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Abstract

We consider simple digital curves in a 3D orthogonal
grid as special polyhedrally bounded sets. These digital
curves model digitized curves or arcs in three-dimensional
euclidean space. The length of such a simple digital curve
is defined to be the length of the minimum-length polygonal
curve fully contained and complete in the tube of this digita
curve. So far no algorithm was known for the calculation
of such a shortest polygonal curve. This paper provides an
iterative algorithmic solution, including a presentatiaf
its foundations and of experimental results.

1. Introduction

The analysis of digital curves in 3D space is of increas-
ing practical relevance in volumetric image data analysis.
A digital curve is the result of a process (3D skeleton
3D thinning etc.) which maps captured ‘curve-like’ ob-
jects into well-defined digital curves (see definition bélow
The length of a simple digital curve in three-dimensional
euclidean space is based on the calculation of the short
est polygonal curve in a polyhedrally bounded compact set
[5, 6]. This paper presents an algorithm for calculatindgsuc
a polygonal curve with measured time complexityln),
wheren denotes the number of grid cubes of the given dig-
ital curve.

We start with the definition of simple digital curves, see
Fig. 1 for two examples. Any grid poiri, j, k) € R is
assumed to be the center point ofjad cubewith faces
parallel to the coordinate planes, wietigesof length 1,
andvertices Cellsare either cubes, faces, edges or vertices.
The intersection of two cells is either empty or a joside
of both cells. We consider a non-empty finite 8&0f cells
such that for any cell ik it holds that any side of this cell
is also inK . Such a sek is a special finiteeuclidean com-
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plex and thus arabstract cellular compleX4] including
straightforward definitions of a bounding relation for [gair
of cells, and dimensions of cells.

Digital curves g in 3D space are defined as fol-
lows, forn > 1: A cube-curveis a sequence
(fo,co, f1,¢1, ..., fn,cn) Of facesf; and cubeg;, for 0 <
i < m, such that faceg; and f;, 1 are sides of cube;, for
0 <i<mnandf,y1 = fo. Itis simpleiff n > 4, and for
any two cubeg;, ¢ in g with [i — k| > 2 (mod n) it holds
that if ¢; N ¢, # 0 then eitheri — k| = 2 (mod n) and
¢i N ¢y is an edge, ofi — k| = 3 (mod n) ande; N ¢y is
a vertex. Atubeg is the union of all cubes contained in a
cube-curvg. It is a polyhedrally-bounded compact set in
R3, and it is homeomorphic with a torus in case of a simple
cube-curve. Analogouslgdge-curvesr face-curvesnay
be defined in 3D space. This paper deals exclusively with
simple cube-curves.

The cube-curve on the left of Fig. 1 is simple, and the
cube-curve on the rightis not. The latter example shows that
the polyhedrally-bounded compact gedf a cube-curvey
is not necessarily homeomorphic with a torus if each cube
of this cube-curve has exactly two bounding faces in
A curve iscomplete ing iff it has a non-empty intersection

with any cube contained in. Following [5, 6], thelength
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Figure 1. Two cube-curves in 3D space.



of a simple cube-curve is defined to be the lengt{P) 4 R W
of a shortest polygonal simple curfwhich is contained /f* }}f**fﬁfﬁ* *j
and complete in tubg. A simple cube-curve is flat iff the “t+ 3( \ FrHAS
: : . . . | X4+ | =ty
center (grid) points of all cubes containedgrare in one A S|
plane parallel to one of the coordinate planes. %fﬁﬂ‘ Yf*%*: R
A non-flat simple cube-curve iR® specifies exactly one | A7 CHE T Aot |
minimum-length polygonal simple curve (MLP) which is r;i}l77 AsiAet? gt f}%jﬁ}’f %43
contained and complete in its tube [5]. The MLP is not CfrTrTty BT
v 107 VA VAN VA VAR Vg Vol

uniquely specified in flat simple cube-curves. Flat simple
cube-curves may be treated as square-curves in the plane,
and square-curves in the plane are extensively studied, see
eg. [3]. It seems there is no straightforward approach to
extend known 2D algorithms to the 3D case. Global infor-
mation has to be taken into account for length calculation Lemma 3 Let P be a polygonal curve complete and con-
of digital curves independent upon the dimension to ensuretained in the tubey of a simple cube-curve such thatCp
multigrid convergence [3]. is without repetitions of cells. Then it holds that agy
transform ofP is also complete and containedgn

Figure 2. Critical edges of two cube-curves.

