
A Hyperboli
 Multilayer Per
eptronSven Bu
hholz Gerald SommerDepartment of Computer S
ien
e, University of KielPreusserstr. 1-9, 24105 Kiel, Germanyfsbh,gsg�ks.informatik.uni-kiel.deAbstra
tIn this paper we present a novel MLP{type neural network based on hyperboli
 numbers |the Hyperboli
 Multilayer Per
eptron (HMLP). The neurons of the HMLP 
ompute 2D{hyperboli
orthogonal transformations as weight propagation fun
tions. The HMLP 
an therefore be seen asthe hyperboli
 
ounterpart of the known Complex MLP. The HMLP is proven to be a universalapproximator. Furthermore, a suitable Ba
kpropagation algorithm for it is derived. It is shownby experiments, that the HMLP 
an learn tasks with underlying hyperboli
 properties mu
h morea

urately and eÆ
iently than a Complex MLP and an ordinary MLP.1 Introdu
tionA growing interest in neural networks in non{Eu
lidean spa
es 
an be observed in the literature, inparti
ular in hyperboli
 ones. However, most of the approa
hes use a
tually a embedding in a Eu
lideanspa
e. Examples are [7℄ for a embedding of the hyperboli
 plane and [4℄ for only re
onstru
ting hyperboli
metri
s. This requires always an expanding prepro
essing of the data, whi
h makes su
h approa
hes less
exible. In this paper we present instead a novel MLP-type neural network that a
ts dire
tly in thehyperboli
 number algebra | the Hyperboli
 Multilayer Per
eptron (HMLP). The neurons of the HMLP
ompute 2D{hyperboli
 orthogonal transformations as weight propagation fun
tions. The HMLP 
antherefore be seen as the hyperboli
 
ounterpart of the known Complex MLP.The paper starts with a preliminary se
tion on hyperboli
 numbers. In the main part of this paper, se
tion3, the ar
hite
ture of the HMLP is presented and the HMLP is proven to be a universal approximator.Furthermore, a suitable Ba
kpropagation algorithm for it is derived there and it is argued that the derivedlearning algorithm is robust, although performed in a domain 
ontaining divisors of zero. In se
tion 4experiments are reported, that show that the HMLP 
an learn tasks with underlying hyperboli
 propertiesmu
h more a

urately and eÆ
iently than a Complex MLP and an ordinary MLP.2 Hyperboli
 NumbersHyperboli
 (or double) numbers are numbers of the formh = a+ b e (1)with a; b 2 IR and an imaginary unit e that squares to +1. In 
omplete analogy with the 
omplexnumbers, a is 
alled the real part of h and b e the imaginary part of h. The 
onjugate hyperboli
 numberto h is given by �h := a � b e. The square root of the real number jh �hj = ja2 � b2j, whose sign agreeswith the sign of the larger of a and b in absolute value, is 
alled the modulus of h and is denoted by jhj.Formal multipli
ation subje
t to e2 = 1 gives the following de�nition of the produ
t of two hyperboli
numbers (a+ b e)
 (
+ d e) := (a
+ bd) + (ad+ b
) e : (2)However, division kh = 
+ d ea+ b e = 
a� dba2 � b2 + da� 
ba2 � b2 e (3)is possible only if jhj 6= 0. From (2) follows that IH := (IR2;+;
) is a real asso
iative and 
ommutativealgebra. Yet, sin
e (3) it is not a division algebra. The hyperboli
 number algebra IH is isomorphi
 to the



matrix algebra generated by �� a bb a � j a; b 2 IR� [8℄. Let us point out now in what sense IH is indeedhyperboli
. Any hyperboli
 number h with non{zero modulus r 
an be written as h = a+b e = r(ar+ br e).Hen
e it follows that ar = 
osh(�); br = sinh(�) or ar = sinh(�); br = 
osh(�). From this we get therepresentation h = r(
osh(�) + e sinh(�)) or h = r(sinh(�) + e 
osh(�)). Thus, multipli
ation of ahyperboli
 number with non{zero modulus is a s
aled 2D{hyperboli
 orthogonal transformation. Morepre
isely,(fu 2 IH j : juj � 1g;
) ' O(1 ; 1 ) = �� �1 
osh(�) �2 sinh(�)�1 sinh(�) �2 
osh(�) � j � 2 IR; �1; �2 2 f�1g� : (4)3 Hyperboli
 MLPFrom the previous se
tion we know already that hyperboli
 numbers are the hyperboli
 
