
Rubber Band Algorithm
for Estimating the Length of Digitized Space-Curves

Thomas Bülow
Institute of Computer Science
Christian Albrechts University

Preusserstrasse 1–9, 24105 Kiel, Germany
tbl@ks.informatik.uni-kiel.de

Reinhard Klette
CITR Tamaki, The University of Auckland

Tamaki Campus, Building 731
Auckland, New Zealand
R.klette@auckland.ac.nz

Abstract

We consider simple digital curves in a 3D orthogonal
grid as special polyhedrally bounded sets. These digital
curves model digitized curves or arcs in three-dimensional
euclidean space. The length of such a simple digital curve
is defined to be the length of the minimum-length polygonal
curve fully contained and complete in the tube of this digital
curve. So far no algorithm was known for the calculation
of such a shortest polygonal curve. This paper provides an
iterative algorithmic solution, including a presentationof
its foundations and of experimental results.

1. Introduction

The analysis of digital curves in 3D space is of increas-
ing practical relevance in volumetric image data analysis.
A digital curve is the result of a process (3D skeleton,
3D thinning etc.) which maps captured ‘curve-like’ ob-
jects into well-defined digital curves (see definition below).
The length of a simple digital curve in three-dimensional
euclidean space is based on the calculation of the short-
est polygonal curve in a polyhedrally bounded compact set
[5, 6]. This paper presents an algorithm for calculating such
a polygonal curve with measured time complexity inO(n),
wheren denotes the number of grid cubes of the given dig-
ital curve.

We start with the definition of simple digital curves, see
Fig. 1 for two examples. Any grid point(i; j; k) 2 R3 is
assumed to be the center point of agrid cubewith faces
parallel to the coordinate planes, withedgesof length 1,
andvertices. Cellsare either cubes, faces, edges or vertices.
The intersection of two cells is either empty or a jointside
of both cells. We consider a non-empty finite setK of cells
such that for any cell inK it holds that any side of this cell
is also inK. Such a setK is a special finiteeuclidean com-

plex, and thus anabstract cellular complex[4] including
straightforward definitions of a bounding relation for pairs
of cells, and dimensions of cells.

Digital curves g in 3D space are defined as fol-
lows, for n � 1: A cube-curveis a sequenceg =(f0;
0; f1;
1; :::; fn;
n) of facesfi and cubes
i, for 0 �i � n, such that facesfi andfi+1 are sides of cube
i, for0 � i � n andfn+1 = f0. It is simpleiff n � 4, and for
any two cubes
i,
k in g with ji� kj � 2 (mod n) it holds
that if
i \
k 6= ; then eitherji � kj = 2 (mod n) and
i \
k is an edge, orji � kj = 3 (mod n) and
i \
k is
a vertex. Atubeg is the union of all cubes contained in a
cube-curveg. It is a polyhedrally-bounded compact set inR3, and it is homeomorphic with a torus in case of a simple
cube-curve. Analogously,edge-curvesor face-curvesmay
be defined in 3D space. This paper deals exclusively with
simple cube-curves.

The cube-curve on the left of Fig. 1 is simple, and the
cube-curve on the right is not. The latter example shows that
the polyhedrally-bounded compact setg of a cube-curveg
is not necessarily homeomorphic with a torus if each cube
of this cube-curveg has exactly two bounding faces ing.
A curve iscomplete ing iff it has a non-empty intersection
with any cube contained ing. Following [5, 6], thelength

Figure 1. Two cube-curves in 3D space.

of a simple cube-curveg is defined to be the lengthl(P)
of a shortest polygonal simple curveP which is contained
and complete in tubeg. A simple cube-curveg is flat iff the
center (grid) points of all cubes contained ing are in one
plane parallel to one of the coordinate planes.

