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Abstract. We consider simple digital curves in a 3D orthogonal grid as
special polyhedrally bounded sets. These digital curves model digitized

curves or arcs in three-dimensional euclidean space. The length of such

a simple digital curve is de�ned to be the length of the minimum-length
polygonal curve fully contained and complete in the tube of this digi-

tal curve. So far no algorithm was known for the calculation of such a

shortest polygonal curve. This paper provides an iterative algorithmic
solution, including a presentation of its foundations and of experimental

results.

1 Introduction

The analysis of digital curves in 3D space is of increasing practical relevance
in volumetric image data analysis. A digital curve is the result of a process
(3D skeleton, 3D thinning etc.) which maps captured `curve-like' objects into
well-de�ned digital curves (see de�nition below). The length of a simple digital
curve in three-dimensional euclidean space is based on the calculation of the
shortest polygonal curve in a polyhedrally bounded compact set [8, 9]. This paper
presents an algorithm for calculating such a polygonal curve with measured time
complexity inO(n), where n denotes the number of grid cubes of the given digital
curve.

Any grid point (i; j; k) 2 R3 is assumed to be the center point of a grid cube

with faces parallel to the coordinate planes, with edges of length 1, and vertices.
Cells are either cubes, faces, edges or vertices. The intersection of two cells is
either empty or a joint side of both cells.

We consider a non-empty �nite set K of cells such that for any cell in K

it holds that any side of this cell is also in K. Such a set K is a special �nite
euclidean complex [6]. Let dim(a) denote the dimension of a cell a, which is 0
for vertices, 1 for edges, 2 for faces and 3 for cubes. Then [K;�; dim] is also a
cell complex [4, 6, 10] with properties such as (i) � is transitive on K, (ii) dim
is monotone on K with respect to �, and (iii) for any pair of cells a; b 2 K with
a � b and dim(a) + 1 < dim(b) there exists a cell c 2 K with a � c � b. Cell b
bounds a cell a i� a � b, and b is a proper side of a in this case. Two cells a and
b are incident i� a bounds b, or b bounds a.



Fig. 1. Two cube-curves in 3D space.

We de�ne digital curves g in 3D space with respect to such a euclidean
complex as special sequences (z0; z1; :::; zm) of cells where zi is incident with
zi+1, and jdim(zi) � dim(zi+1)j = 1, for i + 1 (mod m + 1). There are (at
least) three di�erent options which may depend upon an application context, or
upon a preference of either a grid-point model or a cellular model which are dual
approaches [2]. Let n � 1.

(i) An edge-curve is a sequence g = (v0; e0; v1; e1; :::; vn; en) of vertices vi and
edges ei, for 0 � i � n, such that vertices vi and vi+1 are sides of edge ei, for
0 � i � n and vn+1 = v0. It is simple i� each edge of g has exactly two bounding
vertices in g. It follows that a vertex or edge is contained at most once in a
simple edge curve. 1

(ii) A face-curve is a sequence g = (e0; f0; e1; f1; :::; en; fn) of edges ei and
faces fi, for 0 � i � n, such that edges ei and ei+1 are sides of face fi, for
0 � i � n and en+1 = e0. It is simple i� n � 4, and for any two faces fi, fk in g

with ji�kj � 2 (mod n+1) it holds that if fi\fk 6= ; then ji�kj = 2 (mod n+1)
and fi \ fk is a vertex.

(iii) A cube-curve is a sequence g = (f0; c0; f1; c1; :::; fn; cn) of faces fi and
cubes ci, for 0 � i � n, such that faces fi and fi+1 are sides of cube ci, for
0 � i � n and fn+1 = f0. It is simple i� n � 4, and for any two cubes ci,
ck in g with ji � kj � 2 (mod n + 1) it holds that if ci \ ck 6= ; then either
ji � kj = 2 (mod n + 1) and ci \ ck is an edge, or ji � kj = 3 (mod n + 1) and
ci \ ck is a vertex. A tube g is the union of all cubes contained in a cube-curve
g. It is a polyhedrally-bounded compact set in R3, and it is homeomorphic with
a torus in case of a simple cube-curve. 2

This paper deals exclusively with simple cube-curves. The cube-curve on
the left of Fig. 1 is simple, and the cube-curve on the right is not. The latter

1 This de�nition is consistent with, eg., the de�nition of a 4-curve in [7] (see proposition

2.3.3) for 2D grids where our edges are `hidden' in a neighborhood de�nition, or of
a closed simple path in [11] (see page 7) for undirected graphs.

