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Abstract. Many concepts that are used in multi-dimensional signal
processing are derived from one—dimensional signal processing. As a con-
sequence, they are only suited to multi-dimensional signals which are
intrinsically one-dimensional. We claim that this restriction is due to
the restricted algebraic frame used in signal processing, especially to the
use of the complex numbers in the frequency domain. We propose a
generalization of the two—dimensional Fourier transform which yields a
quaternionic signal representation. We call this transform quaternionic
Fourier transform (QFT). Based on the QFT, we generalize the concep-
tions of the analytic signal, Gabor filters, instantaneous and local phase
to two dimensions in a novel way which is intrinsically two—dimensional.
Experimental results are presented.

1 Introduction

Realizations of autonomous technical systems which are designed on principles
of the perception—action—cycle (PAC) are supposed to act in the real world which
can be described as taking place in a four—-dimensional Euclidean space—time.
Therefore, a PAC-—system has to be able to percept events and to organize pro-
cesses in such a world.

Focusing on the perceptional part of a PAC system we face some serious
shortcomings in low-level processing of multi-dimensional signals. These short-
comings have been recognized for a long time but by now are not solved sat-
isfactorily. In the authors opinion the root of the problems seems to lie in the
restricted algebraical embedding of multi-dimensional signal-processing which
has not yet been recognized. The algebraical embedding of signal processing is
meant to be the choice of algebra in which a signal is represented in the fre-
quency domain. Usually this role is played by the algebra of complex numbers
but we will show that it is useful to apply algebras of higher dimensions here.
Most of the valuable tools that have been developed in one-dimensional signal
processing are nowadays used in multi—dimensional signal processing but in a
way which leaves them intrinsically one—dimensional.
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One example for this is the concept of local phase. The local phase of a one—
dimensional signal can be estimated by applying a quadrature filter — e.g. a
complex Gabor filter — and evaluating the argument of the resulting complex
filter response. This concept is usually generalized to two dimensions by defining
the two—dimensional Gabor filters as the Gaussian windowed basis function of
the Fourier transform for some frequency w. Again, we get as the local phase the
argument of the complex filter response and we get different values for different
orientations of the Gabor filter. Granlund [7] defines an (n+1)-dimensional phase
vector for n—dimensional signals, consisting of the real phase and the directional
vector of the chosen orientation.

In one dimension the local phase yields information about the local structure
of the signal. In two dimensions the variety of possible local structures is much
higher than in one dimension and so we cannot hope to characterize the local
image structure using only one real number. Looking for a concept which yields
a higher—dimensional value for the local phase we find that the main restriction
of the phase dimension lies in the fact that the responses of the Gabor filters are
complex—valued. Thus, we will study filters with responses which are elements
of a higher—-dimensional algebra than the complex numbers. We will show that a
generalization to quaternion—valued filters 1s possible in two dimensions. A short
review on quaternions will be given in the following section.

One—dimensional Gabor filters are based on the Fourier transform. Therefore
we will extend the two—dimensional Fourier transform in such a way that it
yields a quaternion—valued representation in the frequency domain. We call this
transform quaternionic Fourier transform (QFT). We will demonstrate the shift
theorem in the case of the QFT, analyze the symmetry properties of the QFT
and show its relation to the Fourier transform and to the Hartley transform.

In order to define the instantaneous phase of a two—dimensional signal we will
introduce the quaternionic analytic signal of a two—dimensional signal via the
QFT. Finally we introduce the quaternionic Gabor filters based on the QFT and
the two—dimensional local phase and demonstrate some experimental results.

2 Quaternions

As motivated in the introduction we need as the range of a generalized two—
dimensional Fourier transform an algebra whose dimension is higher than the
dimension of the algebra of complex numbers. In the following we will use the
four—dimensional IR-algebra

H={¢=a+bi+cj+dkla,bec,decR} | (1)
where ¢, 7 and k obey the following multiplication rules:

P==-1, k=ij=—ji = k’=-1 . (2)



The algebra IH was invented in 1843 by Hamilton? [8] who called it the algebra
of quaternions. There is a whole lot of literature on quaternions (see e.g. [9, 10]).
For the sake of brevity we will only introduce the properties which will be needed
in the course of this article.