A non-flat simple cube-curve inR3 specifies exactly one
minimum-length polygonal simple curve (MLP) which is
contained and complete in its tube [5]. The MLP is not
uniquely specified in flat simple cube-curves. Flat simple
cube-curves may be treated as square-curves in the plane,
and square-curves in the plane are extensively studied, see,
eg. [3]. It seems there is no straightforward approach to
extend known 2D algorithms to the 3D case. Global infor-
mation has to be taken into account for length calculation
of digital curves independent upon the dimension to ensure
multigrid convergence [3].

2. Simple cube-curves

This section contains fundamentals used in our algorithm
for calculating the length of a simple cube-curve. Proofs
are published in [1]. Letg be a simple cube-curve, andP = (p0; p1; :::; pm) be a polygonal curve complete and
contained ing, with p0 = pm.

Lemma 1 It holds m � 3 for any polygonP =(p0; p1; :::; pm) complete and contained in a simple cube-
curve.

The casem = 3 is possible. During a traversal along the
curveP we leave cubes, and we enter cubes. The traver-
sal is defined by the starting vertexp0 of the curve and the
given orientation. LetCP = (
0;
1; :::;
n) be the sequence
of cubes in the order how they are entered during this curve
traversal. BecauseP is complete and contained ing it fol-
lows thatCP contains all cubes ofg, and no further cubes
are ing.

Lemma 2 For an MLPP of a simple cube-curveg it holds
thatCP contains each cube ofg just once.

Now we consider a special transformation of polygonal
curves. LetP = (p0; p1; :::; pm) be a polygonal curve con-
tained in a tubeg. A polygonal curveQ is a g-transform
of P iff Q may be obtained fromP by a finite number of
steps, where each step is a replacement of a triplea; b;
 of
vertices by a polygonal sequencea; b1; :::; bk;
 such that the
polygonal sequencea; b1; :::; bk;
 is contained in the same
set of cubes ofg as the polygonal sequencea; b;
. The casek = 0 characterizes the deletion of vertexb, the casek = 1
characterizes a move of vertexb within g, and casesk � 2
specify a replacement of two straight line segments by a se-
quence ofk + 1 straight line segments, all contained ing.

1 2

3

4
5

67

89

10

11

12

13

1 2

3
45

6

Figure 2. Critical edges of two cube-curves.

Lemma 3 Let P be a polygonal curve complete and con-
tained in the tubeg of a simple cube-curveg such thatCP
is without repetitions of cells. Then it holds that anyg-
transform ofP is also complete and contained ing.

An edge contained in a tubeg is critical iff this edge is
the intersection of three cubes contained in the cube-curveg. Figure 2 illustrates all critical edges of the cube-curves
shown in Fig. 1. Note that simple cube-curves may only
have edges contained in three cubes at most. For example,
the cube-curve consisting of four cubes only (note: there is
one edge contained in four cubes in this case) was excluded
by the constraintn � 4.

Theorem 1 Let g be a simple cube-curve. Critical ed-
ges are the only possible locations of vertices of a shortest
polygonal simple curve contained and complete in tubeg.

Note that this theorem also covers flat simple cube-
curves with a straightforward corollary about the only possi-
ble locations of MLP vertices within a simple square-curve
in the plane: such vertices may be convex vertices of the in-
ner frontier or concave vertices of the outer frontier only be-
cause these are the only vertices incident with three squares
of a simple square-curve.

3. Rubber-band algorithm

Our algorithm is based on the following physical model:
Assume a rubber band is laid through the tubeg. Letting it
move freely it will contract to the MLP which is contained
and complete ing (assumed the band is slippery enough to
slide across the critical edges of the tube). The algorithm
consists of two subprocesses: at first(A) an initialization
process defining a simple polygonal curveP0 contained and
complete in the given tubeg and such thatCP0 contains
each cube ofg just once (see Lemma 2), and second(B)
an iterative process (ag-transform, see Lemma 3) where
each completed run transformsPt into Pt+1 with l(Pt) �l(Pt+1), for t � 0. Thus the obtained polygonal curve is
also complete and contained ing.