2 Closed simple one-dimensional grid continua [8, 9] are de�ned such that each cube

of g has exactly two bounding faces in g.



example shows that the polyhedrally-bounded compact set g of a cube-curve g

is not necessarily homeomorphic with a torus if each cube of this cube-curve g

has exactly two bounding faces in g. A (Jordan) curve is complete in g i� it has
a non-empty intersection with any cube contained in g.

De�nition1. A minimum-length polygon (MLP) of a simple cube-curve g is a
shortest polygonal simple curve P which is contained and complete in tube g.

Following [8, 9], the length of a simple cube-curve g is de�ned to be the length
l(P) of an MLP of g.

A simple cube-curve g is at i� the center points (i; j; k) of all cubes contained
in g are in one plane parallel to one of the coordinate planes. A non-at simple
cube-curve in R3 speci�es exactly one minimum-length polygonal simple curve
(MLP, minimum-length polygon) which is contained and complete in its tube
[8]. The MLP is not uniquely speci�ed in at simple cube-curves. Flat simple
cube-curves may be treated as square-curves in the plane, and square-curves in
the plane are extensively studied, see, eg. [3]. It seems there is no straightforward
approach to extend known 2D algorithms to the 3D case. An important reason for
that may be that 2D algorithms for (multigrid-convergent) perimeter estimation
[3] may be such that all calculated vertices are grid points or vertices, but in
the 3D case we are faced with a qualitatively new situation for the calculated
vertices. The minimum-length polygon considered in this paper leads to vertices
with real coordinates (not just multiples of integers as in the 2D case), ie. the
model of cell complexes is considered as being embedded into the euclidean
space. However, independent upon the dimension global information has to be
taken into account for length calculation of digital curves to ensure multigrid
convergence.

The paper is organized as follows: Section 2 informs about theoretical funda-
mentals relevant for the length calculation of cube-curves. Section 3 speci�es our
algorithm for length calculation, including theoretical results concerning the ini-
tialization process. Section 4 informs about a speci�c algebraic solution for one
step in the algorithm to support a constant-time solution of this processing step.
Section 5 informs about experimental results with respect to time complexity
and length convergence. The conclusions also contain two open problems.

2 Simple cube-curves

This section contains fundamentals used in our algorithm for calculating the
length of a simple cube-curve. Let g be a simple cube-curve, and P = (p0; p1; :::;
pm) be a polygonal curve complete and contained in g, with p0 = pm.

Lemma2. It holds m � 3, for any polygon P = (p0; p1; :::; pm) complete and

contained in a simple cube-curve. If m � 3 then it holds that two line segments

cannot be complete in any simple cube-curve.

Proof. Cases m = 0 and m = 1 would be a point, and m = 2 would be a
straight line segment. Both cases are excluded because our simple cube-curves



Fig. 2. Curves complete and contained in a tube.

are homeomorphic to the torus. The case m = 3 (a triangle) is possible, eg. for
the simple cube-curve shown in Fig. 2. However, in this minimum case of m = 3
it holds that no side of the triangle may be completely contained within one of
the cubes. ut

Following [9], the curves on the left and on the right in Fig. 2 are non-

contractible in g, and the curve in the middle is contractible in g by continuous
contractions into a single point, ie. there are continuously repeated topologi-
cal (ie. continuous and bijective) transformations of this curve into a family of
disjoint curves, all contained in g, which converge towards a single point [5].

A Jordan curve  passes through a face f i� there are parameters t1; t2; T

such that f(t) : t1 � t � t2g � f , and (t1 � ") =2 f , (t2 + ") =2 f , for all
" with 0 < " � T . During a traversal along curve  we enter a cube c at point
(t1) 2 c if (t1� ") =2 c, and we leave c at point (t2) 2 c if (t2+ ") =2 c, for all
" with 0 < " � T . A traversal is de�ned by the starting vertex p0 of the curve
and the given orientation.

