
A Hyperboli Multilayer PereptronSven Buhholz Gerald SommerDepartment of Computer Siene, University of KielPreusserstr. 1-9, 24105 Kiel, Germanyfsbh,gsg�ks.informatik.uni-kiel.deAbstratIn this paper we present a novel MLP{type neural network based on hyperboli numbers |the Hyperboli Multilayer Pereptron (HMLP). The neurons of the HMLP ompute 2D{hyperboliorthogonal transformations as weight propagation funtions. The HMLP an therefore be seen asthe hyperboli ounterpart of the known Complex MLP. The HMLP is proven to be a universalapproximator. Furthermore, a suitable Bakpropagation algorithm for it is derived. It is shownby experiments, that the HMLP an learn tasks with underlying hyperboli properties muh moreaurately and eÆiently than a Complex MLP and an ordinary MLP.1 IntrodutionA growing interest in neural networks in non{Eulidean spaes an be observed in the literature, inpartiular in hyperboli ones. However, most of the approahes use atually a embedding in a Eulideanspae. Examples are [7℄ for a embedding of the hyperboli plane and [4℄ for only reonstruting hyperbolimetris. This requires always an expanding preproessing of the data, whih makes suh approahes lessexible. In this paper we present instead a novel MLP-type neural network that ats diretly in thehyperboli number algebra | the Hyperboli Multilayer Pereptron (HMLP). The neurons of the HMLPompute 2D{hyperboli orthogonal transformations as weight propagation funtions. The HMLP antherefore be seen as the hyperboli ounterpart of the known Complex MLP.The paper starts with a preliminary setion on hyperboli numbers. In the main part of this paper, setion3, the arhiteture of the HMLP is presented and the HMLP is proven to be a universal approximator.Furthermore, a suitable Bakpropagation algorithm for it is derived there and it is argued that the derivedlearning algorithm is robust, although performed in a domain ontaining divisors of zero. In setion 4experiments are reported, that show that the HMLP an learn tasks with underlying hyperboli propertiesmuh more aurately and eÆiently than a Complex MLP and an ordinary MLP.2 Hyperboli NumbersHyperboli (or double) numbers are numbers of the formh = a+ b e (1)with a; b 2 IR and an imaginary unit e that squares to +1. In omplete analogy with the omplexnumbers, a is alled the real part of h and b e the imaginary part of h. The onjugate hyperboli numberto h is given by �h := a � b e. The square root of the real number jh �hj = ja2 � b2j, whose sign agreeswith the sign of the larger of a and b in absolute value, is alled the modulus of h and is denoted by jhj.Formal multipliation subjet to e2 = 1 gives the following de�nition of the produt of two hyperbolinumbers (a+ b e)
 (+ d e) := (a+ bd) + (ad+ b) e : (2)However, division kh = + d ea+ b e = a� dba2 � b2 + da� ba2 � b2 e (3)is possible only if jhj 6= 0. From (2) follows that IH := (IR2;+;
) is a real assoiative and ommutativealgebra. Yet, sine (3) it is not a division algebra. The hyperboli number algebra IH is isomorphi to the



matrix algebra generated by �� a bb a � j a; b 2 IR� [8℄. Let us point out now in what sense IH is indeedhyperboli. Any hyperboli number h with non{zero modulus r an be written as h = a+b e = r(ar+ br e).Hene it follows that ar = osh(�); br = sinh(�) or ar = sinh(�); br = osh(�). From this we get therepresentation h = r(osh(�) + e sinh(�)) or h = r(sinh(�) + e osh(�)). Thus, multipliation of ahyperboli number with non{zero modulus is a saled 2D{hyperboli orthogonal transformation. Morepreisely,(fu 2 IH j : juj � 1g;
) ' O(1 ; 1 ) = �� �1 osh(�) �2 sinh(�)�1 sinh(�) �2 osh(�) � j � 2 IR; �1; �2 2 f�1g� : (4)3 Hyperboli MLPFrom the previous setion we know already that hyperboli numbers are the hyperboli ounterpart ofomplex numbers. In this setion we will develop now the orresponding Hyperboli Multilayer Perep-tron (HMLP), whih an be seen as the ounterpart of the Complex MLP (CMLP) [1℄,[5℄ again.3.1 HMLP ArhitetureThe HMLP as a MLP{type neural network onsists of layers of neurons (say L) with feed{forward onlyonnetions between all the neurons of onseutive layers. In ontrast to the real{valued MLP all entitiesare now hyperboli numbers. More preisely, the output oj (l) of the j-th neuron in layer 1 < l � L of aHMLP is given by oj (l) = f((Xi wij (l) 
 xi(l�1)) + �j(l)); (5)where w(l)ij is the weight onneting the i{th node in layer (l � 1) with the j{th node in layer l, �j isthe appropriate bias and x(l�1)i is the i-th input from the previous layer. Thus, the HMLP performsas weight assoiation a saled 2D{hyperboli orthogonal transformation, instead of the salar produt(MLP) and a saled 2D{Eulidean orthogonal transformation (CMLP), respetively. Figure 1 gives anillustration of the deision regions of a linear (f = id) hyperboli neuron, whih are always de�ned bythe asymptotes of a hyperbola.