(A) The initial polygonal curve will only connect ver-
tices which are end points of consecutive critical edges. For
curve initialization, we scan the given curve until the first
pair (e0; e1) of consecutive critical edges is found which
are not parallel or, if parallel, not in the same grid layer
(see Fig. 2 (right) for a non-simple cube-curve showing that
searching for a pair of non-coplanar edges would be insuffi-
cient in this case). For such a pair(e0; e1) we start with ver-
tices(p0; p1), p0 boundse0 andp1 boundse1, specifying a
line segmentp0p1 of minimum length (note that such a pair(p0; p1) is not always uniquely defined). This is the first line
segment of the desired initial polygonal curveP0.

Now assume thatpi�1pi is the last line segment on this
curveP0 specified so far, andpi is a vertex which boundsei. Then there is a uniquely specified vertexpi+1 on the
following critical edgeei+1 such thatpipi+1 is of minimum
length. Length zero is possible withpi+1 = pi; in this case
we skippi+1, ie. we do not increase the value ofi. Note
that this line segmentpipi+1 will always be included in the
given tube because the centers of all cubes between two
consecutive critical edges are colinear. The process stops
by connectingpn on edgeen with p0 (note that it is pos-
sible that a minimum-distance criterion for this final step
may actually prefer a line betweenpn and the second vertex
boundinge0, ie. notp0). See Table 1 for a list of calcu-
lated vertices for the cube-curve on the left in Figs. 2 and
4. The first row lists all the critical edges shown in Fig. 2.
The second row contains the vertices of the initial polygon
shown in Fig. 4 (initialization = first run of the algorithm).
For example, vertexb is on edge2 and also on edge3, so
there is merely one column for (2=3) for these edges.

This initialization process calculates a polygonal curveP0 which is always contained and complete in the given
tube. Note that traversals following opposite orientations

a
b

c

d

e

f
g

hi

j

Figure 3. Curve initializations (‘clockwise’).

E 1 2/3 4 5 6/7 8 9 10 11 12/13R1 a b c d e f g h i jR2 a b D D e D D h i j

Table 1. Calculated points on edges.

p

p p

0

1 2

Figure 4. Intersection points with edges.

or starting at different critical edges may lead to different
initial polygons. For example, a ‘counterclockwise’ scan
of the cube-curve shown in Fig. 2 (left), starting at edge 1,
selects edges 11 and 10 to be the first pair of consecutive
critical edges, and the generated ’counterclockwise’ poly-
gon would differ from the one shown in Fig. 4.

Initialization results are shown in Fig. 3, and the curve
on the right is already an MLP for this non-simple cube-
curve. In case of flat cube-curves the process will fail to
determine the specified first pair of critical edges, and in
this case a 2D algorithm may be used to calculate the MLP
of a corresponding square-curve.

(B) In this iterative procedure we move pointers ad-
dressing three consecutive vertices of the (so far) calculated
polygonal curve around the curve, until a completed runt + 1 does only lead to an improvement which is below
an a-priori threshold� i.e. l(Pt) � � < l(Pt+1). In all our
experiments the algorithm converges fast for a practically
reasonable value of� .

Assume a polygonal curvePt = (p0; p1; :::; pm), and
three pointers addressing vertices at positionsi � 1, i, andi + 1 in this curve. There are three different options that
may occur which define a specificg-transform.(O1) Pointpi can be deleted iffpi�1pi+1 is a line seg-
ment within the tube. Then subsequence(pi�1; pi; pi+1) is
replaced in our curve by(pi�1; pi+1). In this case we con-
tinue with verticespi�1; pi+1; pi+2 .(O2) The closed triangular region4(pi�1pipi+1) inter-
sects more than just the three critical edges ofpi�1, pi andpi+1 (see Fig. 4), ie. simple deletion ofpi would not be
sufficient anymore. This situation is solved by calculating
a convex arc (note: a convex polygon is the shortest curve
encircling a given finite set of planar points [2]) and by re-
placing pointpi by the sequence of verticesq1,...,qk on this
convex arc betweenpi�1 andpi+1 iff the sequence of line
segmentspi�1q1; : : : ; qkpi+1 lies within the tube. Because
the vertices are ordered we may use a fast linear-time con-
vex hull routine in case of(O2). Barycentric coordinates
with basisfpi�1; pi; pi+1g may be used to decide which of
the intersection points is inside the triangle or not.1 In this
case we continue with a triple of vertices starting with the
calculated new vertexqk. If (O1) and(O2) do not lead to