We consider polygonal curves P. Let CP = (c0; c1; :::; cn) be the sequence of
cubes in the order how they are entered during curve traversal. If P is complete
and contained in a tube g then it follows that CP contains all cubes of g, and
there are no further cubes in CP .

Lemma3. For an MLP P of a simple cube-curve g it holds that CP contains

each cube of g just once.

Proof. Assume that P enters the same cube c of g twice, say at point q1 �rst
and at point q2 again. Both points may be on one face of c, see Fig. 2 on the left
and on the right, or on di�erent faces of c, see Fig. 2 middle.

First consider the case that both entry points q1 and q2 of c are on one face
f of cubes c and c0. Assume the number of passes of P through f is odd. We
insert points q1 and q2 into P as new vertices which split the resulting polygonal
curve into two polygonal chains, P1 = (q2; :::; q1) and P2 = (q1; :::; q2) such that
the union of both is P. The length of Pi exceeds the length of the straight line
segment q1q2, for i = 1; 2. W.l.o.G. let P1 be the chain which does not pass
through f . It follows that P1 is complete in g. Because the cube c is convex it
also contains the straight line segment q1q2. We replace the polygonal sequence
P2 by q1q2, ie. we replace P by Q = (q1; q2; :::; q1). Curve Q is still complete and



contained in g, but shorter than P which contradicts our assumption that P is
an MLP of g.

Now assume that the number of passes of P through f is even, it enters c

at q1, then it passes f and enters c0 at r1, then it passes f again and enters c

at q2, then it passes f again and enters c0 at r2. There may be a further even
number of passes of P through f before the curve returns to q1. We insert points
q1; r1; q2; r2 into P as new vertices which split the resulting polygonal curve into
four polygonal chains, P1 = (q1; :::; r1), P2 = (r1; :::; q2), P3 = (q2; :::; r2) and
P2 = (r2; :::; q1) such that the union of all four is P. It follows that

CP1
� CP3

_ CP3
� CP1

;

and an analog conclusion for P2 and P4. W.l.o.g. let CP1
� CP3

. Then we replace
in P the polygonal chain P1 by the straight line segment q1r1 which is in f .
The length of P1 exceeds the length of the straight line segment q1r1. Thus the
resulting polygonal curve is still complete and contained in g, but shorter than
P which also contradicts our assumption that P is an MLP of g.

We consider the second case that both points q1 and q2 are on di�erent faces
of cube c, say q1 on face f1 and q2 on face f2. Because q2 is a re-entry point to
cube c there must be a point qex in f2 where we leave c before entering c again
at q2. If there is another re-entry point on face f2 then we are back to case one.
It follows that P leaves c once and enters c once. Assume that f2 is also a face
of cube c0 6= c of g. If P would not intersect the second face of c0 contained in g

then we may replace the polygonal subsequence (qex; :::; q2) (which is contained
in c0 but not in f2) by the shorter straight line segment qexq2 which is contained
in f2 and thus in c0, ie. the resulting polygonal curve would be shorter and still
contained and complete in g. It follows that the curve P has to leave cube c0

through its second face contained in g. Tracing g around means that we arrive
at the cube c00 6= c which is also incident with face f1, and we leave c00 (and enter
c) at a point which may be equal to q1, and we enter c00 again through f1. Thus
P contains two polygonal subsequences which are both contained and complete
in g. This contradicts the shortest-length constraint. ut

Now we consider a special transformation of polygonal curves. Let P =
(p0; p1; :::; pm) be a polygonal curve contained in a tube g. A polygonal curve Q
is a g-transform of P i� Q may be obtained from P by a �nite number of steps,
where each step is a replacement of a triple a; b; c of vertices by a polygonal se-
quence a; b1; :::; bk; c such that the polygonal sequence a; b1; :::; bk; c is contained
in the same set of cubes of g as the polygonal sequence a; b; c. The case k = 0
characterizes the deletion of vertex b, the case k = 1 characterizes a move of
vertex b within g, and cases k � 2 specify a replacement of two straight line
segments by a sequence of k + 1 straight line segments, all contained in g.

Lemma4. Let P be a polygonal curve complete and contained in the tube g of

a simple cube-curve g such that CP is without repetitions of cells. Then it holds

that any g-transform of P is also complete and contained in g.
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Fig. 3. Critical edges of two cube-curves.