For a quaternion ¢ = a + bi 4+ ¢j + dk the component a is called the scalar
part of ¢, whereas bi + ¢j + dk 1s called the wvector part of q. A quaternion
consisting only of a vector part is called a pure quaternion. Like in the algebra
of complex numbers we can define the operation of conjugation for quaternions.
The conjugate of a quaternion ¢ = a + bt + cj + dk, denoted by ¢*, is defined by
changing the sign of the vector part of ¢:

¢ =a—bi—cj—dk . (3)

The operation of conjugation is a vector space involution. The magnitude of ¢ is

defined as

ol = VagT = Va? + 02 + 2+ d? (4)

By €, a, f and v we denote the four algebra involutions of IH. They are given
by

Sq g, e(q) = a4+ bi+cj+ dk,
cqe —iqi,  alg) = a+bi —cj — dk,
tq > —jqj,  Blg) = a—bi+cj—dk,
cq v —kgk, y(¢) = a—bi—cj+ dk.

2 @ R A

In analogy to a Hermitian function f : IR — € with f(z) = f*(—«x) for
every « € IR we introduce the notion of a quaternionic Hermitian function for a
function f : IR* — IH which obeys the rules

f=w,y) = B(f(w,y)) and  flz,—y) = a(f(z,y)) , (5)

for each (z,y) € IR?. For a quaternionic Hermitian function also the relation

f(=w,—y) =v(f(=,9)) (6)

holds true.
We will need the exponential function exp : H — H of a quaternion ¢ which
is defined via the series

0 k
eXp(q)ZZi—,, geM . (7)
k=0

It can be shown that this sum converges for every quaternion ¢. Let us write the
quaternion ¢ in the form ¢ = s + v, where s and v denote the scalar part and

2 Blaschke [3] states that they were already known to Euler — who used them to
describe rotations in IR® — in 1748,



the vector part of ¢, respectively. We can then evaluate exp(q) in the following
way:

exp(q) = exp(s + v) = exp(s) (cos(|v|) + |:—| sin(|v|)) . (8)

In the last step we used the fact that the Euler formula
e'? = cos(¢) + isin(¢) (9)

i1s not only valid if ¢ is the imaginary unit of the complex numbers but also in
the form

€Y = cos(¢) + rsin(¢)

where 7 is an arbitrary pure unit quaternion3.

3 Quaternionic Fourier Transform

Here we want to give a review of the recently introduced quaternionic Fourier
transform (QFT) [5]. The QFT is a transform for two—dimensional signals which
on the first glance seems to be only a slight modification of the well-known two—
dimensional Fourier transform. For detailed information on Fourier transform
see e.g. [4]. The two—dimensional Fourier transform is given by

Flu) = 7 76—i277uxf(w)e—i2ﬂ'vyd2w ’ (10)

— 00 —OQ

whereas the quaternionic Fourier transform is defined as

Fi(u) = / /e_izmxf(az)e_jzwydzaz , (11)

— 00 —0O0

with the only difference of using two different imaginary units in the exponential
functions. Here @ denotes the vector (#,y) in the image plane and w denotes the
two—dimensional frequency vector (u,v). The units ¢ and j are supposed to be
two of the imaginary units of the quaternion algebra defined above. This leads to
a significant difference between the two-dimensional Fourier transform and the
QFT. Let F and F, denote the operators of the Fourier transform and the QFT,
respectively. For a two—dimensional signal f : IR? — IR the Fourier transform
F = F{f} maps the image signal to a complex—valued representation whereas
the QFT F? = F,{f} maps the image signal onto a quaternion-valued spectral
representation.

® For the proof of the Euler formula we only need the definition of the exponential
function, the cosine and the sine function as series and the algebraic properties of 1,
i.e. 2 = —1. Hence, to proof the Euler formula for quaternions we must only show
that r? = —1 which is straightforward.



Also Chernov [6] used quaternions in the Fourier transform. However, his aim
was to find fast algorithms for the evaluation of the two—dimensional discrete
Fourier transform, while we are interested in constructing a more complex phase
representation.

