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Abstract. The estimation of the local phase and local amplitude of igbads
can be realized by the construction of the analytic signiails Thcludes the evalu-
ation of the signal’s Hilbert transform, which performs apé shift. In the past,
different definitions of the analytic signal of multidiménsal signals have been
proposed, all of which are based on different combinatidngaotial and total
Hilbert transforms. None of these approaches is isotrdffie.propose the use
of Riesz transforms which are known to mathematicians asogpiate gener-
alizations of the Hilbert transform ta-D. This approach allows the isotropic
estimation of the intrinsically 1-D local image phase. Apations to Moiré in-
terferograms are shown.

1 Introduction

The estimation of the local phase and the local amplitude isnportant step in many
signal and image processing tasks. A second crucial taskage processing is the
estimation of the local orientation. Usually these two taake treated separately. The
methods used for the phase and amplitude estimation are lbasthe evaluation of
the analytic signal of the input sigrfalvhich involves the calculation of the signal’s
Hilbert transform. In practical problems either the analgtgnal itself is evaluated, or
the analytic signal of a band-pass filtered version of thetisgnal is considered. The
latter can be constructed by the application of quadratliezior, approximately, by
using Gabor filters.

2-D Gabor filters are now widely used in image processings&Hiters are ori-
entation selective and allow the estimation of the localsgharovided that the local
orientation is known or has been estimated in a previousgssicg step. Actually, 2-
D Gabor filters, like their 1-D correspondents, rely on anlgiwasignal, thepartial
analytic signal, which is defined as the line-wise evaluation of the 1-D ati@bignal
wrt. a predefined orientation. This presents, besides gtloeie possible extension of
the analytic signal to 2-D. Unfortunately, none of thesepngions allows the estimation
of a smooth phase map of images containing arbitrary ottienta

1 We assume all signals to be real-valued.



In this article we propose to replace the Hilbert transfognthe Riesz transform
in 2-D (and generally im-D). We will show how the analytic signal constructed using
the Riesz transform allows the estimation of the local ddgan, local phase and lo-
cal amplitude at the same time. Evaluation of the local plfiase the partial analytic
signal leads to an undesirable effect. At the positions eltiee local orientation flips
from —7 /2 to 7/2 the phase is invertedi(z) — —¢(x). We call this effectsudden
phaseinversion. This is not to be confused with tti2er wrap arounds, which are typical
for phase images. We will apply the Riesz transform to thesptestimation of Moiré
interferograms and provide a way to obtain smooth phase mipsut sudden phase
inversions. This is possible if we use the additional oaénh information given by the
Riesz transform.

In Sect. 2 we first shortly recap the notions of the Hilbemsfarm and the analytic
signal. Afterwards the Riesz transform is presented aloitly & way of combining
it with the original signal to a kind of analytic signal. In &e3 we deal with two
technical aspects concerning the orientation map as prdvig the Riesz transform.
These aspects are crucial for the estimation of really smpbase images without
sudden inversions. Experimental results on Moiré intedeams are demonstrated in
Sect. 4.

2 Isotropic Phase Estimation in 2-D

2.1 The Hilbert Transform and the Analytic Signal

The 1-D analytic signal is derived from the input signal bpseessing its negative fre-
guency components, while multiplying the positive oneswy [5]. This transforms a
real-valued signaf into a complex-valued signdls. The real part off 4 is identical

to the input signal, while the imaginary part i-ar/2)-phase-shifted version (or the
Hilbert transform fx;) of f. In the frequency domain the Hilbert transform is defined
by Fui(u) = —iu/|u|F(u), whereF and Fy; are the Fourier transforms g¢f and
fmi, respectively. The analytic signal can be writtenfa$z) = |fa(z)| exp(ig(z)).
Here|f(z)| is called the local amplitude an{z) the local phase of. E.g. f(z) =
cos(wz),w > 0yieldsf4(x) = exp(iwz) and thus the local amplitude @fis | f4(z)| =

1 and the local phase i8(z) = wz.

Generalizations of the analytic signal to higher dimensiare based on the same
construction principle: Instead of one half-axis in thejftency domain, one half-space
which is chosen wrt. a reference orientation of th® frequency domain can be sup-
pressed. The resulting complex-valued signal is the surheobtiginal signal and its
partial Hilbert transform [6]. Evaluating the local phase from the partial Hilbertisa
forms directly leads to undesirable sudden phase invessisshown in Fig. 5 (b). More
recently, it has been suggested to construat-dhextension of the analytic signal by
keeping merely one orthant (in 2-D = quadrant) of the fregyelomain and suppress-
ing the rest. Depending on the type of Fourier transform ubedleads either to a
complex-valued signal [6] or a Clifford-algebra-valuedrsl [1, 2]. These approaches
show advantages in the analysis of intrinsically multidasienal signal. However, they
suffer from the fact that they do not yield isotropic results