Proof. By de�nition of the g-transform it follows that this curve is also contained
in g. Because CP is without repetitions of cells it holds that P traces g cell
by cell, starting with one vertex in one cell and returning to the same vertex.
From Lemma 2 we know that P has at least three vertices, ie. at least three
line segments, and that for the minimum case of m = 3 it holds that two line
segments cannot be complete in g, ie. there is at least one cube not intersected
by these two line segments. Thus a replacement of two line segments (within the
same set of cells of g) cannot transform P into a curve contractible in g, ie. the
curve remains complete in g. ut

An edge contained in a tube g is critical i� this edge is the intersection of
three cubes contained in the cube-curve g. Figure 3 illustrates all critical edges
of the cube-curves shown in Fig. 1. Note that simple cube-curves may only have
edges contained in three cubes at most. For example, the cube-curve consisting
of four cubes only (note: there is one edge contained in four cubes in this case)
was excluded by the constraint n � 4.

Theorem5. Let g be a simple cube-curve. Critical edges are the only possible

locations of vertices of a shortest polygonal simple curve contained and complete

in tube g.

Proof. We consider arbitrary (at or non-at) simple cube-curves g, ie. the MLP
may not be uniquely de�ned.

Let P = (p0; p1; :::; pm) be a shortest polygonal simple curve contained and
complete in tube g, with p0 = pm and m � 3. We consider w.l.o.g. the polygonal
subsequence (p0; p1; p2) of such a shortest polygonal simple curve contained and
complete in tube g. We will show that p1 is on a critical edge. According to
Lemma 3 we know that CP is without repetitions, ie. we may apply Lemma 4
for this curve P and tube g.

We can exclude the case that p1 is colinear with p0 and p2, because p1 would
be no vertex of a polygon in such a case. Three non-colinear points p0, p1, and
p2 de�ne a triangular region 4(p0; p1; p2) in a plane E in R3. The following
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Fig. 4. Sketch of point p1.

considerations are all for geometric con�gurations within this plane E . In this
proof, a boundary point is a point on the boundary @g.

At �rst we ask whether p1 may be moved into a new point pnew within the
triangle 4(p0; p1; p2) towards line segment p0p2 such that a resulting polygonal
subsequence (p0; :::; pnew; :::; p2) remains to be contained in g. This describes a
g-transform of P, and the resulting curve would be complete and contained in
g. It can be of shorter length if the intersection of an "-neighborhood of p1 with
4(p0; p1; p2) is in g, for " > 0. It follows that such a move of p1 is impossible,
ie. it follows that for any " > 0 there is at least one boundary point q in an
"-neighborhood of p1 and on one of the line segments p0p1 or p1p2, avoiding
such a move of p0 into the triangle 4(p0; p1; p2). It follows that p1 itself is a
boundary point.

The situation of an "0-neighborhood at point p1 is illustrated in Fig. 4. Angle
� represents the region not in g. Angles � and  are just inserted to mention
that they may be zero, and their actual value is not important in the sequel. It
holds � < � because it is bounded by an inner angle of the triangle4(p0; p1; p2).

A boundary point may be a point within a face, or on an edge. Assume �rst
that boundary point p1 is within a face f . Plane E and face f either intersect in
a straight line segment, or face f is contained in E . The straight line situation
would contradict that � < � in the "0-neighborhood at point p1, and f � E
would allow to move p1 into a new point pnew within 4(p0; p1; p2) towards line
segment p0p2 which contradicts our MLP assumption.