The QFT of a real signal is a quaternionic Hermitian function as defined in
the previous section. The inverse of the QFT is given by

— / / eiZﬂ'uxFq(u)ejZﬂ'vde,u ) (12)

— 00 —OQ

In order to translate some of the properties of the Fourier transform to the
QFT, we will consider the shift-theorem here. Let F%(u) and Fj(u) be the
QFT’s of a real signal f(x) and the translated signal fr(x) = f(e —d). It
follows easily that

Fi(u) = e‘izmdll"ﬁ‘l(u)e_j%“l2 . (13)
In the following we will write this down in matrix—notation representing the
quaternion F9(u) = Fi(u) + iF{(u) + jF](u) + kF4(u) as the vector F4(u) =
(Fi(u), Fi(u), F{(u), F§(u))?. Eq. (13) then reads F&.(u) = T(¢, 0)F4(u), with
s8(¢) cos(0) —sin(¢) cos(f) — cos(¢ 0) —sin(¢) sin(f)
sin(¢) cos(f) cos(¢)cos(f) —sin(¢ @) cos(¢)sin(0)
cos(¢)sin(f) sin(¢)sin(d) cos(¢ —sin(¢) cos(6)
(¢)sin(@) —cos(¢)sin(f) sin(¢ cos(¢) cos(f)

co ) sin(
i ) sin(

cos(f

(
(0

\_/\_/

)
sin(¢ cos(f)
(14)

Here ¢ and 6 denote —2wd;u and —27wdyv, respectively. Now we can show ex-
plicitly how the translation vector d can be recovered from a pair F4(u) and

F% (u) for a single value of w. It is straightforward to show that

Fil(u) —Fl(u) —Fd(u) Fi(u) cos ¢ cos a
| Fl(u) F, ( ) —Fi(u) —Fi(u) singcosd | Jé;
Fp(u) = Fl(u) —Fi(u) FgS(u) —F%(u) cosgsinf | F(u) ~
Fi(u) F. ( ) Flu) Fi(u) sin ¢ sin 0 )
If F(u) is invertible we get «, 3,7 and ¢ directly from
F_l(u)F%(u) =(a,8,7,0)" . (15)

It is possible to recover (¢, #) within the interval [0,27[ x [0, 7] from («, 5,7, 0)
by a function arg : H\{0} — IR?, arg(e, 8,7v,d) = (¢, 0). Because of the bulki-
ness of the definition of arg we will give it in the appendix A. From ¢ and 6§ we
get dy and dy by
_ ¢ _

dl_%, dz_% . (16)
Thus, we recovered the translation vector d from the QFT’s of f and fr for one
specific value of u.



4 Symmetries of the QFT

The concept of symmetry of a signal is well known in one dimension. Globally as
well as locally signals can be split into an even and an odd component. While the
global symmetry is not an inherent signal property but depends on the choice
of the origin, the local symmetry describes the local structure of the signal; it is
even for a peak-like structure and odd for step-like structure in the signal.

In this section we will show how the QFT deals with signals of different
combinations of even and odd symmetries. It is a well known fact that the
Fourier transform of the even part of a real one-dimensional signal 1s real and
even. The Fourier transform of the odd part of the same signal is imaginary
and odd. As said above this splitting depends on the choice of the origin. It is
independent of scaling, though.

A two-dimensional signal can be split into even and odd parts along the
z—axis and along the y-axis as well. So, every real two-dimensional signal can
be written in the form f = fee + foe + feo + foo, Where f.. denotes the part of
f which 1s even with respect to x and y, f,. denotes the part which is odd with
respect to x and even with respect to y and so on. In this case the splitting is
not only dependent of the choice of the origin but also of the orientation of the
image. Because the two-dimensional Fourier transform has only two components
— one real and one imaginary component — we are not able to immediately
recognize the four components of different symmetry.

However, the quaternionic Fourier transform has symmetry—splitting prop-
erties that are analogous to the properties of the one—dimensional Fourier trans-
form: The transform of the f..—part of a real two—dimensional signal is real, the
foe—part 1s transformed into a :-imaginary part, f., into the j-imaginary and
foo 1nto the k—imaginary part. The symmetry of the signal is preserved by the
quaternionic Fourier transform. We can see this easily by looking at the quater-
nionic Fourier transform as two sequentially performed one—dimensional Fourier
transforms: First we perform a one—dimensional Fourier transform on f(x) with
respect to z keeping y fixed and call the result f:

oQ

fluy) = /6‘“””]”(1‘,3/)% : (17)

— 00

In a second step we perform a Fourier transform on f with respect to y keeping

u fixed: -
Fi(u) = /f(u,y)e_jzmydy . (18)

Actually, this two step procedure is the way we implemented the QFT on
the computer. Hence, the implementation is similar to the one of the two—
dimensional Fourier transform. The difference is that while calculating the two—
dimensional Fourier transform we add up some components which we keep sep-
arately when calculating the QFT. An overview over the symmetry properties
of the QFT is given in table 1.
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Table 1. Symmetry properties of the QFT. r stands for the real part, ¢ for the
1—imaginary and so on.