ounterpart of
omplex numbers. In this se
tion we will develop now the 
orresponding Hyperboli
 Multilayer Per
ep-tron (HMLP), whi
h 
an be seen as the 
ounterpart of the Complex MLP (CMLP) [1℄,[5℄ again.3.1 HMLP Ar
hite
tureThe HMLP as a MLP{type neural network 
onsists of layers of neurons (say L) with feed{forward only
onne
tions between all the neurons of 
onse
utive layers. In 
ontrast to the real{valued MLP all entitiesare now hyperboli
 numbers. More pre
isely, the output oj (l) of the j-th neuron in layer 1 < l � L of aHMLP is given by oj (l) = f((Xi wij (l) 
 xi(l�1)) + �j(l)); (5)where w(l)ij is the weight 
onne
ting the i{th node in layer (l � 1) with the j{th node in layer l, �j isthe appropriate bias and x(l�1)i is the i-th input from the previous layer. Thus, the HMLP performsas weight asso
iation a s
aled 2D{hyperboli
 orthogonal transformation, instead of the s
alar produ
t(MLP) and a s
aled 2D{Eu
lidean orthogonal transformation (CMLP), respe
tively. Figure 1 gives anillustration of the de
ision regions of a linear (f = id) hyperboli
 neuron, whi
h are always de�ned bythe asymptotes of a hyperbola.
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Figure 1: De
ision regions of a linear hyperboli
 neuronNote that � a
ts as a translation parameter and without normed weights the de�ned hyperbola is arbi-trarily, and so will be its two interse
ting asymptotes.In the 
omplex 
ase it is 
ommon [1℄ to use the real logisti
 fun
tion � : x 7! 1=(1 + exp(�x)) in ea
h
omponent, to avoid te
hni
al problems [5℄. For similar reasons we will also use this fun
tion. Hen
e,the a
tivation fun
tion of HMLP{neuron is given by�(h) = �(a) + �(b) e : (6)A density theorem for HMLPs with this a
tivation fun
tion is easy to prove.



Theorem 1 Let X be a 
ompa
t subset of IHn . Then there exists a natural number N su
h that thespa
e 8<: NXj=1 �j �(( nXi=1 wi 
 xi) + �j)9=; (7)is dense in the spa
e of all 
ontinuous fun
tions from X to IH.Proof A set of IH{valued fun
tions has the universal approximation property, i� it is a universal ap-proximator for any of the (real{valued) 
omponent fun
tions. However, this is already guaranteed bythe fundamental density theorem for MLPs with sigmoidal fun
tions [3℄. 23.2 Hyperboli
 MLP Learning AlgorithmIn this se
tion we want to derive a Ba
kpropagation algorithm for a HMLP with L layers. This 
an bedone by applying gradient des
ent to minimize the 
ommon error fun
tionE = 12Xp (yp � op(L))2 ; (8)whereby yp denotes the p-th expe
ted output value. In addition to the notations used so far let aj (l) :=(Piwij (l) 
 xi(l�1)) + �j (l) be the a
tivation value of the j{th neuron in layer l (l > 1). Then theformula for updating the weights of the output layer is given by�wij (L) = [ (yp � op(L))� _�(aj (L))| {z }Æj (L) ℄
 xi(L�1) ; (9)with � denoting s
alar multipli
ation 
omponent by 
omponent. The rule to update the hidden weights(1 < l < L) is as follows�wij (l) = [ (Xk wjk(l+1) 
 Æk(l+1))� _�(aj (l)) ℄
 xi(l�1) : (10)Finally, the bias updating is performed a

ording to ��j (l) = Æj (l). Sin
e IH 
ontains divisors of zero, itis not always guaranteed that a non{zero error Æj (l) results in a 
hanging of weights. In [1℄ it is 
laimedthat in su
h 
ases learning stops. This is not true in general, sin
e su
h a e�e
t in pra
ti
e will only betemporary due to the 
y
ling trough the remaining input data with 
hanging the state of the network.Let us have in addition a dire
t look at zero divisors in our hyperboli
 