There are three di�erent possibilities for an edge contained in g: we call it
an uncritical edge if it is only in one cube contained in g, it is an ine�ective edge

if it is in exactly two cubes contained in g, and it is a critical edge (as de�ned
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Fig. 5. Intersection with an uncritical edge.
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Fig. 6. Convex vertices of inner and concave vertices of outer frontier of the tube of a
simple square curve in the plane.

above) in case of three cubes. Point p1 cannot be on an ine�ective edge such
that it is also not on a critical or uncritical edge, because this corresponds to
the situation being within a face as discussed before. Point p1 also cannot be on
an uncritical edge such that it is also not on a critical edge. Figure 5 illustrates
an intersection point q with an uncritical edge in plane E assuming that this
edge is not coplanar with E . The resulting angle � > � (region not in g in an
"-neighborhood of q) does not allow that p1 is such a point. If the uncritical edge
is in E then angle � would be equal to �, what is excluded at p1 as well. So there
is only one option left. Point p1 has to be on a critical edge (in fact, the angle �
is less than � for such an edge). ut

Note that this theorem also covers at simple cube-curves with a straightfor-
ward corollary about the only possible locations of MLP vertices within a simple
square-curve in the plane (see 6): such vertices may be convex vertices of the
inner frontier or concave vertices of the outer frontier only because these are the
only vertices incident with three squares of a simple square-curve.

3 Rubber-band algorithm

Our algorithm is based on the following physical model: Assume a rubber band
is laid through the tube g. Letting it move freely it will contract to the MLP
which is contained and complete in g (assumed the band is slippery enough
to slide across the critical edges of the tube). The algorithm consists of two
subprocesses: at �rst an initialization process de�ning a simple polygonal curve
P0 contained and complete in the given tube g and such that CP0 contains
each cube of g just once (see Lemma 3), and second an iterative process (a g-
transform, see Lemma 4) where each completed run transforms Pt into Pt+1 with
l(Pt) � l(Pt+1), for t � 0. Thus the obtained polygonal curve is also complete
and contained in g.
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3.1 Initialization

The initial polygonal curve will only connect vertices which are end points of
consecutive critical edges. For curve initialization, we scan the given curve until
the �rst pair (e0; e1) of consecutive critical edges is found which are not parallel
or, if parallel, not in the same grid layer (see Fig. 2 (right) for a non-simple
cube-curve showing that searching for a pair of non-coplanar edges would be
insu�cient in this case). For such a pair (e0; e1) we start with vertices (p0; p1),
p0 bounds e0 and p1 bounds e1, specifying a line segment p0p1 of minimum
length (note that such a pair (p0; p1) is not always uniquely de�ned). This is the
�rst line segment of the desired initial polygonal curve P0.

Now assume that pi�1pi is the last line segment on this curve P0 speci�ed so
far, and pi is a vertex which bounds ei. Then there is a uniquely speci�ed vertex
pi+1 on the following critical edge ei+1 such that pipi+1 is of minimum length.
Length zero is possible with pi+1 = pi; in this case we skip pi+1, ie. we do not
increase the value of i. Note that this line segment pipi+1 will always be included
in the given tube because the centers of all cubes between two consecutive critical
edges are colinear. The process stops by connecting pn on edge en with p0 (note
that it is possible that a minimum-distance criterion for this �nal step may
actually prefer a line between pn and the second vertex bounding e0, ie. not
p0). See Table 1 for a list of calculated vertices for the cube-curve on the left in
Figs. 2 and 4. The �rst row lists all the critical edges shown in Fig. 2. The second
row contains the vertices of the initial polygon shown in Fig. 4 (initialization =

critical edge 1 2/3 4 5 6/7 8 9 10 11 12/13

1st run (initialization) a b c d e f g h i j

2nd run a b D D e D D h i j

Table 1. Calculated points on edges.
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Fig. 8. Assume the initialization starts below on the left. Then the �nal step of the

initialization process would prefer the second vertex of the �rst edge.

�rst run of the algorithm). For example, vertex b is on edge 2 and also on edge
3, so there is merely one column for (2=3) for these edges.

This initialization process calculates a polygonal curve P0 which is always
contained and complete in the given tube. Note that traversals following opposite
orientations or starting at di�erent critical edges may lead to di�erent initial
polygons. For example, a `counterclockwise' scan of the cube-curve shown in
Fig. 2 (left), starting at edge 1, selects edges 11 and 10 to be the �rst pair of
consecutive critical edges, and the generated 'counterclockwise' polygon would
di�er from the one shown in Fig. 4. Figure 8 shows a curve where the de�ned
initialization does not return to the starting vertex.

Initialization results are shown in Fig. 7, and the curve on the right is already
an MLP for this non-simple cube-curve. In case of at cube-curves the process
will fail to determine the speci�ed �rst pair of critical edges, and in this case a 2D
algorithm may be used to calculate the MLP of a corresponding square-curve.