In order to clarify the position of the QFT among the existing transforms,
we relate the QFT to the Fourier transform and to the Hartley transform (see
e.g. [4]):

The Hartley transform of a one—dimensional signal f i1s defined by

H(u) = / f(x){cos(2muz) + sin(2ruz)de . (19)

It is related to the Fourier transform of f by
F(u) = He(u) —iH,(u) (20)

where H. and H, denote the even and odd part of H respectively. So the Fourier
transform separates the parts of different symmetry — which are mixed in the
Hartley transform — by putting them into different components.

The two—dimensional Hartley transform is given by

H(u) = 7 7f(:zz){cos(27ru~az)+sin(27ru~az)}d2w

— 00 —OQ

= / / f(#®) {cos(2mux) cos(2mvy) — sin(27ux) sin(2mvy)

+ cos(27muz) sin(27rvy) + sin(2muz) cos(2mvy)} d e
= Hee(u) + Hoo(u) + Heo(u) + Hoe(uw) . (21)
Again it 1s possible to get the Fourier transform of f from the Hartley transform:
F(u) = (Hee(u) + Hoo(u)) = i(Heo(u) + Hoe(u)) (22)

Hence, also in this case the Fourier transform separates parts of different symme-
try, which are mixed in the Hartley transform, but this separation is only halfway.
The complete separation is only given by the quaternionic Fourier transform:

Flu) = Hee(u) — kHoo(u) — jHeo(u) —iHoe(u) . (23)



It follows from this that the two—dimensional Fourier transform stands between
the QFT and the two—dimensional Hartley transform in the sense that we can
derive the QFT from the two—dimensional Fourier transform in a similar way as
we derive the Fourier transform from the Hartley transform.

As shown 1n section 2 we can represent the QFT of a signal also in polar
representation. Thus, we can write F4(u) in the form

F(u) = [F4(u)|exp(s(u)i(u)) (24)
with
s(u) = icos(¢(u))sin(@(w)) + jsin(¢(w)) sin(f(u)) + k cos(f(u)) (25)

The three angles 1, ¢ and 8 could be regarded as the phase of a two—dimensional
signal. Nevertheless, the phase (¢, ¢, ) for special values of the angles is an ele-
ment of the three-dimensional hypersphere S which makes an interpretation of
the values complicated. Another approach to a multidimensional phase concept
will be represented in the next section.

5 The Analytic Signal

The analytic signal plays an important role in one—dimensional signal processing.
One of the main reasons for this fact is, that it is possible to read the instan-
taneous amplitude and the instantaneous phase from a signal f at a certain
position & simply by taking the magnitude and the phase of the analytic signal
fa at the position #, where f4(2) is a complex number. The analytic signal
fa of a real signal f is defined as fa = f — iH{f} where H{f} is the Hilbert
transform of f. It can be derived from f by taking the Fourier transform F of
f, suppressing the negative frequencies and multiplying the positive frequencies
by two. Applying this procedure, we do not lose any information about f.

One way to extend the concept of the analytic signal to two dimensions is
to split the frequency plane into two half planes with respect to a direction
e = (cos(0),sin(f)). A frequency w = (u,v) with e-w > 0 is called positive while
a frequency u = (u,v) with e -u < 0 is called negative. With this definition the
one—dimensional construction rule for the analytic signal can be applied to two—
dimensional signals [7]. Using this construction, the conception of the analytic
signal remains a one-dimensional one, though.

We will present here another extension of the analytic signal conception using
the QFT: For the one—dimensional analytic signal it is important that the Fourier
transform of a real signal is a Hermitian function, i.e. that the equation

F(—u) = F*(u) (26)

holds, where F'* is the complex conjugate function of F'. Therefore, if we want to
examine what the notion of the analytic signal means in the conception of QFT
we have to remember the notion of a quaternionic Hermitian function which was
introduced in section 2.