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Figure 1: Deision regions of a linear hyperboli neuronNote that � ats as a translation parameter and without normed weights the de�ned hyperbola is arbi-trarily, and so will be its two interseting asymptotes.In the omplex ase it is ommon [1℄ to use the real logisti funtion � : x 7! 1=(1 + exp(�x)) in eahomponent, to avoid tehnial problems [5℄. For similar reasons we will also use this funtion. Hene,the ativation funtion of HMLP{neuron is given by�(h) = �(a) + �(b) e : (6)A density theorem for HMLPs with this ativation funtion is easy to prove.



Theorem 1 Let X be a ompat subset of IHn . Then there exists a natural number N suh that thespae 8<: NXj=1 �j �(( nXi=1 wi 
 xi) + �j)9=; (7)is dense in the spae of all ontinuous funtions from X to IH.Proof A set of IH{valued funtions has the universal approximation property, i� it is a universal ap-proximator for any of the (real{valued) omponent funtions. However, this is already guaranteed bythe fundamental density theorem for MLPs with sigmoidal funtions [3℄. 23.2 Hyperboli MLP Learning AlgorithmIn this setion we want to derive a Bakpropagation algorithm for a HMLP with L layers. This an bedone by applying gradient desent to minimize the ommon error funtionE = 12Xp (yp � op(L))2 ; (8)whereby yp denotes the p-th expeted output value. In addition to the notations used so far let aj (l) :=(Piwij (l) 
 xi(l�1)) + �j (l) be the ativation value of the j{th neuron in layer l (l > 1). Then theformula for updating the weights of the output layer is given by�wij (L) = [ (yp � op(L))� _�(aj (L))| {z }Æj (L) ℄
 xi(L�1) ; (9)with � denoting salar multipliation omponent by omponent. The rule to update the hidden weights(1 < l < L) is as follows�wij (l) = [ (Xk wjk(l+1) 
 Æk(l+1))� _�(aj (l)) ℄
 xi(l�1) : (10)Finally, the bias updating is performed aording to ��j (l) = Æj (l). Sine IH ontains divisors of zero, itis not always guaranteed that a non{zero error Æj (l) results in a hanging of weights. In [1℄ it is laimedthat in suh ases learning stops. This is not true in general, sine suh a e�et in pratie will only betemporary due to the yling trough the remaining input data with hanging the state of the network.Let us have in addition a diret look at zero divisors in our hyperboli ase. They have the speial form(a + a e) 
 (b � b e), from whih we an onlude that already their appearane is unlikely. For a moregeneral and omplete disussion see [2℄.4 ExperimentsThe HMLP an be applied to any kind of funtion approximation task, sine we know from setion 3 thatit is a universal approximator. However, it should learly be most useful on problems with underlyinghyperboli geometri reasoning. Note that it is not easy to predit if a CMLP or a MLP performsbetter on a given task, even if the data onsist of omplex numbers [6℄. To the test the performane ofthe HMLP we onsidered the task to approximate a slightly hyperboli deformed sphere given by theequations (� 2 (��; �);  2 (��2 ; �2 ))x(�;  ) = os(�)osh( )=12 (11)y(�;  ) = os(�)sin( ) (12)z(�;  ) = sin(�) : (13)Figure 2 shows this surfae generated from a uniform 16� 16 grid in [0; 1℄� [0; 1℄, whih also served astest data in the simulations.
