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Hypercomplex Signals—A Novel Extension of the
Analytic Signal to the Multidimensional Case

Thomas Biilow and Gerald Sommer

Abstract—The construction of Gabor's complex signal—which [3]) are often used. Among others, the complex signal has found
is also known as the analytic signal—provides direct access to agpplications in narrowband communication [4], NMR-spec-
real one—d!mens_ional_(l-D) signal’s Io_cal amplitude_and_ pha_se.The troscopy [5], geophysics [6], [7], and image processing. The
;zwsﬂffmsfxﬂilcﬁ il;u;tpft:grsne_asthrﬁfelds\l/%r;;lo?]yo?ctiﬁéngig;tnsall—i_llggrztin Igtter application area indicates th:_:lt_there i_s the n_eed ofa defini—
imaginary part to the signal. Since its introduction, the complex tion of the complex signal for multidimensional signals. In this
signal has become an important tool in signal processing, with ap- paper, we review known ways to define the complex signal of
plications, for example, in narrowband communication. Different  sych signals. Furthermore, we introduce hypercomplex signals
approaches to ann-D analytic or complex signal have been pro- that are a novel extension of the complex signal4D.

posed in the past. We review these approaches and propose the ni - h definiti fth
hypercomplex signal as a novel extension of the complex signal to 1" IMage processing, the most common definition of the com-

n-D. This extension leads to a new definition of local phase, which plex signalis the line-wise calculation ofthe 1-D complex signal.
reveals information on the intrinsic dimensionality of the signal. This results from the definition of negative frequencies with re-
The different approaches are unified by expressing all of them as spect to one half plane of the frequency domain. Line-wise eval-
combinations of the signal and its partial and total Hilbert trans- uation is suitable for intrinsically 1-D signals, which vary merely

forms. Examples that clarify how the approaches differ in their . . . 2. .
definitions of local phase and amplitude are shown. An example alongthe preselected orientation. Generalizing a definition given

is provided for the two—dimensional (2-D) hypercomplex signal, by Kriegerand Zetzsche [8] for 2-D signals, we caltab signal
which shows how the novel phase concept can be used in texturef intrinsicallym-dimensional ifitis constant with respectto-
segmentation. m orthogonal orientations (see Fig. 1).

Index Terms—Analytic signal, Clifford Fourier transform, com- Formally, a signalf: R™ — R is of intrinsic dimensionm if
plex signal, Hilbert transform, hypercomplex Fourier transform, jt can be expressed as
local amplitude, local phase, quaternionic Fourier transform.

|. INTRODUCTION f(z) = g(Ax), ¢ R™ =R

INCE the introduction of thecomplex signalof a real . o

ne-dimensional (1-D) signal by Gabor in 1946 [1], thifor some reain x n matrix A and no othef x n matrix with
construction has become an important tool in 1-D signal pr < m. i )
cessing. The complex signal is constructed by suppressing aff*n @Pproach to the complex signal that takes into account
negative frequency components of a real signal. This results if§ fact that multidimensional signals are generally not intrin-
complex signal that is the sum of the given real 1-D signal andi¢@lly 1-D is the complex signal with single Orthf‘”t spectrum
purely imaginary component that is the Hilbert transform of tHgtroduced by Hahn [9]. Following this approact,™ complex
original signal. The Hilbert transform performs a phase shift §f9nals of am-D signal must be evaluated in order to be able
the signal by /2. From the complex signal, the local amplitudd® réconstruct the original signal. We introduce the hypercom-
(theenvelopg and the local phase of the original signal can /€ signal, which is based on a combination of Hahn's complex
derived as modulus and angular argument, respectively. Toddgnal with single orthant spectrum and hypercomplex Fourier
the termanalytic signalis sometimes used instead of the terff@nsforms [10]. The original signal can be reconstructed from
complex signawhich was coined by Gabor himself. We will us¢N® hypercomplex signal by simply taking its real part.
the term complex signal in the following. In applications, Gabor AS mentioned above, in 1-D, the polar representation of the
filters that yield an approximation of the complex signal of gomplex signal yields access to the local amplitude and the local

bandpass filtered version of the input signal (see, e.g., [2] aRBase of the signal. In image processing, the intrinsically 1-D
local phase can, e.g., be used to classify straight features into

_ _ _ , lines and edges. Oppenheim and Lim [11] showed that the main
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Fig. 1. From left to right: An intrinsically 0-D, 1-D, and 2-D signal.

the following vivid explanation for this effect of the Hilbert
transform: Every signalf can be represented as a linear
combination of pure frequency components(2ruz + ¢).
The phase-shifted version of this is sfghsin(2rux + ¢)
and can be derived from the cosine function by applying the
operator—(1/2x|u|) (8/0x)o—e — i(u/|u|) = —isign(u). The
latter is identical to the transfer function of an ideal Hilbert

transformet.
related to the intrinsic dimensionality of the signal. We investi- 1o complex signaf , of f is the sum of the original signal

gate this phase explicitly and show how it can be of use inimaggq the phase-shifted signal, where the shifted signal is added
processing applications. as an imaginary part
In Section I, we recap the main definitions and properties of

the 1-D complex signal. In Section I, the known approaches to-
ward ann-D complex signal are presented and compared with
respect to the reconstructibility of the original signal from the . ,
complex signals. In Section IV, hypercomplex Fourier trand? the frequency domain, this reads
forms are introduced with special emphasis on the 2-D trans-