2. Simple cube-curves An edge contained in a tulgeis critical iff this edge is

) ] ] ) _ the intersection of three cubes contained in the cube-curve
This section contains fundamentals used in ouralgorithm ; - Figyre 2 llustrates all critical edges of the cube-curves

for calcu.lating _the length of a simple cube-curve. Proofs ghown in Fig. 1. Note that simple cube-curves may only
are published in [1]. Ley be a simple cube-curve, and haye edges contained in three cubes at most. For example,
P = (po,p, -, pm) b€ & polygonal curve complete and  the cube-curve consisting of four cubes only (note: there is
contained irg, with po = pin. one edge contained in four cubes in this case) was excluded

Lemmal It holds m > 3 for any polygon? = by the constraint > 4.

(po,p1,...,pm) complete and contained in a simple cube- Theorem 1 Let g be a simple cube-curve. Critical ed-
curve. ges are the only possible locations of vertices of a shortest

. . . olygonal simple curve contained and complete in tybe
The casen = 3 is possible. During a traversal along the Polyg P P o

curve’? we leave cubes, and we enter cubes. The traver- Note that this theorem also covers flat simple cube-
sal is defined by the starting vertgx of the curve and the  curves with a straightforward corollary about the only poss
given orientation. Le€p = (co,c1, ..., c,,) be the sequence  ble locations of MLP vertices within a simple square-curve
of cubes in the order how they are entered during this curvein the plane: such vertices may be convex vertices of the in-

traversal. Becausg is complete and contained it fol- ner frontier or concave vertices of the outer frontier ordy b
lows thatCp contains all cubes af, and no further cubes cause these are the only vertices incident with three sguare
are ing. of a simple square-curve.

Lemma 2 For an MLPP of a simple cube-curvgit holds

thatCp contains each cube gfjust once. 3. Rubber-band algorithm

Now we consider a special transformation of polygonal  Our algorithm is based on the following physical model:
curves. LetP = (po,p1,...,pm) be a polygonal curve con-  Assume a rubber band is laid through the tgbéetting it
tained in a tubey. A polygonal curve@ is ag-transform move freely it will contract to the MLP which is contained
of P iff Q may be obtained fror® by a finite number of  and complete iy (assumed the band is slippery enough to
steps, where each step is a replacement of a tuigle: of slide across the critical edges of the tube). The algorithm
vertices by a polygonal sequeneeé;, ..., by, csuch thatthe  consists of two subprocesses: at fif&) an initialization
polygonal sequence, by, ..., by, ¢ is contained in the same  process defining a simple polygonal cufgcontained and
set of cubes of as the polygonal sequenegh, c. The case  complete in the given tubg and such thatp, contains

k = 0 characterizes the deletion of vertiexhe casé = 1 each cube of; just once (see Lemma 2), and secdi]
characterizes a move of vertéxvithin g, and cases > 2 an iterative process (g-transform, see Lemma 3) where
specify a replacement of two straight line segments by a se-each completed run transforr#® into P; ., with 1(P;) >
guence of: + 1 straight line segments, all containedgn [(Pi11), fort > 0. Thus the obtained polygonal curve is

also complete and containedgn



(A) The initial polygonal curve will only connect ver-
tices which are end points of consecutive critical edges. Fo
curve initialization, we scan the given curve until the first
pair (eq, e1) of consecutive critical edges is found which
are not parallel or, if parallel, not in the same grid layer
(see Fig. 2 (right) for a non-simple cube-curve showing that

searching for a pair of non-coplanar edges would be insuffi-

cientin this case). For such a péip, e;) we start with ver-
tices(po, p1), po boundsey andp; boundse;, specifying a
line segmenpyp; of minimum length (note that such a pair
(po, p1) is not always uniquely defined). This is the first line
segment of the desired initial polygonal cufg.

