed out. However,
the�-jump has been smoothed as well.(c) The same subregion, after controlled smoothing (� =0:04, neighborhood size5� 5). The errors are smoothed out, while the�-jump is preserved.

4 Experiments

Moiré interferometry uses the interference of periodic patterns to measure the topology
of a given surface. The principle of a projection Moiré interferometer is described in
detail in [8]. A ruling is projected onto the surface under investigation. The image of
the ruling is observed from a different direction and focused onto a second reference
ruling, superimposing to a Moiré pattern. As an example, Fig. 5 shows the interferogram
of a tilt plane plate and the results of our method. Lines of equal intensity represent lines
of equal elevation. By determining the phase function of thepattern the surface of the



object can be evaluated. So this technique can also be used tomeasure translations and
deformations of the surface. We apply the methods developedin Sects. 2 and 3 in order
to estimate the phase image�. Fig. 6 shows an application of the Moiré interferometry:

(a) (b) (c)

(d) (e)

(f)

Fig. 5. Estimation of the local phase of a Moiré interferogram.(a) The interferogram.(b) The
local phase wrt. the horizontal partial Hilbert transform.The typical phase inversions are visible.
(c) The raw orientation image.(d) The smoothed and unwrapped orientation image.(e)The local
phase image�. (f) The unwrapped phase image as surface plot.

the instantaneous deformations and movements due to aerodynamic load of a model
wing of a transport aircraft were measured in the cryogenic European Transonic Wind
Tunnel (ETW) in Köln.

5 Conclusion

We proposed to replace the Hilbert transform by the Riesz transform in order to con-
struct a multidimensional analytic signal for the use with intrinsically 1-D signal. This
differs from the recently introduced Clifford-valued signal [2] which is constructed in
order to divulge properties of intrinsically multidimensional signals. The Riesz trans-
form is isotropic and yields orientation, phase and amplitude information at the same
time. Its isotropy is based on the fundamental fact that then Riesz transforms provide
the basis functions of a steerable filter3. We presented experimental results in phase es-
timation from Moiré interferometry. However, the use of Riesz transforms is certainly
not limited to this application and to 2-D signals. First applications in another area of
image processing using local filters based on the Riesz transform can be found in [3].

3 The details are outside the scope of this article. Compare e.g. [9].



(a)

(b)
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Fig. 6. (a)The Moiré interferogram of the model wing.(b) The phase image according to (6).(c)
The unwrapped phase image as surface plot. This correspondsto the profile of the model wing.

References
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