3.2 Iteration steps

In this iterative procedure we move pointers addressing three consecutive vertices
of the (so far) calculated polygonal curve around the curve, until a completed
run t+1 does only lead to an improvement which is below an a-priori threshold
� i.e. l(Pt) � � < l(Pt+1). We cannot wait until there is no change at all since
in some cases the algorithm would take in�nite time to converge. However, in
all of our experiments the algorithm converges fast for a practically reasonable
value of � .

Assume a polygonal curve Pt = (p0; p1; :::; pm), and three pointers addressing
vertices at positions i � 1, i, and i + 1 in this curve. There are three di�erent
options that may occur which de�ne a speci�c g-transform.
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(O1) Point pi can be deleted i� pi�1pi+1 is a line segment within the tube.
Then subsequence (pi�1; pi; pi+1) is replaced in our curve by (pi�1; pi+1). In this
case we continue with vertices pi�1; pi+1; pi+2 .

(O2) The closed triangular region 4(pi�1pipi+1) intersects more than just
the three critical edges of pi�1, pi and pi+1 (see Fig. 9), ie. simple deletion of
pi would not be su�cient anymore. This situation is solved by calculating a
convex arc (note: a convex polygon is the shortest curve encircling a given �nite
set of planar points [1]) and by replacing point pi by the sequence of vertices
q1,...,qk on this convex arc between pi�1 and pi+1 i� the sequence of line segments
pi�1q1; : : : ; qkpi+1 lies within the tube. Because the vertices are ordered we may
use a fast linear-time convex hull routine in case of (O2). Barycentric coordinates
with basis fpi�1; pi; pi+1g may be used to decide which of the intersection points
is inside the triangle or not. 3 In this case we continue with a triple of vertices
starting with the calculated new vertex qk. If (O1) and (O2) do not lead to any
change, the third option may lead to an improvement.

(O3) Point pi may be moved on its critical edge to obtain an optimum po-
sition pnew minimizing the total length of both line segments pi�1pnew and
pnewpi+1. That's a move on a critical edge and an O(1) solution is given below.
Then subsequence (pi�1; pi; pi+1) is replaced in our curve by (pi�1; pnew; pi+1).
In this case we continue with vertices pnew; pi+1; pi+2.

In Table 1 we sketch the fact that the second run starts with the polygonal
curve P1 = (a; b; c; d; e; f; g; h; i; j). For the �rst triple (a; b; c) we have: none of
the cases (O1) to (O3) leads to a better location of b. For triple (b; c; d) we delete
c according to (O1) (symbol `D'). Then triple (b; d; e) leads to the deletion of
d, etc., �nally (j; a; b) does not delete or move a. In the following round nothing
changes.

There are no other possibilities besides (O1)...(O3). The process stops if one
run has not led to a `signi�cant modi�cation' de�ned by a threshold � . In our
experiments we chose � = l(Pt) � 10

�6.

Figures 10 and 11 show the initial polygon P1 dashed. The solid line rep-
resents the �nal polygon. The short line segments are the critical edges of the
given tube.

3 In the majority of such cases we found k = 1, i.e. pi is replaced by q1.
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4 Move on a critical edge

We consider situation (O3), ie. pi lies on a critical edge, say e, and is not colinear
with pi�1pi+1. Let le be the line containing the edge e. First, we �nd the point
popt 2 le such that

jpopt � pi�1j+ jpi+1 � poptj = min
p2le

(jp� pi�1j+ jpi+1 � pj):

If popt lies on the closed critical edge e we simply replace pi by popt. If it does
not replace pi by that vertex bounding e and lying closest to popt.
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Fig. 11. Initial polygon (dashed) and MLP.



We describe how the point popt can be found. The set of all points p 2 R3

for which

jp� pi�1j+ jpi+1 � pj = k ; (1)

for some real constant k � jpi+1 � pi�1j is a prolate spheroid S, ie. an ellipsoid,
the two shorter principle axes of which have the same length. In the following
we use three Cartesian coordinate systems of R3 which are interrelated by rigid
motions.

(I) The coordinates in the coordinate system used up to now are denoted by
lower case letters.