2.2 The Riesz Transform

As shown above, the 1-D Hilbert transform has the transfectior? H (u) = —iu/|u|.
A surprisingly straightforward extension yields the tf@ngunction R(u) of then-D
Riesz transform [10]R(u) = —iu/|u|, withu = (uy,...u,)T. In this compact no-
tation we combined the transfer functions of thRiesz transform®;, (u) = —iug /|ul
into the vectorR = (Ry, ... , R,)T. In Riesz transform of a 2-D signdlis given by

(11) = o s mrrw = (G0 r0. 0

sin(a)

whereq is the angle between theand ther-axis andF' is the Fourier transform of .
A simple example reveals the key properties of the 2-D Riemzstorm. Consider an
arbitrarily oriented straight cosine-gratinfz) = cos(Juo|(z1 cos 8 + z2 sin 5)). The
Riesz transform of is then given by

_ [cos(B) . .
fol@) = (m(ﬂ) ) sin(ao| (1 €08  + 75 sin ). @)

Thus, the Riesz transform gf can be expressed as a unit vector multiplied by the
intrinsically 1-D Hilbert transform off. Furthermore, the unit vector points into the
normal direction of the oriented structure!

We obtain arn/2-phase shifted ver-
sion of the signal and the orientation in-
formation at the same time. Because of
the linearity of the transform this applies
as well if the image contains more than
one frequency component. As long as the
image is locally straight and coherent, we
will find a = /2-phase shift normal to the
local orientation.

As shown in the above examplg, ()
contains the local orientation information
and the 1-D Hilbert transform of the in-
trinsically 1-D structure normal to its ori-
entation at the same time. However, the

splitting of f,. () into the orientation COM-¢jg 1 The combination of the input signal
ponent and the Hilbert transform COMPO+ and its Riesz transformy, into the
nent is not as straightforward as it may,ector-valued functiorf . "

seem at the first sight. If we factorize the
f,as

fo(@) = f(@)|f, (@), 3)

where}r(w) iS a unit vector representing the orientation ayigd(x)| is supposed to
be the Hilbert transform component, we do not get the desiesdlt: In the above
example the factorization (3) yieldsin(...)| as the Hilbert transform component of
the cosine-function and not the sine-function as we shoyié&.

2 We can sayransfer function of atransformsince the Hilbert and the Riesz transform are linear
and shift-invariant and thus can be considered as LSIilter



Furthermore, according to (j‘)r(m) is uniquely defined on the unit circle and thus
represents orientations in the rarjger, 7| although the orientation of a straight struc-
ture is merely defined in the internvial w /2, 7 /2[. Defining the local phase on this stage
leads to

¢(z) = atan2|f, (z)], f(z)), 4

where atan2 is the sign dependent arc-tangent function raiige[—, 7[. Figure 2
illustrates the results of (3) and (4). Obviously, Fig. 2does not represent the local
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Fig. 2. Effects of the Riesz transform factorization according s E(3).(a) A synthetic test
image.(b) The Hilbert transform componerﬁr(m) according to (3)(c) The local phase ac-
cording to (4).(d) The orientation vectoff, ()|. The angular component of the vector (i.e. the
orientation) is coded by gray values representing oriamatbetween-= (black) andr (white).

phase of Fig. 2 (a). Before we deal with this problem in thdofeing section, we
show how the Riesz transform and the original signal can Inebamed into a kind of
multidimensional analytic signal.

The 1-D analytic signal is constructed as a combination efitiput signalf and
its Hilbert transformfy;. This combination is realized either as a vector-valueafun
tion fes + fuien, where{es, ey} is an orthonormal basis @&, or, more often, as
a complex-valued functiofis = f + i fx;. Analogously, the Riesz transform can be
combined with the original signal into a vectfr, = fe; + f.1e1 + fr2€s, as visu-
alized in Fig. 1, wherdey, e, e>} is an orthonormal basis @& . A combination into
a quaternion-valued function is possible as well. This was firoposed by Nabighian
[7] and more recently by Felsberg [4].

3 Improving the Orientation Map

There are two further effects that we should pay attentiofi)té\s mentioned in Sect. 2
direct application of (3) does lead to the absolute valub@Hilbert transform compo-
nent rather than to the Hilbert transform component itgedfa consequence we cannot
use this definition for the extraction of the local pha@h. The orientation vector is
not well-defined if the magnitude of the Riesz transform i®zee. f 4 (x) || ey (see
Fig. 1).

In order to avoidl) we apply an unwrapping to the orientation image. The sibmati
can be clarified as follows. The Riesz transfofi(x) of f is uniquely defined. How-
ever, the factorization of .(x) into a scalar part and a vector of unit length is defined



only up to a sign. Thus, at each position of the image, thexéves possible definitions
of the orientation vector and the scalar part. This corredpdo the fact, that the local
orientation can only be known in an interval of lengthProblems occur at those po-
sitions where the orientation jumps framto « + 7. At those positions the sign of the
scalar component has to change in order to represent thevgdneef . (). Thus, the
solution to our problem is to use the freedom in the factoioreof f,.(x) in order to
smooth out ther-jumps of the orientation. We call thigientation unwrapping. We use
a simple procedure, processing the orientation-imagediise. Each pixel is compared
to its already processed predecessor. The decision on &rttetflip the pixel byr or
not is made such that the distance of the two pixels on thecincie is minimized. If
the orientation image is noisy it is more stable to compach @axel to a whole neigh-
borhood which votes whether to flip the pixel or not. This noethas been used in the
experiments in Sect. 4. The new orientation vector is dehioyen.