Fal@) = f(2)+ ifmile) = f(2)+ (5@:) + —) NG

T

form, which is the quaternionic Fourier transform (QFT). The Ta(z)oeFa(u) = F(u) + ZF}{i(u) ©)
hypercomplex Fourier transforms are used in Section V in order = F(u)(1 + sign(u)).
to define the hypercomplex signal. Based on the 2-D hypeﬁ]uS Fa(u) = 01f u < 0, Fau) = 2F(u) if u > 0, and
complex signal (thguaternionic signgl the local quaternionic r (03 fF(O) v hA '

A - .

phase of a signal is introduced. In Section VI, the different com Writing £.1 in exponential forny.s (z) = | £ (z)| explid(z))

plex signals are compared wiht the hypercomplex signal, an%lds immediate access to thecal amplitude|f4(x)| and

examples of the resgltmg d§f|n|t|ons of the local amplitude a ée local phase (¢(x) smod2r) of f. The local phase is
the local phase are given. Itis shown that the phase of the quater- : : X
o S . uniquely defined in an interval of lengtBn. In the fol-
nionic signal presents a new feature. An application of this phase : i al deal with i | q d
{0 texture segmentation is presented owing, we will always deal with intervals centered aroun
' 0: ¢(x) € [—m, m). Therefore, we define the symmetric
modulo operatof(asmodb) := ((a + b/2) mod b) — b/2.
As a simple example, we find the complex signal of the
Before delving into the:-D domain, we will recap the main cosine functionf(z) = cos(2nruz), u > 0 to be the complex
definitions concerning the 1-D complex signal. First, the 1-Bxponential f4(z) = exp(i2ruzx).3 That is, we obtain a
Hilbert transform is defined. The complex signal is defined aonstant local amplitude dff.4+(x)| = 1 and a linear local

the sum of the signal and its Hilbert transform as the imaginaphasep(z) = (2rux smod2r).4

Il. ONE-DIMENSIONAL COMPLEX SIGNAL

part.
Definition 1: The Hilbert transformyy; of a real 1-D signal . n-D COMPLEX SIGNAL
Jis given by As shown in the introduction, the complex signal can be used
N 1 1 to separate the amplitude and the phase information of a given
fri(w) = f(z) * i @ real 1-D signal. Since such a separation would be of much use

for multidimensional signals as well—e.g., for feature extrac-
jon and classification in image processing, itis natural that there

ave been attempts to define the complex signal-D. There
exist three different approaches toward this aim. We recapitulate
these three definitions in the following.

wherex denotes convolution.
On the right-hand side of (1), Cauchy’s principle value of th
integral has to be evaluated:

(=l f(6)
fri(x) —;V-p- o mdﬁ 2 _ o .
A. Three Different Definitions of-D Complex Signals

1 xr—c€ oo . . .
=—lim </ S dé +/ EiG) dg) ) In the following, we will denoten-D variables by boldface
Te—=0\ J_o z—¢& ate T =& charactersx = (zy, ..., x,)T. The first two definitions pre-
In the frequency domain, the Hilbert transform is given by

Iwe use the symbolic notatigfo—e F' or f(x)o—e F(u) in order to express
that F" is the Fourier transform of .

Fyi(u) = —isign(u)F'(u) with sign(u) 2Sometimes, the Hilbert transform is defined with an opposite sign (e.g., in
1, ifu>0 [13]). Inthese cases, the complex signal is defineflas= f — i fz:, such that
. the complex signal is the same in both conventions.
= 0, ifu=0 (4) 3If negativeu are admitted, we finga (z) = exp(i27|u|z).
-1, ifu<O 4t should be noted that the complex signal of the real sigfa) cos(¢())

is, in general, not equal () exp(i¢(x)). This equality is only true ifi(x)

where ' and Fy; are the Fourier transforms of and fi; andcos(¢(z)) have disjunct support in the frequency domain, where all fre-
ivelv. A ¢ . d ab he Hilb f ‘! uencies contained in(x) are lower than all frequencies obs(¢(x)). See
respectively. As mentioned above, the Hilbert transtorm %) for more details. This condition is fulfilled in many practical applications

used as a tool for phase shifting the signal-by/2. There is  such that the complex signal is still a useful practical tool.
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sented here define the complex signal as a combination of thedrequency domain, that reads
original signal and its Hilbert transform, as in 1-D. Using this

approach, first, am-D generalization of the Hilbert transform 2F(u), for(ul -n)>0
has to be defined. In the theory of the complex signal, two such P (w) =< Fu), for(u? -n) =0 (14)
extensions have been used: tol Hilbert transform[15] and e ’ .