1In the majority of such cases we foundk = 1, i.e. pi is replaced byq1.

any change, the third option may lead to an improvement.(O3) Pointpi may be moved on its critical edge to ob-
tain an optimum positionpnew minimizing the total length
of both line segmentspi�1pnew and pnewpi+1. That’s a
move on a critical edgeand anO(1) solution is given be-
low. Then subsequence(pi�1; pi; pi+1) is replaced in our
curve by(pi�1; pnew; pi+1). In this case we continue with
verticespnew; pi+1; pi+2.

In Table 1 we sketch the fact that the second run starts
with the polygonal curveP1 = (a; b;
; d; e; f; g; h; i; j).
For the first triple(a; b;
) we have: none of the cases(O1) to (O3) leads to a better location ofb. For triple(b;
; d) we delete
 according to(O1) (symbol ‘D’).
Then triple(b; d; e) leads to the deletion ofd, etc., finally(j; a; b) does not delete or movea. In the following round
nothing changes. There are no other possibilities besides(O1)...(O3). In our experiments we chose the threshold� = l(P1) � 10�6. Figure 5 shows another example. The
initial polygonP1 is dashed. The solid line represents the
final polygon. The short line segments are the critical edges
of the given tube.

0
2

4
6

0
2

4
6

0
2
4
6

xy

z

Figure 5. Initial polygon (dashed) and MLP.

4. Move on a critical edge

We consider situation(O3), ie. pi lies on a critical edge,
saye, and is not colinear withpi�1pi+1. Let le be the line
containing the edgee. First, we find the pointpopt 2 le
such thatjpopt�pi�1j+ jpi+1�poptj = minp2le(jp�pi�1j+ jpi+1�pj):
If popt lies on the closed critical edgee we simply replacepi
bypopt. If it does not, we replacepi by that vertex boundinge and lying closest topopt.

We describe how the pointpopt can be found. The set of
all pointsp 2 R3 for whichjp� pi�1j+ jpi+1 � pj = k ; (1)

for some real constantk � jpi+1 � pi�1j is a prolate
spheroidS, ie. an ellipsoid, the two shorter principle axes of
which have the same length. In the following we use three
Cartesian coordinate systems ofR3 which are interrelated
by rigid motions. (I) The coordinates in the coordinate sys-
tem used up to now are denoted by lower case letters. (II)
Coordinates in the coordinate system attached toS are de-
noted by upper case letters(X;Y; Z) 2 R3. In these coor-
dinatesS is represented byX2
2 + " + Y 2 + Z2" � 1 = 0; (2)

with
 := jpi+1�pi�1j=2 and" := k2=4�
2. (III) The co-
ordinate system(x0; y0; z0) is chosen such thatle is identical
to thez0-axis.

Depending upon the choice of", the linele has up to two
intersection points withS. If le is tangent toS, the tangent
point is popt, since there is no pointq 2 le lying insideS. Thus, we first have to find the value of" such thatle is
tangent toS. Afterwards we identify the intersection point
of le andS aspopt.