Now assume that; p; is the last line segment on this
curveP, specified so far, ang; is a vertex which bounds
e;. Then there is a uniquely specified vergex, on the
following critical edgee; 1 such thap;p;;1 is of minimum
length. Length zero is possible with1 = p;; in this case
we skipp;+1, ie. we do not increase the value of Note
that this line segment;p;1 will always be included in the

Figure 4. Intersection points with edges.

or starting at different critical edges may lead to diffdéren
initial polygons. For example, a ‘counterclockwise’ scan
of the cube-curve shown in Fig. 2 (left), starting at edge 1,
selects edges 11 and 10 to be the first pair of consecutive
critical edges, and the generated 'counterclockwise’ poly
gon would differ from the one shown in Fig. 4.

Initialization results are shown in Fig. 3, and the curve
on the right is already an MLP for this non-simple cube-
curve. In case of flat cube-curves the process will fail to
determine the specified first pair of critical edges, and in

given tube because the centers of all cubes between twahis case a 2D algorithm may be used to calculate the MLP
consecutive critical edges are colinear. The process stop®f a corresponding square-curve.

by connectingp,, on edgee,, with p, (note that it is pos-
sible that a minimum-distance criterion for this final step
may actually prefer a line between and the second vertex
boundingey, ie. notpy). See Table 1 for a list of calcu-
lated vertices for the cube-curve on the left in Figs. 2 and
4. The first row lists all the critical edges shown in Fig. 2.
The second row contains the vertices of the initial polygon
shown in Fig. 4 (initialization = first run of the algorithm).
For example, vertek is on edge2 and also on edga, so
there is merely one column fo2 (3) for these edges.

This initialization process calculates a polygonal curve
Po which is always contained and complete in the given
tube. Note that traversals following opposite orientadion

Figure 3. Curve initializations (‘clockwise’).
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Table 1. Calculated points on edges.

(B) In this iterative procedure we move pointers ad-
dressing three consecutive vertices of the (so far) cakedla
polygonal curve around the curve, until a completed run
t + 1 does only lead to an improvement which is below
an a-priori threshold i.e. [(P;) — 7 < I(Pg+1). In all our
experiments the algorithm converges fast for a practically
reasonable value of.

Assume a polygonal curv®; = (po,p1,.--,Pm), and
three pointers addressing vertices at positionsl, i, and
i + 1 in this curve. There are three different options that
may occur which define a specifietransform.

(O1) Pointp; can be deleted ifp; _1p;+1 is a line seg-
ment within the tube. Then subsequefipg 1, p;, pi+1) IS
replaced in our curve bfp; 1, p;+1). In this case we con-
tinue with vertice®; 1, pi+r1, pito -

(O2) The closed triangular regiofy (p; _1p;pi+1) inter-
sects more than just the three critical edgeg;af, p; and
pir1 (see Fig. 4), ie. simple deletion @f would not be
sufficient anymore. This situation is solved by calculating
a convex arc (note: a convex polygon is the shortest curve
encircling a given finite set of planar points [2]) and by re-
placing pointp; by the sequence of vertices,... g on this
convex arc betweep;  andp;, iff the sequence of line
segment®;_1q1, - - ., qxpi+1 lies within the tube. Because
the vertices are ordered we may use a fast linear-time con-
vex hull routine in case ofO2). Barycentric coordinates
with basis{p;_1,p;, pi+1} may be used to decide which of
the intersection points is inside the triangle or hdh this
case we continue with a triple of vertices starting with the
calculated new vertey. If (O1) and(O2) do not lead to

1In the majority of such cases we foukd= 1, i.e.p; is replaced by
q1.



any change, the third option may lead to an improvement. for some real constart > |p;+1 — p;—1] IS a prolate
(O3) Pointp; may be moved on its critical edge to ob- spheroidS, ie. an ellipsoid, the two shorter principle axes of
tain an optimum positiop,,.,, minimizing the total length  which have the same length. In the following we use three
of both line segment®; 1 pnew aNd prewpir1- That's a Cartesian coordinate systems®t which are interrelated
move on a critical edgeand an(O(1) solution is given be- by rigid motions. [) The coordinates in the coordinate sys-
low. Then subsequend®; 1, p;,pi+1) is replaced in our  tem used up to now are denoted by lower case lettél¥. (
curve by(p;_1, Prew, Pi+1)- In this case we continue with  Coordinates in the coordinate system attachefl sve de-
verticeSpnew, Pit1, Pit2- noted by upper case lettef¥, Y, Z) € R3. In these coor-
In Table 1 we sketch the fact that the second run startsdinatessS is represented by
with the polygonal curveP; = (a,b,c,d e, f,g,h,i,j).