0, for (u* -n) < 0.

the partial Hilbert transform[16].
Definition 2: The total Hilbert transfornyy; of a function

T This corresponds to the 1-D case, where negative frequenc
f: R® — Ris given by ! b W gatv quency

components are suppressed while positive frequency compo-
nents are multiplied by two. Here, a frequencis called posi-

¢S

fui(z) = Vop. / - d"e. (7) tiveor negative (with respectig) if (u” ) > Oor(u’ n) <0,
R . e respectively. The partial complex signal with respect to the co-
d | I (z; — &) . R : J
ol ordinate directiorx; is denoted byf,,,.,.

The third approach to the-D complex signal has been pro-
In the frequency domain, the total Hilbert transform is corPosed by Hahn [9]. In analogy to the 1-D complex signal Hahn
structed as follows: defines a complex signal the spectrum of which is zero every-
where except from one orthant of the frequency domain. In 1-D,
) LS anorthantis a half-axis, in 2-D a quadrant, and so on.
Jui(z)o—eFi(u) = (=0)"F(w) [ | sign(w;).  (8)  pefinition 6: Let f be ann-D signal andF' its Fourier trans-
=1 form. Thecomplex signal with single orthant spectryfy,, of

Definition 3: The partial Hilbert transfornf7, of a function f is then given by

f: R™ — R with respect to the orientatiomis given by

_ Foo (@)oo F0, (w) = F(u) [T (1 + signw)).  (15)
Jii(z)oeF T (u) = —iF (u) sign(u’ - n). 9) k=1

The partial Hilbert transform with respect to the coordinate dRecently, it could be shown that theD complex signal with
rectionsz; ((;)x = 1if j = k and(z,)x = 0 else) is denoted Single orthant spectrum is the boundary distribution of an ana-

asfJ... Itis built in the spatial domain by lytic functiqn [18], vv_hic_:h was up to then only_knqwn fqrthe 1-D
’ complex signal. This justifies the nanaaalytic signal instead
i G of complex signal
fii®) = V-p-/ (s — &) dg;. (10) For each of the above definitions, we can define a “local am-
R J TSy

plitude” and “local phase” like in the 1-D case as the modulus

The totaln-D Hilbert transform can be considered to be th@nd the angular phase of the complex signal. The properties of

successive application of partial Hilbert transforms with respei@e different local phases and amplitudes will be investigated in
to all n. coordinate directions. Section VL. In the following section, we will compare the infor-

Considering Definition 2, théotal complex signatan be de- mation content of the different definitions of theD complex
fined. signal presented so far.

Definition 4: The total complex signalf;,; of a signal
f: R™ — R is defined by B. Reconstructibility of a Signal From its Complex Signal

In this section, we consider the question of whether the orig-
frot(x) = flx) +ifmi(x). (11) inal real signalf can be recovered from its complex signal or
not. The 1-D complex signal is made up of the real sigred a
Considering Definition 4 in the frequency domain shows tha@turely imaginary parif;s;. In this casef can be recovered from
the suppression of certain frequency components has no dirggttrivially by taking its real partf = R{f4}. Thus,f4 con-
correspondence far-D signals with evem. The Fourier trans- tains the full information off, although one half of the values in
form Fy,; of fi» from Definition 4 is given by the frequency domain was set to zero. The reason for this is the
Hermite symmetry of the Fourier transforhof any real signal
n i F(—w) = F*(u) [13]. Thus,F contains 50% redundant in-
Fios(u) = Fw) |1 — (=)™ H! H sign(u;) | - (12) formation, which can be canceled without loss of relevant infor-
j=1 mation. The same is true for the complex signgls and f7,,..
(see Definitions 4 and 5). In both cas¢gds the real part of its
The second possible way to introduce a complex signatih  complex signalf () = R{ fio:(x)} andf(z) = R{ (T}
is the combination of the original signal with tpartial Hilbert |nthe complex signafs,, , merely one orthant of the spectrumis

transform as proposed by Peysnal.[17]. _ maintained. Since in-D there ar@™ orthants, that corresponds
Definition 5: The partial complex signalf:,,, of a signal to a suppression ¢&"—1)/2"% of information. Itis possible to
J: R — R with respect ton is defined by define the complex signal with the single orthant spectrum with

respect to any other orthant as well [16]. The totality2df!
part(®) = f(x) +ifi(x). (13) complex signals constructed from different orthants allows the
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reconstruction of the original signal. This also affects the reptere, the symbolg; are imaginary units and, thus, obey the
resentation of the signal via local amplitude and local phaselese? = —1. Additionally, we define the product between two
To eachn-D signal there corresporzf—! amplitude an®”~!  symbols with different indices by introducing a new symbol:
phase signals. ere; =: ey, k < l. These elements are called elements of grade
We will demonstrate the reconstructibility gf from two two, whereag; is an element of grade one. There é@e ele-
complex signals with single orthant spectrum for 2-D signalments of grade two. Continuing in the same manner, Weégtjet
According to Definition 6, the complex signal with singleelements of grade threexee.., =: exim, Wherek < I < m)
orthant (in the 2-D case “single quadrant”) spectrum is giveand, finally, one element of grade e;¢e3 - - - ¢, =: €12..,,. The

by fso, (z)o—eF,, (u) with unification of these elements from grade one up to graden-
) _ stitutes a basis of af*-dimensionaR-algebra. Multiplication
Foo, (w) = F(w)(1 + sign(u))(1 + sign(uz)) (16) in this algebra is associative. For a complete definition of this