(II) Coordinates in the coordinate system attached to S are denoted by upper
case letters (X;Y; Z) 2 R3. In these coordinates S is represented by

X2

c2 + "
+

Y 2 + Z2

"
� 1 = 0; (2)

with c := jpi+1 � pi�1j=2 and " := k2=4� c2.

(III) The coordinate system (x0; y0; z0) is chosen such that le is identical to
the z0-axis.

Depending upon the choice of ", the line le has two intersection points with
S, is a tangent to S, or does not share any point with S. In the case of two
intersection points q1 and q2 all the points q 2 le which lie between q1 and q2 lie
inside S. Thus,

jq1� pi�1j+ jpi+1 � q1j = jq2� pi�1j+ jqi+1 � q2j

> jq � pi�1j+ jpi+1 � qj ;

and neither q1 nor q2 is the point popt which we are looking for. However, if le
is tangent to S, the tangent point is popt, since there is no point q 2 le lying
inside S. Thus, we �rst have to �nd the value of " such that le is tangent to S.
Afterwards we identify the intersection point of le and S as popt.

Representing (2) in coordinate system (III) and intersecting S with le by
setting x0 = y0 = 0 yields a quadric equation in z0:

a(")z0
2
+ b(")z0 + c(") = 0 : (3)

The coe�cients a and b contain " linearly, while c is quadratic in ". The constraint
that le be tangent to S is identical to the condition that (3) has a double solution.
This is the case i�

a(")c(") � b2(") = 0 : (4)

Equation (4) is cubic in " and has one real positive and two real negative so-
lution. Since geometrically only the positive solution makes sense, we have a
unique solution. Replacing " into (3), solving that equation, and representing
the solution in coordinate system (I) yields popt.
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Fig. 12. CPU-time in seconds in dependence of the number of cubes (n)

5 Time complexity and convergence of algorithm

We give an estimate of the complexity of the rubber-band algorithm in depen-
dency of the number of cubes n of the given cube-curve.

The algorithm completes each run in O(n) time. The described move of point
pi on a critical edge requires constant time. The given value of � ensured that
the measured time complexity is in O(n), ie. the number of runs does not depend
upon n. Figures 12 and 13 show the time needed until the algorithm stops in
dependency of the number of cubes n and in dependency of the number of
critical edges, respectively. The test set contained 70 randomly generated simple
cube-curves. In Fig. 12 each error bar shows the mean convergence time and the
standard deviation for a set of 10 digital curves.

The algorithm is iterative and since by de�nition l(Pt+1) < l(Pt) (otherwise,
if equal, the algorithm stops) and there exists a lower bound for l(Pt) (namely
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Fig. 13. CPU-time in seconds in dependence of the number of critical edges
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Fig. 14. Length convergence for the curve shown in Fig. 10

the length of the MLP) the algorithm converges. However, the open problem re-
mains: convergent towards which polygon? In all of our experiments it converges
towards the MLP. Lemma 3 and Lemma 4 give a partial answer: always towards
a polygon complete and contained in g.

Figures 14 and 15 show two examples of measured changes in the length of
the polygons within the iterative process (in this diagram: `iteration' = number
of runs so far). The simple cube-curves are those from Fig. 10 and Fig. 11.
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Fig. 15. Length convergence for the curve shown in Fig. 11. The tick-marks on the
iteration axis are set after each completed run.



6 Conclusions

The given algorithmic solution provides a polygonal approximation and length
measurement for simple cube-curves in 3D space with a measured time in O(n).
Actually it was successfully used for a wider class of cube-curves also allowing
cases such as the cube-curve on the right in Fig. 1: cube-curves g where each
cube in g has exactly two bounding faces in g. This de�nition allows a simpler
test of a given cube-curve, and also a simpler generation of test examples.

The curve used in the initialization step (A) might be replaced by other
curves such as sequences of straight segments between midpoints of consecutive
cubes, or between midpoints of consecutive critical edges. These two curves would
also be curves complete and contained in a given tube of a simple cube-curve.
However, the initial curve as de�ned in our algorithm leads to a much faster
convergence in general compared to these two other options.

Tow open problems are stated: the time complexity might be provable always
in O(n), and the convergence might be provable always towards the MLP.
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