) N X2 Y2 +Z2
For the first triple(a,b,c) we have: none of the cases X —1=0, (2)
(O1) to (O3) leads to a better location df For triple o te €
(b,c,d) we deletec according to(O41) (symbol ‘D). With ¢ := |pit1 —pi_1]/2 ande := k2/4—c2. (111) The co-

Then triple(b, d, ¢) leads to the deletion af, etc., finally ordinate systenu’, ', z') is chosen such that is identical
(j,a,b) does not delete or move In the following round g the'-axis.
nothing changes. There are no other possibilities besides Depending upon the choice ofthe linel, has up to two
(01)...(O3). IQGour.expenments we chose the threshold jntersection points witls. If I, is tangent taS, the tangent
7 = I(P1) - 107°. Figure 5 shows another example. The point is p,,;, since there is no point € I, lying inside
initial polygon Py is dashed. The solid line represents the s Thys, we first have to find the value ofuch that, is
final polygon. The shortline segments are the critical edgesiangent taS. Afterwards we identify the intersection point
of the given tube. of I, andS asp,p;.

Representing (2) in coordinate systehhl] and inter-
sectingS with [, by settingz’ = v’ = 0 yields a quadric
equation inz':

a(e)2” +b(e)z' +¢(e) = 0. 3)

The coefficientsa and b containe linearly, while ¢ is
guadratic ire. The constraint thdt be tangenttd is iden-
tical to the condition that (3) has a double solution. This is
the case iff

a(e)e(e) —b*(e) = 0. 4)

Equation (4) is cubic im and has one real positive and two
real negative solution. Since geometrically only the passit
solution makes sense, we have a unique solution. Replac-
Figure 5. Initial polygon (dashed) and MLP. ing ¢ into (3), solving that equation, and representing the
solution in coordinate syster)(yields p,p;.

4. Moveon acritical edge 5. Time complexity and convergence of algo-
rithm
We consider situatiofO3), ie. p; lies on a critical edge,
saye, and is not colinear witlp; 1 p;1. Letl, be the line We give an estimate of the complexity of the rubber-band
containing the edge. First, we find the poinp,,: € I, algorithm in dependency of the number of cubesf the
such that given cube-curve.

The algorithm completes each run @(n) time. The
described move of point; on a critical edge requires con-
stant time. The given value afensured that the measured
time complexity is inO(n), ie. the number of runs does
not depend upon. Figures 6 and 7 show the time needed
until the algorithm converges in dependency of the num-
ber of cubes: and in dependency of the number of critical
edges, respectively. The test set contained 70 randomiy gen
|p — pic1| + |pix1 — 0| =k, (1) erated cube-curves. In Fig. 6 each error bar shows the mean

|Dopt —Pi—1]~+ |Pit1 — Dopt| = gleilﬂ(|p—pz’71|+|pi+1 —pl).

If pope lies on the closed critical edgave simply replace;
by p.p:. If it does not, we replacg; by that vertex bounding
e and lying closest t@,;.

We describe how the poipt,,: can be found. The set of
all pointsp € R? for which



convergence time and the standard deviation for a set of 10 32
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Figure 8. Length convergence for the curve
shown in Fig. 5. The tick-marks on the itera-

Figure 6. CPU-time in seconds in dependence tion axis are set after each completed run.

of the number of cubes ( n)

also allowing cases such as the cube-curve on the right in

507 R Fig. 1: cube-curveg where each cube ig has exactly two
L bounding faces iry. This definition allows a simpler test
401 ST of a given cube-curve, and also a simpler generation of test
30 . . examples.
°§’ T . The curve used in the initialization stép) might be
T 20¢ " T replaced by other curves such as sequences of straight seg-
R A ments between midpoints of consecutive cubes, or between
10¢ *, e em * . . . .
NI midpoints of consecutive critical edges. These two curves
o Al would also be curves lying completely within a given tube

0 £ critical edlgoeos 150 of a simple cube-curve. However, the initial curve as de-
fined in our algorithm leads to a much faster convergence in
general compared to these two other options.

Figure 7. CPU-time in seconds in dependence Two open problems are stated: the time complexity
of the number of critical edges might be provable always i®(n), and the convergence

might be provable always towards the MLP.
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