—(F(u) — Fy; + (L () + F2. a7 algebra, we have to d_efine Whethe_r the muIFipIication qf two el-
(Flw) = Frri(w)) + s (w) + Fii(w). - (17) ements of grade one is commutative or anticommutative.
Another complex signal for the second quadrant (upper left) isIn case of a commutative produgte; = eex, the2"-D al-

given by gebra is a commutative hypercomplgxalgebra, and the cor-
responding transform is a commutative hypercomplex Fourier
F,,,(u) = F(u)(1 — sign{u1))(1 + signus)) (18) transform. Otherwiseef.e; = —e;esr), we have the Clifford al-

(F(uw) 4+ Fri(w) — i(Fy;(u) — FZ.(w)). (19) 9ebraof the Euclidean spai [19]. The correspondin@lif-
ford Fourier transformwas introduced by Brackeat al.[10].
From the two complex signalg,, andfs,,, the original signal  These transforms are invertible, and the inverse transforms

is recovered by are given by
_ 1 ~
f(x) = 5 R{foor (&) + fsor ()} (20) flz) = / Fh('u,) H exp(€n 11— k2 Upt1—kTry1—k) d .
In the following section, hypercomplex Fourier transforms will =t (22)

be presented. Later, they will be used in order to modify thg the current context, i.e., the construction of the complex
complex signal with single orthant spectrum. This modificatiogignal, it makes no difference whether we use the commutative
will lead to a signal with a single orthant hypercomplex spegigebra or the Clifford algebra. However, the definition of the

trum containing the full signal information. phase of an element of the algebra may strongly depend on the
type of algebra. Thus far, the phase concept exists merely for
IV. HYPERCOMPLEXFOURIER TRANSFORMS the case: = 2, where we use the 4-D Clifford algebra. This

Within the above framework, it is possible either to define @l9ebra is isomorphic to the quaternions. .
complex signal accounting for a 1-D even—odd symmetry of the!n 2-D, we have the possibility to profit from a reordering
n-dimensional signal or to define a set of complex signals agt the factors of the hypercomplex Fourier transform. We
counting for the full symmetry of the input-signal. Our interegireésent the corresponding transform [the quaternionic Fourier
is to combine the two approaches in constructing hypercom- transform (QFT)] in the following. Because of the different
plex signalrepresenting the full symmetry. order of the factors under the integral, the QFT is not identical

The 1-D Hilbert transform transforms signals of even syn¥ith one of thex-D hypercomplex Fourier transforms for
metry to signals of odd symmetry and vice versa. The constrdt= 2. as defined above.
tion of the 1-D complex signal relies on the Hermite symmetr
of the Fourier transform of a real input signal. Since we have o o _
the same property for the Fourier transfofftu) of a realn-D Before defining the quaternionic Fourier transform (QFT),
signalf, i.e., F’*(u) = F'(—u), one half plane of the frequencywe recap the relevant properties of Hamilton’s quaternions. For
domain contains redundant information. Thus, it is possible &more thorough introduction, see, e.g., [20]. Quaternions are
suppress this half plane, as is done in Definition 5, withotfie set
losing spectral information. . p 5
A modification of Definition 6 that allows the suppression of H={a+ib+jc+kdla, b c deRj (23)
all byt one orthant of the spectrym Whilg keepi.ng enough SP&Ggether with the multiplication rules
tral information for reconstructing the input signal requires a
frequency domain representation with a redundancy of 75% for ij=—ji=k and i
real .Z'D signals and — 2" for n-D S|gr_1als.HypercompIex as well as component-wise addition and multiplications by real
Fourier transformsare transforms that yield frequency repre- o L )
. ; . numbers. From (24), the missing multiplication rules follow:
sentation with the required redundancy. 2 ) ' , ; . ) .
The general definition of a hypercomplex Fourier transfork = —Ljk = —kj = i, andki = ik = j. Quatemnions
. . I;‘r(])rm an associativR-algebra. Note that according to (24), the
of ann-D signal is L : ) . .
multiplication of quaternions is not commutative. Tdwnjugate
g of a quaterniory = a + ib + jc + kd is defined by

Quaternionic Fourier Transform

Po = (24)

F'(u) = flz exp(—exr2rupry) d'x. (21)
)= f (),g (ex2muszy) T=a—ib—jo— kd. (25)
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Thenormof ¢ is given by|q| = \/qg. Itcanbe shownthdfisa f. (21, x2) = feol—x1, 22) = —feolx1, —x2). fozqu
normed algebrai.e., forg;, g> € H, we havelq, ||g2| = |q1¢2|. symbolizes the fact that? is the QFT of f. Analogously,

H forms a group under multiplication. The multiplicative inv"eis used for general hypercomplex Fourier transforms.
verse is given by~ = g/|q|?. For the components of a quaterin Section V, the QFT will be used in order to define the
niongq = a + b + jc + kd, we sometimes write quaternion-valued signal of a real 2-D signal.

a=R), b=I(g), c=J(a), d=K(q). (26)