In section 4 we found out that the QFT of a real image f obeys some sym-
metry rules, e.g. that the real part of the QFT is even with respect to both
arguments of F'9. We can restate these properties in the form

F(—u,v) = B(F(u)) (27)
Fu,—v) = a(F(u)) (28)
F(—u)=5(F(u)) | (29)

where a, 8 and 7 are the nontrivial involutions of IH defined in section 2. Writing
F(u) = Fo(u) + iFy(u) + jFo(u) + kFs(u) we can restate (27) as

F(—u,v) = B(F(u)) = —jF(u)j
=  Fy(—u,v) = Fy(u), Fi(—u,v) = —=Fy(u)
Fy(—u,v) = Fa(u), Fs(—u,v) = —F3(u)

which means that the i-imaginary and the k—imaginary part of F' are odd with
respect to the first argument whereas the real and the j-imaginary part are even
with respect to the first argument. Analogously we can find from (28) that with
respect to the second argument the real and the ¢-imaginary component are
even while the j-imaginary and the k—imaginary part are odd. These are the
symmetry properties of the QFT we found in the previous section.

Hence, it follows that the QFT of a real signal is a quaternionic Hermitian
function. It is easy to see that a quaternionic Hermitian function contains re-
dundant information in three quadrants of its domain and, therefore, can be
reconstructed from the values f(z,y) for # > 0 and y > 0. In order to recon-
struct the function f from these values we need only to apply the equations (27),
(28) and (29).

For this reason it seams reasonable to define the quaternionic analytic signal
of a real 2—dimensional signal in the following way: We suppress all frequencies u
in the quaternionic frequency domain for which either u or v or both of them are
negative. The values at the double positive frequencies are multiplied by four.
By the inverse QFT we transform the result into the spatial domain again and
get the quaternionic analytic signal which, of course, is quaternion valued. The
three imaginary components of the quaternionic analytic signal can be seen as
the quaternionic Hilbert transform of f.

Definition: The quaternionic analytic signal of a two—dimensional signal f
is given by

Fale,y) = FrH{Z%u,v)} (30)

where Z7 1s defined as

Z(u, v

4Fu,v) 1ifu>0andv>0
)={ ) vz band ez )

T 10 else.

We will prove that the real part of the quaternionic analytic signal of a real
signal is equal to the signal itself.



Proof: In the following we will use the fact that for each quaternion ¢ the re-
lations Re(q) = Re(a(q)) = Re(8(q)) = Re(y(q)) hold. Following our definition

the quaternionic analytic signal f4 of f is given by

[i(z,y) = 4/ / 2T Py, ) el TV du dv (32)
o Jo

Regarding only the real part of 4 and omitting the factor four we find

Re (/ / 12T P9y, v)ed VY dy dv)
o Jo
= Re (/ / (eI (y, v)ed T ) du dv)
o Jo

0 o0
= Re (/ / 12T (y ) el TTVY dy dv) . (33)
—o0 J0

Analogously using the involutions 8 and ~ instead of a we get

Re (/ / eizmeq(u, v)ejzmydu dv)
o Jo
o0 0 ) .
= Re (/ / 2T [y v)ed 2T du dv) (34)
0 —o0
0o 0 '
= Re (/ / 12T [y, v)ed 2T du dv) , (35)

respectively. Substituting (33) and (35) in (32) completes the proof:
Re(f%(x,y)) = 4Re (/ / 1ITUT Ay, v)ejzmy) du dv
o Jo
= Re (/ / T F (y, v)ejzmy) dudv = f(z,y) (36)

O
Like in the one-dimensional case also here we can use the (quaternionic) analytic
signal to define the instantaneous phase of a signal. We will demonstrate this in
the following section.

6 Two—dimensional Phase

In one dimension the analytic signal of the cosine function f(z) = cos(x) is
fa(z) = €%, Hence, for each = € IR we can get the instantaneous phase of
f by evaluating the argument of f4 at the position z. For the cosine function
we simply get arg(fa(z)) = x. We can generalize this concept (see [7]) to all
functions f : IR = IR for which the analytic signal f4 exists. We call arg(fa(z))
the nstantaneous phase of f at x.



We want to generalize this concept to two dimensions. In order to start with
the same motivation as in the one—dimensional case we consider the function
flz,y) = cos(x) cos(y) first. We will show that the quaternionic analytic signal
of fis fa(z,y) = ei®elV.

