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Abstract

We propose a quaternionic version of the Infomax algorithm to perform ICA on quaternion valued data. We
introduce the three possible types of nonlinearities that can be used as activation functions and derive their
differentiability properties. It is shown that only hypercomplex (fully quaternionic) nonlinearity can lead to the
estimation of all possible classes of proper quaternion random variable. This fact is illlustrated on simulation
data. It is shown that fully quaternionic Infomax algorithm is the only one that can perform blind separation
of polarized signal corrupted by H-proper (non-polarized) noise.
1. Quaternion random variables
Quaternions, denoted by H, are 4D hypercomplex numbers. They form a non-commutative division algebra.
A quaternion q ∈ H is given by q = q0 + q1i + q2j + q3k, where {i, j, k} are pure imaginary numbers with
multiplication rules: i2 = j2 = k2 = −1 and ijk = −1. A useful way to consider quaternions is to look at them
as complex numbers with complexified coefficients. This is known as the Cayley-Dickson notation: q = z1 + z2j,
where z1, z2 ∈ C. For a more complete introduction to quaternions see e.g. (Ward, J.P. (1997)). Quaternion
valued random variables (r.v.) have been studied in (Vakhania, N.N. (1998)) and (Amblard, P.O. & Le Bihan
N. (2004)). As shown in these references, quaternion random variables include two interesting subclasses, called
proper quaternion random variables.

1.1. Properness

There exists two levels of properness:

• A quaternion r.v. q is called C-proper if: q
d= eηθq, ∀θ for one and only one imaginary unit η = i, j or k.

• A quaternion r.v. q is called H-proper if: q
d= eηθq, ∀θ for any pure unit quaternion η.

We now present the link between properness and statistical properties of polarized signals.

1.2. Proper random variables and polarization

As known in Physics, a polarized signal can be described using a Jones vector (isomorphic to a quaternion).
Quaternion models for polarized signals have recently been used in Polarization Mode Dispersion (PMD) and
Polarization Dispersion Losses (PDL) treatment (Karlsson, M. & Petersson M. (2004)). Thus, a polarized signal
s[m] with m samples can be written as s[m] = s1[m] + s2[m]j where s1 and s2 are complex valued. If the signal
is purely polarized, then s[m] is deterministic. But if the signal is only partialy polarized, then s[m] is random
(Brosseau, C. (1998)). In this case, statistical description and processing is needed.

As shown in (Buchholz, S. & Le Bihan N. (2006)), if the two components of the signal are linked by a complex
number (which phase and amplitude represents the polarization ellipsis), then its associated quaternion signal is
C-proper. If the two components are decorrelated, then the signal is H-proper. Properness allows to distinguish
between polarized and unpolarized signals (noise). Using this distinction, we aim at proposing an algorithm that
is able to perform blind separation between different polarized signals or between polarized signals and noise.
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2. Quaternionic Infomax
The Infomax algorithm was first proposed in (Bell, A.J., & Sejnowski, T.J. (1995)). Complex versions were
introduced in (Calhoun, V. & Adalı, T. (2002), Adalı, T. & Kim, T. & Calhoun, V. (2004)). Here we present a
quaternionic version of this algorithm.

Consider an observation vector data x that is a linear mixture of some quaternion valued sources s:

x[m] = As[m] m = 0, 1, . . . ,M − 1 (time index) (2.1)

where x ∈ HN , s ∈ HN and A ∈ HN×N . Mixing matrix A is supposed to be constant in time and sources (and
consequently observations) are supposed to be stationary. Note that due to non-commutativity of the quaternion
product, other mixture models could be considered, depending on the Physics of the underlying problem (for
example x = AsA† or x = sA, with † being the quaternion conjugation-transpotion operator). The Infomax
algorithm maximizes the entropy of the output y[m] of a single layer neural network: y[m] = g(u[m]), where
g(.) is a quaternionic nonlinear function (i.e. g : H → H). The vector u[m] is a weighted version of the input
data: u = Wx where W ∈ HN×N is the weight matrix.

The entropy of the output vector y ∈ HN is given as:

H(y) = −E[ln p(y)] = −
∫ ∞

−∞
p(y) ln p(y)dy (2.2)

Expectation is taken in the classical sense (see Amblard, P.O. & Le Bihan N. (2004)). The pdf of a quaternion
random vector is in fact the joint pdf of its four vector components. So, the pdf of a quaternion random
vector is: p(y) = p(q0,q1,q2,q3). The entropy of a quaternion valued random vector is the joint entropy of its
components: H(q) , H(q0,q1,q2,q3). The calculations for the weight update are similar to the complex case:

∆W =
∂H(y)
∂W

W†W = µ
[
I + ϕ(u)u†

]
W (2.3)

This means formal extension of the Infomax algorithm is straightforward from C to H. The only point of
matter is in the nonlinearity g. In the following we will only consider the tanh(u) nonlinearity, with different
quaternionic versions. That is ϕ = −2 tanh(u).

3. Quaternionic nonlinearities
In the work of Calhoun et al., it is emphasized that it is possible to use two different definitions for the
nonlinearity: the full complex and split. In the tanh case, the two possible definitions are namely the split:
gs(u) = gs(uRe + iuIm) = tanh(uRe) + i tanh(uIm), and the full: gf (u) = gf (uRe + iuIm) = tanh(uRe + iuIm).
We now propose the extension of this work to the quaternion case.