There are three nontrivial involutions defined ldn

V. HYPERCOMPLEXSIGNALS

Hypercomplex signals result from a combination of the single
ai(q) =—tgi=a+ib— jc—kd orthant approach outlined in Section Il (Definition 6) and a hy-
a;(q) =—jqj = a—ib+ joc— kd percomplex Fourier transform. We postulated above that the ap-

. . propriate spectral representation of a signal for the single orthant
ar(q) = —kgh = a —ib — jc + kd. (27) " approach should contain all the relevant information of a real
These functions will be used in order to extend the notion sfgnal in one orthant. In 2-D, this is provided by the QFT, as
Hermite symmetry to quaternion-valued functions, as definetiown by the following theorem and corollary.

in [21]. Theorem 1: The QFT F¢ of a real 2-D signalf is quater-
Definition 7: A function f: R?> — H is called quaternionic nionic Hermitian (see Definition 7).
Hermitian if Proof: It follows from Definition 8 that the QFT of a real
2-D signal has the form
(=21, 22) = a;(f(21, 22))
and F(I(u) = Fge(u) + LF(;IG(’U,) +JF€(10(’U,) + Ingo(’U,) (31)
f(z1, —22) = ai(f(z1, 72)) (28)  where the functiond’?,, =, y € {c, o} are real-valued. Here,

for each(z:, z») € R e.g..F2 (x1, z2) is even with respect te; and odd with respect
Definition 8: The QFTF'¢ of a real 2-D signalf is defined to z,. Applying the automorphisms; anda; yields

as a;i(F(w) = F (u) + iF (u) — 5 F,, () — KF7,(u)
Fq(u) — / 67i27ru11;1 f(.,’:)eijﬂ'uzacz de' (29) :Fq(ul, —U,Q)
R aj(F(u) = FE (u) — il (u) + jFZ, () — KEY (u)
The QFT is invertible, and the inverse transform is given by =F9(—uy, up). m
f(x) = / AT [ (gy) el T2 2y (30) From Theorem 1, the following corollary follows immedi-
R? ately.

Note that the QFT is not identical to the 2-D Clifford Fourier Corollary 1: The QFTF? of a real 2-D signalf can be re-
transform since the signglis sandwiched between the two ex-constructed from the first quadrant of the frequency domain.
ponential functions rather than standing on their left side. The Proof: If F'? is known in the first quadrant{ > 0 and
reason for this choice is that it allows the construction of shift, > 0), the values in the other quadrants can be found as
and modulation theorems for the QFT that closely resemble tfidlows: The quadrant;; > 0, us < 0 can be reconstructed
corresponding theorems of the complex Fourier transform [22jom the first one by, (F9(u)) = F'4(u1, —u2), the quadrant
For real 2-D signals, the QFT is identical to the 2-D Cliffordu; < 0, us > 0 is obtained byw;(F¢(u)) = F(—uq, us),

Fourier transform. and finally, the quadrant; < 0,us < 0 is found by
A 2-D hypercomplex transform was first introduced by Ernst; («; (F9(u1, u2))) = c(F(—u1, u2)) = FU—u1, —uz).
et al.[5], [23] without reference to a specific 4-D hypercomplex [ ]

algebra. Ell [24], [25] introduced the QFT in the form (29) inthe Equivalent results hold fon-D hypercomplex transforms,

context of partial differential systems. Sangwine [26] used tls#howing that a reah-D signal can be reconstructed from one

QFT as a Fourier transform for color images. Chernov used tbghant of its hypercomplex transform. Combining the defini-

discrete QFT for the development of 2-D FFT algorithms [27}ion of the complex signal with single orthant spectrum with the
The complex Fourier transform decomposes a real sigraipercomplex Fourier transforms yields thé hypercomplex

f into two parts of different symmetry: the even symmetrisignals.

part f.(x)o—eF.(u), which is real-valued, and the odd sym- Definition 9: Let f be ann-D signal, and let" be one of

metric part f,(z)o—eF,(u), which is purely imaginar§. its hypercomplex Fourier transforms (either commutative of an-

Considering real 2-D signals, the QFT extends this propetigommutative). The corresponding hypercomplex sigfifalbof

to the splitting of the signal into four different componentsf is then given by

fee(@) @ FE(u),  foel@) iFL (), feol@) e jFL, (u), n

and f,,(z) o*e kFZ (u). Here, the subscripts and o denote I () oe F''(w) H (14 sign(ug)). (32)

S50

evenandodd symmetry components, e.¢fo, (21, 22) iS even k=1
with respect to the variable, and odd with respect t@;: pepending on the chosen algebra (Clifford algebra or commuta-