Proof: In the one—dimensional case we know that

f(x) = cos(x) = fa(x) =€ |

which follows from:
e = 2/ / (eizmxe_izmxl cos(x')) de'du . (37)
0 —o0

Therefore, using (37), we obtain

oo 00 o0

oQ
fA(l‘,y) = 4// / / eiZﬂ'uxe—iZﬂ'ux' COS(l‘/) Cos(y/)e—jZﬂ'vy'ejZn-vydx/ dy du dv
0 0

— 00 —OQ

oo 00

= 26”/ / cos(y/)e_jzmylejzmydy' dv = ei®el¥ (38)
0 —o0
O

Since we are looking for a concept of two—dimensional phase it is now straight-
forward to define the phase of f(z,y) = cos(x) cos(y) at position (z,y). In section
3 we already mentioned the arg—function that maps the quaternions without zero
to IR? in such a way that arg(|g|e’®e’¥) = (x,y) for (x,y) € [0, 27 x [0, #[. The
function arg is defined in the appendix A.

In one dimension the phase is defined within the interval [0, 27[. In order to
clarify why the two—dimensional phase is only defined within [0, 27[ x [0, 7[, we
show in figure 1 how the function f(z,y) = cos(x) cos(y) is made up of patches
of the size [0,2n[ x [0, 7[.

Fig.1. The function f(z,y) = cos(z)cos(y) with (z,y) € [0, 4x[x[0,3=[ (left) and
(z,y) € [0,2x[x[0, [ (right).

According to the definition of the two—dimensional argument function we can
define the instantaneous phase of a two—dimensional signal f at (z,y) as

instantaneous phase of f(x,y) = arg(fa(x,y)) . (39)



As Granlund [7] states for the one-dimensional case also we have to say that the
instantaneous phase in general will not describe the local behavior of f. For this
reason we will introduce the concept of local phase here.

In one dimension the local phase concept is well known. The local phase
can be estimated using a quadrature filter, e.g. a Gabor filter with a central
frequency ug which is defined by

guu(x) — 6—77172/0262'277qu ) (40)

The Gabor filter consists of a real part which is even and an odd imaginary part.
Convolving the signal with the Gabor filter leads to a complex filter response.
The argument of the response at position z is then called the local phase of the
signal at z.

Of course the local phase of a signal is dependent of the central frequency
of the Gabor filter. In order to demonstrate the local phase concept we borrow
a figure from Granlund’s book ([7], p. 262) which shows in which way the local
phase corresponds to the local form of the signal (figure 4a).

There are several attempts to use the local phase for multi-dimensional sig-
nals. One possibility is to extend a Gabor filter to two dimensions in the following
way*:

Juy (,y) = 7T T (41)

An example of such a Gabor filter is shown in figure 2. For arbitrary wg we can

Fig.2. A two—dimensional complex Gabor filter with an even real part (left) and an
odd imaginary part (right).

obtain gu,(x,y) by rotating the Gabor filter
g(l‘, y) — 6—771132/026i277(uux+03/) (42)

by some angle § about the origin. The local phase can then be defined along the
direction e = (cos(#),sin(f)) by evaluating the argument of the filter response
of gu,(#,y). Thus, we find that this generalized filter is in principle the same as
a one—dimensional Gabor filter. Therefore, we will define the notion of a quater-
nionic Gabor filter. As the real part of this Gabor filter we take the function
flz,y) = cos(2muge) cos(2mvgy) windowed with a Gaussian function:

w(z?+y®) /o

gl (z,y) =€ ’ cos(2mugx) cos(2mugy) . (43)

* We restrict ourselves to to the usage of isotropic Gaussian windows here. It is also
possible to use different values of o for the directions  and y.



A one—dimensional filter that is an analytic function itself, is called a quadrature
filter. We want to apply this notion also in the two—dimensional case and call
a filter which is a quaternionic analytic signal a quaternionic quadrature filter.
One—dimensional Gabor filters are quadrature filters, so we should require this
also in the two—dimensional case. By taking the analytic signal of g.. we get

9% (z,y) = gl a2, y)
— (e +y?)/0? (cos(2muga) cos(2mugy) + isin(2mugx) cos(2mvoy)

+j cos(2mupx) sin(2wvey) + ksin(2rugz) sin(2rvgy)) . (44)

In the following we will call such a filter a two—dimensional quaternionic Gabor
filter. It 1s depicted for ug = vy in figure 3.

+- +j. +k-

Fig. 3. A quaternionic Gabor filter with ug = vg.