ase. They have the spe
ial form(a + a e) 
 (b � b e), from whi
h we 
an 
on
lude that already their appearan
e is unlikely. For a moregeneral and 
omplete dis
ussion see [2℄.4 ExperimentsThe HMLP 
an be applied to any kind of fun
tion approximation task, sin
e we know from se
tion 3 thatit is a universal approximator. However, it should 
learly be most useful on problems with underlyinghyperboli
 geometri
 reasoning. Note that it is not easy to predi
t if a CMLP or a MLP performsbetter on a given task, even if the data 
onsist of 
omplex numbers [6℄. To the test the performan
e ofthe HMLP we 
onsidered the task to approximate a slightly hyperboli
 deformed sphere given by theequations (� 2 (��; �);  2 (��2 ; �2 ))x(�;  ) = 
os(�)
osh( )=12 (11)y(�;  ) = 
os(�)sin( ) (12)z(�;  ) = sin(�) : (13)Figure 2 shows this surfa
e generated from a uniform 16� 16 grid in [0; 1℄� [0; 1℄, whi
h also served astest data in the simulations.
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Figure 2: Test data for the simulationsThe training set used 
onsisted of 20 points randomly drawn from [0; 1℄� [0; 1℄ with uniform probability.The output for both the HMLP and the CMLP was 
oded a

ording to f(x; y); (z; 0)g. A satisfyinggeneralization result 
ould be obtained by a HMLP with only 3 hidden nodes, see Figure 3 below.
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Figure 3: Generalization of the (1-3-2){HMLP (left), the (1-3-2){CMLP (middle) and the (2-4-3){MLP(right)In 
ontrast to that, neither a CMLP nor a MLP with the same degrees of freedom (number of weights
ounted as real numbers) 
ould a
hieved su
h a good performan
e. Obviously from Figure 3, both failedto dete
t a 
losed surfa
e. The �rst 3 
olumns of Table 1 report the obtained results over 10 averagedtrials. On the test set the mean{square{error (MSE) of the HMLP was only a half of that of the othertwo networks. This is parti
ular remarkable in the 
ase of the CMLP that a
hieved training errors notfar above that of the HMLP. (1-3-2){CMLP (2-4-3){MLP (1-3-2){HMLP (1-4-2){CMLP (2-7-3){MLPMSE Training 0.0051 0.0082 0.0047 0.0013 0.0017MSE Test 0.0340 0.0372 0.0176 0.0244 0.0209Table 1: Summary of simulation resultsWe then in
reased the number of hidden nodes in the CMLP and MLP, respe
tively, until the trainingerrors dropped under that of the HMLP for the �rst time. The parameters and the obtained results 
anbe taken from the last two 
olumns of Table 1. As listed there, the error on the test set is still somewhathigher than that of the HMLP besides mu
h smaller training errors. Both networks still su�er on missingthe right model of the data, whi
h 
an be seen from Figure 4.
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Figure 4: Generalization of the (1-4-2){CMLP (left) and the (2-7-3){MLP (right)Summarizing, we 
an 
on
lude that the HMLP outperformed the other two network types on the giventask.5 Con
lusionWe presented a novel MLP{type neural network | the Hyperboli
 Multilayer Per
eptron (HMLP),that 
an be seen as the 
ounterpart of the known Complex MLP. The HMLP was proven to be auniversal approximator performing 2D{hyperboli
 orthogonal transformations as weight propagationfun
tion. From the experiments that were made, it 
an be 
on
luded that the HMLP 
an learn taskswith underlying hyperboli
 properties mu
h more a

urately and eÆ
iently than a Complex MLP and anordinary MLP. However, the data used in the simulations was only slightly hyperboli
 modeled. Thus,the HMLP should perform even better on pure hyperboli
 tasks in 
omparison to other MLPs. Moreover,it seems also be promising to test the HMLP on other type of tasks and standard ben
hmarks.This will be the subje
t of ongoing future work.A
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