; Pl AR -
SWhen we say that a functionéseror even symmetriove meanthaf (z) = V€ hypercomplex algebraj’, will t_ake values in thls specific
f(—=), andoddmeansf(z) = — f(—=). algebra. Itxomponentshowever, will be the same, independent
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of the algebra chosen. We therefore omit another index spediereR,, («) is the matrix performing a rotation kyabout the
ifying the used algebra. The original signal is contained in its; axis. The angleg, 3, andy are called th&uler-anglesof R
hypercomplex signal as real p&{( f* (z)) = f(x). [28].7 Let ¢ be a unit quaternion representing the same rotation
Gabor's 1-D complex signal makes accessible the local aas the matrix?. Then, the factorization aof equivalent to (34)
plitude and phase of a signal. As mentioned above, this is ddse
by taking the modulus and the angular phase of the complex /2 kB2 92
signal, respectively. Dealing with hypercomplex numbers, we q=e""e" e (35)
have to find equivalents to the notions modulus and phase.
will restrict this analysis to 2-D signals and their hypercompl
signal based on the QFT as defined below.
Definition 10: Let f be a real 2-D signal, and 1€t? be its
guaternionic Fourier transform. The quaternionic sigffalof
f is then given by

e : . . :
e%/mce we are interested in the quaternion representation and not
in the matrix representation, we will replace3, andy by ¢ =
af2,¢ = [/2,andd = v/2in order to eliminate the factoiy'2
in (35). The above considerations lead to the following corollary
and a definition of the phase of a quaternion.
Corollary 2: Any quaterniony can be represented as

2 (x) ozoF’I(u)(l + sign(u))(1 + sign(uz)). (33) q = |q|e*®eMver? (36)

Based on the quaternionic signal, we define the local amplitudgéiere|q| is the modulus of, and(¢, 6, 1) is called the phase

of a 2-D signalf as| | = /fsqu, where| - | is the norm of of q. The phase is almost uniquely defined within the interval

a quaternion, as given above. A possible definition of the phase (4 ¢, ) € [—x, #[x[—7/2, n/2[x[—-7/4, x/4].  (37)
of a quaternion will be given in the following section.
We have to saglmost uniquelgince there are the two singular
A. Phase of a Quaternion cases) = £w /4. In this case, all values @f andé satisfying
Interpreting a quaterniopas a vector ifR*, the norm ofy is d). T 9. = C'for some constant” fulfill (36).2 We solye this
' situation by settingd = 0 whenever) = 4 /4. A recipe for

the length of this vector, whereag|q| is a unit vector pointing h ion of the bh ¢ ) b ed
to the hyperspherg®. On first glance, it seems obvious to repre'E € compu.tat|on ° .t e.p~ aseota quater/mon/can € summarize
sent points ors? by polar coordinates and interpret these as t%s. follows: Normalizey: ¢ = /lq| = a + b+ je+ kd. Then,
. . : is found to be

phase of a quaternion. However, it turns out that this representa-

tion is not adequate in the context of the QFT. For example, there ¢ = — arcsin(2(be — ad))/2. (38)
exists no equivalent to the shift theorem of the complex Fourier

transform using this representation [21]. There is another wHyy = £7/4, we sety = 0, and find

of representing a quaternion. Each unit quaternigh £ 1) r1 2 42 2. 2
corresponds to a rotation R>. The operational reillitation of ¢ = g a@A(2A(—cd + ab), a” = b — " + ). (39)
a rotation by a unit quaterniopis given byz’ = gxg, where E|se, we have

x = ix1 + jro + ks is a called gure quaterniorrepresenting

the vectoer = (1, 22, 23), andg = cos(¢)+nsin(¢). Here, ¢' = atan2(2(cd + ab), o —V* +* —d?) (40
n iS a pure quaternion representing a unit veetoihe map- 6 = 5 atan2(2(bd + ac), a® +b° — & — d°).  (41)
pingz’ — x then performs a rotation by the an@¢ about the .

axis defined bys. Obviously,q and—q represent the same ro-Here, atar2 is the four quadrant arctangent: agdh, a) =
tation, such that there is a two-to-one correspondence betwaggan(b/a), if a > 0; atan2(b, 0) = =, if sign(b) = +1;
unit quaternions and rotations R?. This is why SO(3) and atan2(b, a) = arctan(b/a) — 7, if a < 0 andb < 0;
SU(2) are not isomorphic but merely locally isomorphighe ~&tan2(b, a) = E}C?thl;l(b/“) + 7 ifa < O0andb > 0. The
vectorn and the angle could serve as a candidate of the pha@pre§5|pm’¢ ¢*¢’” can take one of the valugsor —g. If
of a quaternion. However, this parameterization does not leactté ¢’ = —d, seté = (¢’ + «) smod2n. Else, we set
a phase definition with the desirable analogies to the phasefof ¢'- We will also use the notatioh(¢) = ¢, ©(¢) = 6, and
a 1-D signal. We use the correspondence between rotations #@) = - For a complete derivation, see [21].

unit quaternions in order to find a reasonable definition of the

phase of a quaternion. This definition will lead to three phase VI. RESULTS

angles, two of which represent the 1-D phases in horizontal and Analytic Results

vertical direction of a 2-D signal. The third phase component isAII the above anproaches towardd complex or hvpercom-
related to the intrinsic local structure of the signal. These inter- bp P yp

pretations will be illustrated in the examples in Section V. plex signals are based on different combinations of the original