In one dimension the local phase gives information about the local symmetry
or form of the signal, especially whether there is a peak or a step in the signal
at the considered position. Using the quaternionic Gabor filters and evaluating
the local signal phase by the two-dimensional arg—function we get the analo-
gous information for an image signal, which is more complicated and contains
more possible symmetries as the one-dimensional phase. In analogy to figure 4a
we show the relation between the two—dimensional phase and the local signal
structure in figure 4b and 4c.

As mentioned earlier we can evaluate the two—dimensional phase in a region
[0, 27 %[0, [ which can be thought of as a half torus. The circles in figures 4b
and 4c result from cutting through the torus for different values of 4.

Fig.4. Relation between the local phase and the local signal strcture: a. the
one—dimensional case (see [7]), b. the two—dimensional case with § = 0, c. the
two—dimensional case with § = 7/2.



7 Experimental Results

Some experiments have been made which show how the local phase can be es-
timated from the answer of a quaternionic Gabor filter. We estimate the local
phase of the function f(¢,0) = cos(¢) cos(f) along some path through its do-
main in the following way. The signal function f(¢,0) is convolved with the
quaternionic Gabor filter shown in figure 3. The filter response at each position
in the (¢,0)-plane is given by a quaternion. Along the line s shown in figure
ba the quaternionic argument function which is defined in the appendix A is
applied to the quaternion—valued filter response. We denote the estimated local
phase by (q/;, é) and compare 1t to the instantaneous phase that can be evaluated
analytically for f(¢, ) = cos(¢) cos(f) as (¢, 8) for (¢,0) € [0,2n[ x[0, =[.

The central frequency of the used Gabor filters is four times higher than
the frequency of the signal f. In Fig. 5b and bc the estimated values q/; and 6
are compared to ¢ and 6, respectively. The straight lines are the values of the
instantaneous phase (¢, #) while the slightly curved lines represent the estimated
local phase (q/;, é)

The arguments ¢ and # of the Gaborian’s answers are nearly linear and give
a good approximation to the instantaneous phase of the signal.

0

Fig. 5. The function f(¢,8) = cos(¢) cos(@) with the path along which the local phase
(¢, H)A is estimated, b) Variation of ¢ and ¢ along the depicted path, ¢) Variation of 8
and ¢ along the depicted path.



8 Conclusion

In this article we presented the quaternionic Fourier transform (QFT), an inte-
gral transform for two—dimensional signals which is based on the Fourier trans-
form but provides a quaternion—valued representation of the signal in the fre-
quency domain.

Based on the QFT we generalized the concepts of the analytic signal, of
Gabor filters and the local phase to two dimensions in a novel way.

This generalization could be of interest especially in PAC systems for the
following reason. There are recent attempts to embed the different tasks of a
PAC system into one mathematical system using Clifford algebras [11]. Clifford
algebras in the form of Geometric algebras have already been applied to neu-
ral computation [1] and to computer vision [2]. Since quaternions are a special
Clifford algebra, it should be possible to integrate the QFT approach into a
Geometric algebra PAC system.

A The argfunction

Definition: For every quaternion ¢ which can be given in the form ¢ = |g|e??e/?
the angles ¢ and @ within a range (¢, 6) € [0, 2] X [0, 7 are called the argument
of . We define the function arg : IH\{0} — IR? that recovers for quaternions ¢
of the mentioned form the argument of q. Let ¢ = a + bi 4+ ¢j + dk, ¢ # 0.

arg(q) = (¢,0) (45)
with
T—d7% fora=b=c=0
7 —sign(b) sign(bd) % fora=e=0,0£0
sign(c) arcsin(d’) + step(—c) «
+27 step(c) step(—d fora=0,c#0
6= p(c) step(—d) # (46)
arctan(b/a) + m step(—a)
+27 step(a) step(—ab) fora#0,e=d=0
arctan(b/a) 4+ 7 step(—c)
+27 step(—d) step(c) foraZ0A(cZ0Vd#£0)
and
z fora=b=c=0
arcsin(sign(b) d') + m step(—bd) fora=c=0,0#0
0=<73 fora=0,¢#0 , (47
0 fora#0,e=d=0
arctan(c/a) + 7 step(—c/a) foraZ0A(c£Z0Vd#£0)




with d’ = d/|q|. Here we used the step— and the sign—function which are defined

by
0 for x <0
step(z) = { 1 for >0 (48)
and
. -1 for x <0
sign(v) = { 1 for x>0 (49)
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