Each time an orientation values, during orientation unywiag, is flipped byr, we
have to replacgf, (x)| by —| f, (x)|. The so modified scalar componentf will be
called the Hilbert transform componentf and is denoted by such that

fr(®) = fa(x)n(x). ®)
The local phase is now defined by
¢(x) := atan fr (z), f(x)). (6)

The results on our test image are shown in Fig. 3. In Fig. 3ie)Hilbert transform

O

Fig. 3. Results according to the test image shown in Fig. 2(@)The unwrapped orientation
image (black= —m, white = 7). (b) The Hilbert transform componerf; of f,. (c) The phase
image.(d) The local amplitude of.

(d)

componenjfy is shown. On the first glance this looks very similar to thgimal signal
f. However, careful consideration shows ttfat is phase shifted by /2, from the
center of the circle outwards, agairfstFig. 3 (d) shows the root of the squared sum of
f and fg which is the local amplitude of. This result also visualizes the isotropy of
the Riesz transform.

Due to effect(ll) there occur instabilities in the orientation image, thatehto
be smoothed out before orientation unwrapping is feaskddésberg [3] proposes to



smooth the orientation image via a weighted averaging:

> Sin2(¢ij)aij
Y (i,5) EN (m,n)

" Y sin’(6;)

(i,5)EN (m,n)

@)

i.e. the more reliable an orientation value is, the stroigis weight in the averaging.
We modify this method in order to cure one problem: In (7) ¢heccurs smoothing
acrossr-jumps which leads to spurious orientation and furthernmoages orientation
unwrapping infeasible. Thus, we propazmtrolled smoothing: Before averaging in a
neighborhoodV'(m,n), we apply orientation unwrapping ik’ (m, n) with respect to
the pixel(i, j) € N(m,n) that maximizesin®(¢;;). Furthermore, we avoid smoothing
of reliable orientation values. The controlled averagmgrly applied in those neigh-
borhoodsV (m, n) with sin*(¢,,,) < 7 for a certain threshold € [0, 1]. See Fig. 4
for results.

@ (b) (©

Fig. 4. (a) Detail from the very left part of Fig. 2 (d). Inaccurate oti@tion values near the
m-jump are visible.(b) The same detail of the smoothed orientation image (acogrin(7),
neighborhood size wa%s x 5.) The unstable orientation estimates are smoothed outektew
thew-jump has been smoothed as wét) The same subregion, after controlled smoothing=(
0.04, neighborhood sizé x 5). The errors are smoothed out, while thgump is preserved.

4 Experiments

Moiré interferometry uses the interference of perioditgras to measure the topology
of a given surface. The principle of a projection Moiré ifideometer is described in

detail in [8]. A ruling is projected onto the surface underdstigation. The image of

the ruling is observed from a different direction and foclisato a second reference
ruling, superimposing to a Moiré pattern. As an examplg, 5shows the interferogram
of a tilt plane plate and the results of our method. Lines ofttensity representlines
of equal elevation. By determining the phase function ofghttern the surface of the



object can be evaluated. So this technique can also be useebisure translations and
deformations of the surface. We apply the methods develiop@dcts. 2 and 3 in order
to estimate the phase imageFig. 6 shows an application of the Moiré interferometry:

==
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Fig. 5. Estimation of the local phase of a Moiré interferogrga). The interferogram(b) The
local phase wrt. the horizontal partial Hilbert transfoifhe typical phase inversions are visible.
(c) The raw orientation imagéd) The smoothed and unwrapped orientation im#éggThe local
phase image. (f) The unwrapped phase image as surface plot.

the instantaneous deformations and movements due to aenmily load of a model
wing of a transport aircraft were measured in the cryogenimpean Transonic Wind
Tunnel (ETW) in Koln.

5 Conclusion

We proposed to replace the Hilbert transform by the Rieszsfoam in order to con-
struct a multidimensional analytic signal for the use wittrinsically 1-D signal. This
differs from the recently introduced Clifford-valued s&2] which is constructed in
order to divulge properties of intrinsically multidimensil signals. The Riesz trans-
form is isotropic and yields orientation, phase and amgétinformation at the same
time. Its isotropy is based on the fundamental fact thatitfdesz transforms provide
the basis functions of a steerable fiftewe presented experimental results in phase es-
timation from Moiré interferometry. However, the use oERz transforms is certainly
not limited to this application and to 2-D signals. First Bgations in another area of
image processing using local filters based on the Rieszftnangan be found in [3].

3 The details are outside the scope of this article. Compard®.



(b)

Fig. 6. (a) The Moiré interferogram of the model wingn) The phase image according to (&)
The unwrapped phase image as surface plot. This correspotius profile of the model wing.
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