Every rotation in 3-D can be expressed as a concatenation 0Every other permutation of rotations about the three coordinate axes is pos-

three rotations about the coordinate axes. That is. 8aci3 Sible as well. Since the rotations do not commute, each permutation yields an-
. . . ’ other set of angles for a given rotatiéh It is even possible to represent a ro-
rotation matrixk can be written as tation asR = R.,(a)R.,(8)R.,(v). Sometimes, the angles, 3, andy
according tahis definition, where two rotations are about thg-axis with an
R=R,, (a)ng (B)R4, () (34) interm.ediate.rot-ati(.)n about tha—a.xis, are calledEuler a.ngle5{29]. .
8This ambiguity is known as Gimbal lock when talking about rotations rep-

6In terms of Lie group theoryy O(2) is the two-fold covering 06O (3) [19].  resented by Euler angles [28].
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signal and its partial and total Hilbert transforms. For clarity, w
summarize the different definitions for the 2-D case:
Jtot =f +ifmi (42)

Jia” f+Lsz (43) = i"'.'r‘1 W= —ﬂ;"ﬁ W= W= nff‘r u':— x4
sor =(f = fui) + il fis + fina 44
/ ! (f Ju ) (f[;{ fl; ) ( ) Fig. 2. Five patterns with different intrinsic dimensionality and the
f502 = (f + sz) - L(sz - sz) (45) corresponding values of the-component of the local phase.
— Lo a2 4
—f+Lsz+Jsz+kaZ' (46) AT ™
All these constructions lead to different definitions of the Iocal . .,_.. "“"—'I
amplitude of a 2-D signal, where the amplitude is defined as the, [ —
absolute value of the complex or hypercomplex signal. How- | —
ever, in the case of separable signals, some of the local ampl = = === - = B =
tudes coincide. (@) lhl {e} (d)
Theorem 2: Let f be a separable signé{z) = g(x1)h(x2). - - ‘ -~ e
Then, the local amplitude with respect to the complex 5|gnal‘ = 3 o i —

with single orthant spectra and the quaternionic signal are ider / :k
tical:
el

|foo(@)] = |foor (@)] = | fs0, ()] (47)

Proof: Expressing the localamplitudes in terms of the par—g 3. Example 1. (a) Two-dimensional input sigrfakith 6
wy = 07, we =
tial and total Hilbert transforms using (44)—(46) shows that (4 (b) Local amplitude according t,... () Local amplitude and (d) phase
holds iff with respect tof . Local phase with respect to (¢),, and (f) f.o, . (9) ¢

and (h)# resulting fromf?_.
fui(®) (@) = fir:(2) [ (). (48)

Using the separability of, we find fL;, = guih, f&; = ghui,
and fg; = gmgihg:. Thus, (48) holds true, which proves the
theorem. ]

For separable signals, the first two components of the quater-
nionic phase equal the 1-D phases of the separable components,
as shown in the following theorem. The third component is zero
in this case.

(&) i () (h)

Theorem 3: Let f be a separable signalx) = g(x1)h(x2). Fig. 4. Subregion of Brodatz’ texture D77 taken from [30].
Then, the following equalities hold true.
(f2,(x)) = atar2(gui(a1), 9(v1)) (49) B- Examples
O(fL (x)) = arctan(h(x2)/h(z2)) (50) In order to compare the different approaches ta.&dh com-

plex signal, we present two examples of real 2-D signals and

W(fe(x)) =0. (51) . X ;
e their complex and hypercomplex signals. In the first example,
The proof is based on the trigonometric identity we investigate an intrinsically 2-D, separable signal, whereas
atan2(2ab, a® — b2) /2 = arctan(b/a). (52) :E;aeygnal in the second example is the image of a textile tex-

The«»-component of the quaternionic phase, which is zero for Example 1: Let f be given by
separable signals, is a measure for the “degree of separability”

of a signal. If we consider signals of the form flz) = coslwizy + 1) cos(warz + ¢2) (54)
Fl@; A) = (1 — A) cos(wiay + waa) + Acos(wizy — wawa) with wi, w2 > 0. The partial and total Hilbert transforms éf
are given by
we find thatiy varies monotonically with the value afe [0, 1]:
) 21— 23) fii(®) = sin(wizy + ¢1) cos(wamz + ¢2) (55)
V(fio(z: A) = 3 arcsin [m} . (53) firi(x) = cos(wizy + 1) sin(wazs + ©2) (56)

Thus, ¥(f2 (x; \)) equals zero foin = 1/2, where f(x; ) Jri(w) = sin{wrzy + o1)sin(wams + ¢2). 7
is separable, and tends #g/4 or —7 /4 if A goes to 1 or 0, Consequently, the quaternionic signaljois

respectively. The> component of the quaternionic phase is the .
truly novel result here. It is sensitive to the local 2-D structure of 50(®) = explilwizn + ¢1)) exp(j{ws 22 + 92)).

the signal as shown in Fig. 2. This property seems to suggest Tiree local amplitude off is |fZ ()| = 1. The local phase is
use of the quaternionic signal for texture analysis applicatiorgiven by 8(z) = O(f%1) = (waxz2 + ws2)smodr, ¢(x) =
One such example is presented in the following section. O(fi(z)) = (wiz1 + ¢1)smo®2r if 8(x) = O(fL(x)) =
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(&) ibj ic) (e} M)

Fig. 5. Example 3f,,, . (a) Local amplitude. (b) Local phasg,.., . (c) Local amplitude and (d) local phasg. (e) Local amplitude. (f}. (g) 6. (h) ¢.