3.1. Nonlinearities definition

In the quaternionic case, there are three possible levels of nonlinearity:
• R-split: g(u = u0 + u1i + u2j + u3k) , tanh(u0) + tanh(u1)i + tanh(u2)j + tanh(u3)k
• C-split: g(u0 + u1i + u2j + u3k) , tanh(u0 + u1i) + j tanh(u2 + u3i)
• H-full: g(u0 + u1i + u2j + u3k) , tanh(u0 + u1i + u2j + u3k)

Clearly, the R-split nonlinearity processes each component separately, while the C-split one process the two
complex components independently. Those two types of nonlinearities are not able to take into account possible
correlations between all the components. Only the H-full nonlinearity is able do this, as shown in Section 4.

3.2. Differentiability

It is possible to define three types of differentiablity for quaternion valued functions. Consider such a function
g : H → H for which u → g(u) when u = u0 +u1i+u2j+u3k, and where g = g0 +g1i+g2j+g3k = g(1) +g(2)j.
Then, it is possible to define:

• R-differentiability: [g]′R =
∂g

∂u
,

∂g

∂u0
+

∂g

∂u1
i +

∂g

∂u2
j +

∂g

∂u3
k

• C-differentiability: [g]′C =
∂g(1)

∂v
+ j

∂g(2)

∂w

• H-differentiability: [g]′H =
dg

du
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In the Infomax context, where it is necessary to compute, for the nonlinear activation function g, the ratio
g′′

g′

(Bell, A.J., & Sejnowski, T.J. (1995)), using R-differentiation is equivalent to process separately the four compo-
nents. Choosing an approach using C- or H-differentiation allows to take into account the possible links between
the components. Note that in the C-differentiability, both complex components satisfy Cauchy-Riemann equa-
tions. In the H-differentiability case, as explained in (Sudbery, A. (1979)), the condition imposed on g lead to

the so-called Cauchy-Riemann-Fueter equation:
dg

du
=

∂g

∂u0
= −i ∂g

∂u1
= −j ∂g

∂u2
= −k ∂g

∂u3
. All H-differentiable

functions are therefore of linear type: f(q) = aq + b where a, b ∈ H. However, just like in the complex case
(Calhoun, V. & Adalı, T. (2002)), it is possible to overcome this problem while using full hypercomplex nonlin-
earities by assuming that singularities of a hypercomplex function (which is not H-differentiable) have measure
zero, which ensure that the update will not end up at such point.

4. Approximation and estimation properties
The purpose here is to present how well split- and fully- quaternionic approaches can ”match” a certain distri-
bution. We consider the case where there is only one weight and only a random variable (random vector with
dimension 1). With these hypothese one has y = g(wx). Then, remembering that it is possible to use vector
representations for quaternion random variables, we choose the real representation from here, as a quaternion
random variable q is completely described by the joint distribution of its four components, i.e. by the distribu-
tion of the vector: q̂ = [q0 q1 q2 q3]T . So, from now we consider the following: ŷ = g(wx̂), whereˆdenotes the
real representation vector. The distribution of the output y can be linked to the distribution of the input x in
the following way:

p(ŷ) =
p(x̂)
|J|

∣∣∣∣
x̂=w−1g−1(ŷ)

(4.1)

where the terms of the Jacobian matrix J are given by J|ij = ∂gi/∂xj for i, j = 0, 1, 2, 3. We give the Jacobian
expression for the three types of nonlinearities, namely the R-split (JRs), C-split (JCs) and H-full (JHf ):

JRs =


∂0g0 0 0 0

0 ∂1g1 0 0
0 0 ∂2g2 0
0 0 0 ∂3g3

 ;JCs =


∂0g0 ∂1g0 0 0
∂0g1 ∂1g1 0 0

0 0 ∂2g2 ∂3g2

0 0 ∂2g3 ∂3g3

 ;JHf =


∂0g0 ∂1g0 ∂2g0 ∂3g0

∂0g1 ∂1g1 ∂2g1 ∂3g1

∂0g2 ∂1g2 ∂2g2 ∂3g2

∂0g3 ∂1g3 ∂2g3 ∂3g3


(4.2)

where ∂α stands for ∂/∂xα. The pattern of the Jacobian matrices allows to conclude that only the H-full
approach can take into account the largest set of possible relationships between the four components of a
quaternion random variable. More specifically, in the C-proper case, the first component is correlated with the
third and fourth, which induces off-diagonal terms in the covariance matrix (see Amblard, P.O. & Le Bihan
N. (2004) for details). As a consequence, only the H-full nonlinearty in quaternionic Infomax can perform a
thourought recovering of a C-proper random variable. We illustrate this now on simulated signals.

5. Simulation results
We consider a simple example where two vector-sensors record a linear and instantaneous mixture of two random
signals. The model for the recorded mixture is thus: x[m] = As[m], where x[m] ∈ H2, s[m] ∈ H2 and A ∈ H2×2.
Source s1[m] is a H-proper (non polarized, assumed as noise), Gaussian and i.i.d. signal. Source s2[m] is a
random signal taking values on the edges of a 4D polytope (see Zetterberg, L. H. & Brändström (1977) for
details). The Quaternionic Infomax results are presented in Figure 1. One can see that the C-split approach is
not able to separate the signal from noise while the H-full approach lead to a better estimation of the signal
and futhermore to the recovery of the H-properness property for the noise.

6. Conclusion
We have proposed an extension of the Infomax algorithm to the quaternionic case. The choice of the nonlinearity
has been demonstrated to be determinant in the separation result. Despite the lake of H-differentiability, H-full
nonlinearities are the best choice to achieve the separation between polarized signals and noise. The proposed
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Figure 1. Original signal (a), mixture recorded on sensor 1 (b) and 2 (c), estimated signal with C-split tanh (d) and
H-full (e) nonlinearities, estimated H-proper noise with with C-split tanh (f) and H-full (g) nonlinearities

algorithm could be of interest in applications such as Optics, Electromagnetism or Seismic where polarized
signals corrupted by noise are encountered and where ICA can help to recover the wavefield sources.
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