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Figure 2: Test data for the simulationsThe training set used onsisted of 20 points randomly drawn from [0; 1℄� [0; 1℄ with uniform probability.The output for both the HMLP and the CMLP was oded aording to f(x; y); (z; 0)g. A satisfyinggeneralization result ould be obtained by a HMLP with only 3 hidden nodes, see Figure 3 below.
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Figure 3: Generalization of the (1-3-2){HMLP (left), the (1-3-2){CMLP (middle) and the (2-4-3){MLP(right)In ontrast to that, neither a CMLP nor a MLP with the same degrees of freedom (number of weightsounted as real numbers) ould ahieved suh a good performane. Obviously from Figure 3, both failedto detet a losed surfae. The �rst 3 olumns of Table 1 report the obtained results over 10 averagedtrials. On the test set the mean{square{error (MSE) of the HMLP was only a half of that of the othertwo networks. This is partiular remarkable in the ase of the CMLP that ahieved training errors notfar above that of the HMLP. (1-3-2){CMLP (2-4-3){MLP (1-3-2){HMLP (1-4-2){CMLP (2-7-3){MLPMSE Training 0.0051 0.0082 0.0047 0.0013 0.0017MSE Test 0.0340 0.0372 0.0176 0.0244 0.0209Table 1: Summary of simulation resultsWe then inreased the number of hidden nodes in the CMLP and MLP, respetively, until the trainingerrors dropped under that of the HMLP for the �rst time. The parameters and the obtained results anbe taken from the last two olumns of Table 1. As listed there, the error on the test set is still somewhathigher than that of the HMLP besides muh smaller training errors. Both networks still su�er on missingthe right model of the data, whih an be seen from Figure 4.
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Figure 4: Generalization of the (1-4-2){CMLP (left) and the (2-7-3){MLP (right)Summarizing, we an onlude that the HMLP outperformed the other two network types on the giventask.5 ConlusionWe presented a novel MLP{type neural network | the Hyperboli Multilayer Pereptron (HMLP),that an be seen as the ounterpart of the known Complex MLP. The HMLP was proven to be auniversal approximator performing 2D{hyperboli orthogonal transformations as weight propagationfuntion. From the experiments that were made, it an be onluded that the HMLP an learn taskswith underlying hyperboli properties muh more aurately and eÆiently than a Complex MLP and anordinary MLP. However, the data used in the simulations was only slightly hyperboli modeled. Thus,the HMLP should perform even better on pure hyperboli tasks in omparison to other MLPs. Moreover,it seems also be promising to test the HMLP on other type of tasks and standard benhmarks.This will be the subjet of ongoing future work.Aknowledgment This work was supported by the Deutshe Forshungsgemeinshaft under grant So-320-2-1.Referenes[1℄ P. Arena, L. Fortuna, G. Musato, and M. G. Xibilia. Neural Networks in Multidimensional Domains.Number 234 in LNCIS. Springer{Verlag, 1998.[2℄ S. Buhholz and G. Sommer. Introdution to Neural Computation in Cli�ord Algebra, hapter 13. G.Sommer (Ed.), Geometri Computing with Cli�ord Algebra. Springer{Verlag, 2000 (to appear).[3℄ G. Cybenko. Approximation by superposition of a sigmoidal funtion. Mathematis of Control,Signals and Systems, 2:303{314, 1989.[4℄ W. Duh, R. Adamzak, and G.H.F. Dierksen. Neural Networks In Non{Eulidean Spaes. NeuralProessing Letters, 10(3):201{210, 1999.[5℄ G. Georgiou and C. Koutsougeras. Complex domain bakpropagation. IEEE Trans. on Ciruits andSystems II, 39(5):330{334, 1992.[6℄ T. Masters. Signal and Image Proessing with Neural Networks. John Willey and Sons, 1994.[7℄ H. Ritter. Self{Organizing Maps in non{eulidean Spaes, hapter 7. E. Oja and S. Kaski (Eds.),Kohonen Maps. Elsevier, 1999.[8℄ V. G. Shervatov. Hyperboli Funtions. D.C. Heath and Company, Boston, 1963.