(wazy 4 pa) sSmod2r, ¢(x) = D(fL(x)) = (wiz1 + 1 +
7)smod2r else.)(x) = V(fL(x)) = 0.

Note that the local phase componentandé are identical
to the local phases of the separable components of the signal
modulo. This is generally true for separable signals, as shown -t :
above (Theorem 3). (a) (b (c)

The two complex signals with single orthant spectra (see Def-
it Fig. 6. Texture from Fig. 4 seen under (a) inhomogeneous lighting conditions.
inition 6) of £ are (b) Magnitude and (c¥-phase of its quaternionic signal.
Jso () = exp(i(wir1 + war2 + @1 + @2)) (58)

(59) first introduced by Gabor. Combining the complex signal with

Jooa(@) = expli(—wizs +wawz = @1+ ¢2). single orthant spectrum [9] and the hypercomplex Fourier trans-

Both local amplitudes are equal to 1 everywhéye;, (x)| = form, we proposed the hypercomplex signal as:al exten-
| fs0, (x)| = 1. The total complex signal is found to be sion of the analytic signal. It could be shown that all these ap-
proaches are related since they all rely on different combinations
frot(x) = cos(wiz1 + 1) cos(wara + p2) of the input signal with its partial and total Hilbert transforms.
+isin(wyry + 1) sin(wazs + @2). (60) The partial complex signal and the total complex signal contain
the input signal as real part. The partial complex signal is an
The partial complex signal is intrinsically 1-D concept. It can be obtained by evaluating the

Fo (@) = cos( ) cos( ) 1-D analytic signal along lines parallel to the reference orien-

part\T) = €O v T 1) coslwzz + @2 tation and, thus, is insensitive to intrinsicalyD signal struc-
+isin(wizr + ¢1) cos(wazz + ¢2) (61) ture. The total complex signal does not lead a useful definition

with a local amplituddfL. ,(x)| = | cos(wszs + ©3)]. of the local phase, as can be seen from the examples given in

part ) . o
Some of the above results are shown in Fig. 3. Obvious(?ecuon VI. The complex signal with single orthant spectrum

the total and the partial complex signals do not lead to reas foposed by Hahn y|elds_ an |r_1tr|n3|ca}|y[3:?mplex S|gn_al.
L ; C n order to keep the full signal informatio2?—* complex sig-
able definitions of the local amplitude in this case. The complex . .
. L : nals with a single orthant spectra have to be constructed. The
signals with single orthant spectra yield the correct local

anm- . . . . .
; ] . : ercomplex signal proposed in this paper gives access to in-
plitude; the local phase is evaluated along the diagonals. -E}ﬁé])sically n-D signal structure (for 2-D, this could be shown

quaternionic signal yields the correct local amplitude too; the_. T ; .
: using the novel feature of the quaternionic phase) while being
local phase componenisand @ correspond to the horizontal

and vertical local phase. complete at the same time. The local phase of a hypercomplex

Example 2: This example shows the complex signals Witﬁignal has so far only been defined for 2-D signals.
. pie = P = comp 9 Applications of the concepts introduced here can be found
single orthant spectra and the quaternionic signal of the textur . . o
in T21]. In image processing, the concept of the quaternionic

Image shown in Fig. 4. As is often done in practical appllcatlonsignal can be used, where local filters that yield a quaternionic

of the complex signal, we evaluate the complex/quaternioni e . .
. i . - ) [gnal as their filter response are applied. These filters are
signals of a bandpass filtered version of the original signal. T . .
L ; Uaternionic extensions of the well-known complex Gabor
bandpass filter in this example was tuned to the dominant frg- : T
ilters. As was demonstrated in an example in this paper, the

quency of the presented texture. - )
It can be seen from Fig. 5(h) that thecomponent of the quaternionic phase, especially thecomponent, can be a
: H§eful feature in texture analysis.

quaternionic phase is sensitive to changes of a structure like o . .
i . N ; . n addition to the extensions made here, there is yet another
flaw in the textile shown in Fig. 4, which could be localized . . .
ossible extension of the Hilbert transform #eD, namely,

by threshpldlng the/;—phasg. AlthOUQh th.|s flaw can be clearl Riesz transforms [31]. These transforms should be considered
detected in the local amplitude image Fig. 5(e) as well, the am- S . : )
or the use in signal processing as well. First results of their

plitude is not stable under inhomogeneous lighting Conditionsediscover in the framework of geometric algebra as spherical
whereas the)-phase is almost not affected by that (see Fig. 6 y 9 9 P

ilbert transform can be found in [32]. In [33], Riesz transforms
are used in the context of image processing. Riesz transforms
are convenient for the use with intrinsically 1-D signals of

In this paper, we have reviewed different approaches towartbitrary orientation embedded in-D space, whereas the
n-D extensions of the concept of the analytic or complex signptesent paper has dealt with intrinsicallyD signals.

VIl. CONCLUSION
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