Representing (2) in coordinate system (III) and inter-
sectingS with le by settingx0 = y0 = 0 yields a quadric
equation inz0:a(")z02 + b(")z0 +
(") = 0 : (3)

The coefficientsa and b contain " linearly, while
 is
quadratic in". The constraint thatle be tangent toS is iden-
tical to the condition that (3) has a double solution. This is
the case iff a(")
(")� b2(") = 0 : (4)

Equation (4) is cubic in" and has one real positive and two
real negative solution. Since geometrically only the positive
solution makes sense, we have a unique solution. Replac-
ing " into (3), solving that equation, and representing the
solution in coordinate system (I) yieldspopt.
5. Time complexity and convergence of algo-

rithm

We give an estimate of the complexity of the rubber-band
algorithm in dependency of the number of cubesn of the
given cube-curve.

The algorithm completes each run inO(n) time. The
described move of pointpi on a critical edge requires con-
stant time. The given value of� ensured that the measured
time complexity is inO(n), ie. the number of runs does
not depend uponn. Figures 6 and 7 show the time needed
until the algorithm converges in dependency of the num-
ber of cubesn and in dependency of the number of critical
edges, respectively. The test set contained 70 randomly gen-
erated cube-curves. In Fig. 6 each error bar shows the mean

convergence time and the standard deviation for a set of 10
digital curves.

50 100 150 200
0

10

20

30

40

50

n

tim
e

Figure 6. CPU-time in seconds in dependence
of the number of cubes (n)

0 50 100 150
0

10

20

30

40

50

of critical edges

tim
e

Figure 7. CPU-time in seconds in dependence
of the number of critical edges

The algorithm is iterative and since by definitionl(Pt+1) < l(Pt) (otherwise, if equal, the algorithm stops)
and there exists a lower bound forl(Pt) (namely the
length of the MLP) the algorithm converges. However, the
open problem remains: convergent towards which polygon?
In all of our experiments it converges towards the MLP.
Lemma 2 and Lemma 3 give a partial answer: always to-
wards a polygon complete and contained ing.

Figure 8 shows the measured changes in the length of the
polygons within the iterative process.

6. Conclusions

The given algorithmic solution provides a polygonal
approximation and length measurement for simple cube-
curves in 3D space with a measured time inO(n). Actually
it was successfully used for a wider class of cube-curves

0 23 36 49 60
24

26

28

30

32

of Iteration Steps

Le
ng

th
 o

f P
ol

yg
on

Figure 8. Length convergence for the curve
shown in Fig. 5. The tick-marks on the itera-
tion axis are set after each completed run.

also allowing cases such as the cube-curve on the right in
Fig. 1: cube-curvesg where each cube ing has exactly two
bounding faces ing. This definition allows a simpler test
of a given cube-curve, and also a simpler generation of test
examples.

The curve used in the initialization step(A) might be
replaced by other curves such as sequences of straight seg-
ments between midpoints of consecutive cubes, or between
midpoints of consecutive critical edges. These two curves
would also be curves lying completely within a given tube
of a simple cube-curve. However, the initial curve as de-
fined in our algorithm leads to a much faster convergence in
general compared to these two other options.

Two open problems are stated: the time complexity
might be provable always inO(n), and the convergence
might be provable always towards the MLP.

References

[1] T. Bülow and R. Klette. Digital curves in 3d space and linear-
time length estimation. Technical Report CITR-TR-55, CITR
Tamaki, Auckland University, December 1999.

[2] T. Busemann and W. Feller. Krümmungseigenschaften kon-
vexer flächen.Acta Mathematica, 66:27–45, 1935.

[3] R. Klette, V. Kovalevsky, and B. Yip. On the length estimation
of digital curves. InVision Geometry VIII, number 3811 in
SPIE Conference proceedings, pages 117–128, 1999.

[4] W. Rinow. Topologie. Deutscher Verlag der Wissenschaften,
Berlin, 1975.

[5] F. Sloboda anďL. Bač́ik. On one-dimensional grid continua
in R3. Technical report, Institute of Control Theory and
Robotics, Bratislava, 1996.

[6] F. Sloboda, B. Zǎtko, and R. Klette. On the topology of grid
continua. InVision Geometry VII, number 3454 in SPIE Con-
ference Proceedings, pages 52–63, 1998.

